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ABSTRACT: Cyclic structures are often used to model and simulate long chain molecules due to the
simplification of no chain-end effects. Many technically important and biologically relevant molecules are
cyclics. Further, ring polymers display dramatic viscosity enhancement when blended with linear polymers
in the melt. It has been proposed that cyclic melts may display a topologically driven coil collapse at
high molecular weights reminiscent of cyclic DNA. Despite the structural simplicity and importance of
cyclics a quantitative analytic distinction between cyclics and linear chains in the melt or in solution
has been elusive since both linear and cyclic macromolecules display similar disordered, fractal struc-
tures. A dimensional analysis of cyclic polymers and its use to describe scattering data from cyclic
macromolecules is presented. The validity of the new approach to describe cyclic structures is demon-
strated using experimental data, and the Casassa form factor, previously used for cyclic polymers, is
critically revisited. The scaling model is also used to quantify cyclic coil collapse in simulations from the
literature.

Introduction

Cyclic structures are prevalent in many biological and syn-
thetic molecules; e.g. cyclic molecules play an important role in
the DNA transcription process1 as well as complex biochemical
processes like insulin secretion.2 Synthetic systems like macro-
cyclic-ethers (crown-ethers) have been synthesized for specific
applications like cationic and anionic complexation agents.3,4

Such macrocyclic crown-ethers have been used to thread poly-
mers in an attempt tomimic biomolecular processes.5 Cyclics also
presentmodel structures for the study of polymers since they lack
the complication of chain-end effects.6 However, the absence
of chain ends has led to speculation that the dynamic pro-
perties of polymeric rings differ from their linear analogues.7-9

Recent studies have shown dramatic enhancement of viscosity
when a small amount of linear chains are added to cyclic
polymers.10,11

The structural characterization of cyclic macromolecules
includes detailed experimental studies conducted on cyclic poly-
(dimethylsiloxane) (PDMS).12-14 PDMS displays a natural ten-
dency to form rings during synthesis. Small angle neutron scattering
(SANS) has been a primary tool to quantify these structures, and
has made it possible to corroborate theoretical/computational
predictions regarding the structure/conformation of ring polymers
under different thermodynamic conditions.7-10,15-18 These studies
along with the recent development of Ru-based catalyst systems by
Bielawski et al.19 for industrial scale production of cyclic polymers
has invigorated interest in obtaining effective descriptions of cyclic
structures.

SANS is a useful analytic technique to characterize features of
the structure like the mean square radius of gyration of the cyclic
macromolecule, Rg, as well as the mass/size scaling of such a
structure. The Casassa form factor20 has been used for cyclic
macromolecules. It has been reported12 that theCasassa equation
results in less than satisfactory fits to describe the observed small
angle scattering (SAS) patterns, especially for cyclics of high
molar mass.

This paper describes a pathway to model cyclics using a new
approach developed by Beaucage21-26 for analyzing hierarchical
structures. Literature SANS data from cyclic polymers and
simulated structure factors from the literature will be used as a
check for this approach. Itwill be evident that thismodel yields an
effective description for cyclic polymers. New information
regarding the conformational and thermodynamic states of
cyclics can be understood using this approach. A latter section
will critically assess the Casassa equation20,27,28 using this new
structural model.

Scaling Model for Cyclic Structures

A cyclic macromolecule displays tortuosity of the chain path
associated with thermodynamic conditions and structural con-
straints on chain randomness. The cyclic also displays a fixed
connectivity associatedwith the ring structure that is not changed
by solvation conditions. These two features of cyclics can be
described using a universal scalingmodel.21-26 The scalingmodel
describes a complexmacromolecule composed of z primary units,
of which p units describe the average minimum or short circuit
path through the structure (broken line and lighter circles in
Figure 1). The average minimum path is the average path of
conduction or the path on which mechanical stress is transferred
through the structure. p is related to the chain size R/lK through
theminimumdimension, dmin, whereR is the end-to-end length of
the structure andof an averageminimumpath, and lK is theKuhn
length or step size,

p ¼ R

lK

� �dmin

ð1Þ

Equation 1 describes the tortuosity of the structure. A struc-
ture with no tortuosity displays dmin = 1 and a minimum in p for
a given R/lK. Both p and dmin increase with increasing tortuosity
of the chain path. The connectivity of a complex structure can be
described by the connecting path, s, that links chain ends and*Corresponding author.
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branch/junction siteswith straight lines. In analogy to eq 1we can
write

s ¼ R

lK

� �c

ð2Þ

where c is the connectivity dimension. For a linear chain c = 1
and s is aminimum for a givenR/lK. For the chainmass, z, we can
also write

z ¼ R

lK

� �df

¼ pc ¼ sdmin ð3Þ

where df is the mass fractal dimension and

df ¼ cdmin ð4Þ
(z - p) units are present in structural branches, so the branch
fraction φBr is given as21

φBr ¼ z- p

z
¼ 1- z1=c- 1 ð5Þ

By analogy we can also define a “meandering” fraction that
accounts for mass that is not used in direct, linear connectivity,

φM ¼ z- s

z
¼ 1- z1=dmin - 1 ð6Þ

φBr can be quantitatively obtained for a variety of different
molecular architectures using SAS.21-26

The scaling model can be adapted to describe a cyclic structure.
As seen in Figure 1, the minimum path for an uncollapsed cyclic
structure is composed of half its length (p= z/2); so, from eq 3

1

c
¼ 1-

ln 2

ln z
ð7Þ

c is a functionof z and approaches 1 (the definitionof a linear chain)
for large z. Further, eq 7 indicates that the cyclic has the topology
of a disk (c = 2) when the cyclic is composed of 4 units (z = 4).
An expression for dmin can be obtained by combining eqs 4
and 7

dmin ¼ df 1-
ln 2

ln z

� �
ð8Þ

Themass-fractal dimension for cyclics, df, cannot be calculated
by this method since the chain’s mass-fractal scaling is perturbed
from the thermodynamically limiting values of 2 forΘ conditions
and ∼5/3 for good solvents by the cyclic connectivity. That is, we
cannot assume that a comparable linear chain of z/2 units has
these thermodynamically limiting values of the mass-fractal
dimension for a cyclic structure.

Cates and Deutsch7 indicate that a cyclic in the melt is
restricted from certain topologically excluded conformations
associated with concatenation and knotting. This leads to a
reduction in size compared to a linear chain and an increase in
the free energy. The topologically driven size reduction is
opposed by the chain’s entropic elasticity. A simple free energy
expression based on these two terms can be minimized to yield a
mass-fractal dimension of 2.5 for a cyclic in the melt. Modifica-
tion of these topological restrictions could reduce the df to about
2.2 which is observed in simulations15-18 and close to what was
observed experimentally for cyclic PDMS melts.12-14

The primary particles that do not compose the average mini-
mum path contribute toward φBr. Hence, for cyclic structures φBr
should display a constant value of 0.5 (Figure 1), regardless of
molar mass, z.

In the context of this scaling model it is interesting to compare
a symmetric 4-arm star and a cyclic polymer, since both these
structures display φBr = 0.5. This is indicated schematically in
Figure 1b and 1c. dmin and c follow the same functions for the 4-
arm star and cyclic. The structures are distinguished by theirRg’s,
Rg,cyclic

2 = Rg,linear
2/2 and Rg,4-star

2 = Rg,linear
2/1.6 from eqs 6.28

and 6.85 of ref 28 for Gaussian scaling.
For a cyclicmelt there are twomain topological features, the ring

structure itself, that is, any step of the chain is indistinguishable
from any other step; and the absence of concatenation or linking of
the rings mentioned above. These two features are distinguished in
the scalingmodel by the constraints of eqs 7 and 8 and by the value
ofRg given below by eq 13 for nonconcatenated cyclics. Equations
8 and 13 also involve the chain tortuosity and flexibility through the
value of dmin. The chain tortuosity is partly controlled by steric
constraints, and thermodynamic conditions. The final coil size is
influenced both by topology as well as tortuosity.

Simulations of cyclicmelts have shown that a scaling transition
may occur in molecular weight leading to coil collapse at high
molecular weight that is driven by the topological constraints
mentioned above.15-18 The transition from an expanded coil to a
globular structure is easily distinguished in the context of the
scaling model by a decrease in dmin to 1 for a globular structure
and an increase in c toward 3, as well as an increase in φBr to 1 for
a 3d object. It is expected that as the cyclic approaches a globular
state the connectivity will increase similar to what has been
observed for proteins and RNA during folding as demonstrated
in a previous publication.24

The scaling model can accommodate a variety of structural
changes including changes in connectivity associated with coil
collapse as described in ref 24. Equations 7 and 8 rely on a
noncollapsed coil, so it is expected that deviations from these
functions will be observed during cyclic globule formation,
particularly, a relative increase in c and decrease in dmin. Ob-
servation of these deviations at high molecular weight would be
consistent with topology driven cyclic collapse at high molecular
weight predicted in the literature.15-18 It is also expected that φBr
would increase from 0.5 as coil collapse progresses.

Small-Angle Scattering

The scattering curve from a mass-fractal object, of which a
cyclic is an example, displays two regimes. At low-q, the Guinier
regime follows29-31

IðqÞ ¼ G exp
- q2Rg

2

3

 !
, ð9Þ

and at high-q the mass-fractal power law regime follows,

IðqÞ ¼ Bf q
- df ð10Þ

where I is the scattered intensity, q is the scattering vector given as
q=4π sin(θ/2)/λ, θ is the scattering angle, λ is the wavelength of

Figure 1. Schematic representation of the minimum path, p, through a
cyclic structure (1c) as discussed in text. The minimum path for a cyclic
would constitute half the chain (indicated by the broken line and lighter
circles): (a) linear chain, (b) 4-arm star, (c) cyclic, and (d) disk.
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the radiation,G andBf are the Guinier and power law prefactors,
respectively, and Rg is the radius of gyration of the polymer coil.
Figure 2a shows the origin of the four free parameters obtained
from SANS: G, Rg, Bf, and df. G and Rg are derived from
Guinier’s law (eq 9), which predicts an exponential decay in
scattered intensity associated with the overall Rg of the structure
(dot-dash curve to the left of Figure 2a), and Bf and df reflect the
power law (dot-dash curve to the right of Figure 2a) which gives
the mass/size scaling of the structure in terms of the mass-fractal
dimension df (eq 10). Beaucage21 has shown that the topology of
the structure, as described by the scaling model, can be quantita-
tivelymeasured by combining parameters from these two scatter-
ing regimes. dmin, for example, can be calculated as21

dmin ¼ BfR
df
g

GðΓdf =2Þ ð11Þ

whereΓ is the gamma function.With df from eq 10 andusing eq 4,
c can be obtained. p and s can be obtained from z using eq 3.

Rather than free fits to determine the scaling features, a
scattering function for cyclics can also be proposed from this
scaling method using the unified function21,29,30 and Bf obtained
from eqs 8 and 11

Bf , cyclic ¼ dminGðΓdf =2Þ
R

df
g

¼
df G 1-

ln 2

ln z

� �
ðΓdf =2Þ

R
df
g

ð12Þ

z, the number of Kuhn steps, can be obtained by several methods
such as fromRg (used here), from a comparison of the persistence
and coil scattering25,26 and from an independent measurement of
the molecular weight. In this paper c will be measured, using eqs
11 and 4 to determine agreement with the expected value of eq 7.

Figure 2a also shows the signature effect of the topological
structure on SANS data. The black curve represents SANS from
a linear structure for which z= p, dmin = df and c=1. The gray
curve represents scattering from a “regular” structure for which
z. p, dmin = 1, and c= df. Topology is thus reflected by a shift
of the power law relative to Guinier’s law, and is quantifiable
(eqs 11 and 12).

Cyclic PDMS

SANS data from blends of hydrogenous (H) and deuterated
(D) cyclic PDMS, digitized from the literature are shown in
Figure 2b.12-14 The details of the PDMS samples are given in
Table 1. The first column inTable 1 indicates the sample name and
the reference and figure from which the data was obtained. φH in
Table 1 indicates themole fractionof the hydrogenous component.
The SANSdata are fit to the unified function29,30 that incorporates
eqs 9 and 10 assuming that blends ofH andDPDMSconstitute an
athermal mixture,32 χ = 0, and assuming that the individual
structure factors (for H and D components) have the same Rg.

34

The results of these fits are tabulated in Tables 1 and 2.
Calculation of φBr requires the number of Kuhn steps, z. z is

obtained from Rg, dmin and the Kuhn length, lk = 2 lp, where lp
is the persistence length. For PDMS, lp = 5.61 Å.33,36-39 z
is calculated from eq 6 of ref 30

z ¼ 2

Rg
2 1þ 2

dmin

� �
2þ 2

dmin

� �
4klp

2

0
BBB@

1
CCCA

dmin=2

, ð13Þ

assuming that z for the cyclic is twice z for a linear chain having
the sameRg andmass fractal dimension dmin, due to symmetry of
the structure on average about any two points separated by z/2

Figure 2. (a) Unified small-angle scattering calculation21,29-31 for hierarchical linear (black curve) and branched (gray curve) structures. (b) Digitized
small angle neutron scattering data from blends of hydrogenous and deuterated cyclic PDMS samples from literature.12-14 The details of the samples
are given in Table 1. The data are fit to the unified function.21,29,30

Table 1. Description and Fit Results for Poly(dimethylsiloxane) (PDMS) Samples
a

sample Mw (g/mol)12-14 G Rg (Å) Bf df φH

PDMS 5 4780/4760 3.9 13.6 0.0214 2.11 0.26
[Figure 6a in ref 12]
PDMS 4 5000/5000 3.9 13.6 0.0210 2.12 0.50
[Figure 1b in ref 14]
PDMS 3 4780/11 140 5.6 16.8 0.0185 2.16 0.26
[Figure 6b in ref 12]
PDMS 2 8900/11 110 6.2 20.3 0.0183 2.07 0.66
[Figure 14 in ref 13]
PDMS 1 19 800/16 300 12.6 30.6 0.0155 2.11 0.52
[Figure 13 in ref 13]
Casassa ∼2.12

aCasassa refers to values from a fit of eq 14.
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units. k in eq 13 is a constant that is on the order of 1. Equation 13
reduces to Rg,cyclic

2 = Rg,linear
2/2 when dmin = 2 in agreement

with eq 6.28 of ref 28.
The φBr values for all the cyclic samples calculated from eq 6

are close to 0.5 (Table 2). The calculations are performed for k=
1.89 in eq 13 which is a value that results from comparison of the
observed c values and those predicted by eq 7 as discussed below.
k depends on the chemical structure. kwas found to have a value
of 1.75 for polyethylene25 and k was found to be 2.6 for
polyurethane.40

dmin, in Table 2, increases with increasing molecular weight of
the cyclic PDMS blends from 1.37 to 1.72, asymptotically
approaching the mass/size scaling of a linear chain in the melt
(Gaussian, dmin= df=2).6 The observed values of dmin are lower

than 2 due to the constraint of the cyclic structure. df in Table 1
displays a value close to 2.12 for all of the samples.We expect df to
also approach 2 for very high molecular weights. c, in Table 2,
decreases with molecular weight toward a value of 1 expected for
a linear chain. For all of the samples φBr is close to the expected
value of 0.5. φM increases with increasing chain length as the
chains become more convoluted with the relaxation of the cyclic
constraint at high z.

Figure 3 compares values of the connectivity dimension,
c, dmin, and df from Table 2 with z from eq 13 using k = 1.89
which is the best fit to eq 7. Equations 7 and 8 (using df = 2.12)
as well as a line of value 2.12 are also plotted. At about z = 3.7,
c = df ≈ 2.12, and dmin ≈ 1 indicating close to an extrapolated
disk structure. At high z, c asymptotically approaches 1 for a
linear chain. The functionality of df is not predicted but
values close to 2.12 are observed for low z. Figure 3 does not
indicate cyclic collapse at high z because the data is well
represented by eqs 7 and 8. For cyclic collapse we would expect
a deviation from eqs 7 and 8 toward an increase in c and a
decrease in dmin at high z.

Casassa Equation

The Casassa form factor for cyclics is given by,20

PðqÞ ¼ 1

t
expð- t2Þ

Z t

0

expðx2Þ dx ¼ 1

t
DawðtÞ ð14Þ

where t = qRg,l/2, and Rg,l is the radius of gyration for a linear
chain of the samemolarmass as the cyclic underGaussian scaling
conditions,df=2.Daw(t) in eq 14 is theDawson integral of t that
extrapolates to a value of t at low-qRg,l. Equation 14 is plotted in
Figure 4. In some cases it has been reported that the Casassa
equation does not accurately predict measured scattering data
from cyclics, especially for higher molecular weight cyclics.12,13

As an alternative, some authors12,13 have even used the Debye
function28 for linear polymer chains to attempt to fit cyclic SANS
data with equally poor results. The unsatisfactory fits obtained
using the Casassa equation, according to the authors of these
reports, is possibly related to contamination with linear chains.
The scaling model indicates that a more fundamental problem
exists with the Casassa equation as outlined below.

Calculations based on the Casassa function are shown in
Figure 4a for a series of cyclics of variable linear chainRg,l’s that
are listed in the legend. The intermediate-q (approximately 4 <
qRg,l < 14) power-law slope of all of these calculations is
identical. The curves superimpose on the Rg,l = 100 curve if
the q vector is multiplied byRg,l/100. Such scaling does not affect
the topology of the structures so that c, dmin, and df are identical

Table 2. Calculated Values for PDMS Samples: dmin, c, z, and OBra

sample dmin c z k = 1.89 φBr φM

PDMS 512 1.37 1.54 7.31 0.50 0.42
PDMS 414 1.39 1.52 7.36 0.49 0.43
PDMS 312 1.51 1.43 10.5 0.51 0.55
PDMS 213 1.54 1.35 14.3 0.50 0.61
PDMS 113 1.72 1.23 32.9 0.48 0.77
Casassa ∼1.36 ∼1.56 ∼6.9 ∼0.50 ∼0.40

a k is from eq 13. Casassa refers to values from a fit of eq 14.

Figure 3. Mass fractal dimension, minimum dimension and connectiv-
ity dimension, c, fromTable 2 usingk=1.89 plotted as a function of the
number of Kuhn units, z. The line through df is at a value of 2.12. The
curves through c and dmin follow eqs 7 and 8. The vertical dashed line
indicates the approximate values for eq 14 if p = z/2.

Figure 4. (a) Equation 14 for several values of the linear Rg,l. By scaling the q vector by Rg,l/100 all of the curves collapse on the Rg,l = 100 curve.
(b) Unified fit29,30 to the calculated Casassa form factor for linear Rg,l = 100. G = 1, Rg = 71.1, Bf = 1.54, and df = 2.12.
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for all of the scattering curves calculated by eq 14. TheRg,l = 100
curve is fit in Figure 4b resulting in df ≈ 2.12, dmin ≈ 1.36, and
c≈ 1.56. These values vary somewhat with the fitting range in q.
If the Casassa value for c is used in eq 7 a value for z of 6.9 is
obtained as shown by the dashed vertical line in Figure 3. The
high-q behavior of the Casassa equation, Figure 4b at q ∼ 0.4,
displays a rapid decay that is not related to the structure of the
cyclic. For this reason, the Casassa equation is valid only for a
limited range of about q< 10/Rg, and can only strictly meet the
conditions of a cyclic, p = z/2, for a fixed value of z ≈ 6.9
although the Casassa function displays close to the expected
behavior for low molar mass cyclics.

Calculated Cyclic Structure Factors

Vettorel, Grosberg and Kremer have simulated low molecular
weight, unconcatenated cyclic melts using a lattice based Monte
Carlo model15. The results show good convergence for different
initial configurations indicating that the approach is ergodic. For
simulations of cyclics withmore than about 1000 units the scaling
of coil size with number of units, N, seems to follow 3d behavior,
R3 ∼N, indicating coil collapse at high N due to conformational
restrictions associated with topology as discussed above.7,8,15-18

Vettorel15 has provided structure factors calculated from the
equilibrated coil structures at three different chain lengths,
512, 1024, and 2048 units.

Figure 5a shows the digitized structure factor for a 512 unit
cyclic from ref 15. The structure factor displays features relating
to the lattice at high-q that interfere with the scaling regime. This
can be approximately removed through the subtraction of a flat
background of 0.22.41 The Unified fit well represents the cor-
rected structure factor and results in the radius of gyration and
dimensions listed in the inset to Figure 5a. Similar fits (using
0.22 as a substructural background) result in the values for N=
1024 and 2048 that are also listed in the inset to Figure 5a.

Since the number of units in a Kuhn length of the simulated
structure is not known, z for these simulated cyclics can not be
directly obtained. However, the calculated c and dmin values for
512 units roughly agree with the expected values at z ∼ 5.7 in
Figure 3, indicating about 90 units per Kuhn length. This would
appear to represent a rather rigid backbone for these simulated
cyclics. The mass-fractal dimension in FIGS. 3 and 5a differ
making this comparison somewhat inaccurate.

The values in the inset table of Figure 5a support coil collapse
at highN. An uncollapsed cyclic will follow eq 7, so it is expected
that c will decrease with N. Similarly, dmin should increase for
higher N following eq 8. This behavior is roughly seen in
comparing N = 512 and 1024. However, at the highest N the

behavior is reversed. An increase in cwithN for a cyclic can only
be achieved by chemical reaction that leads to enhanced con-
nectivity such as branching; or by coil collapse such as occurs in
biomolecular folding.24 Therefore, the proposition of Vettorel
et al. that the simulated cyclics may collapse to a globular
structure at high N15-18 is supported by the scaling model
analysis of the published structure factors.

Figure 5b plots φBr and φM for the experimental data of
Semlyen’s group,12-14 the Casassa function and the simulated
cyclics of Vettorel.15 Asmentioned above, φBr displays a constant
value of about 0.5 for the experimental data of Semlyen and for
the Casassa equation consistent with uncollapsed cyclics. For
Semlyen’s experiments φM increases with Z indicating that the
cyclics display a more convoluted structure at higher molecular
weights. The Casassa value for φM agrees with the dependence
seen for the Semlyen results. For Vettorel et al.’s simulations the
cyclics display a consistent φBr and φM for the 512 point but
divergewith less tortuosity for higherZ consistentwith a partially
folded or collapsed structure.24 For folded structures there exist
short circuits through the collapsed points that lead to a more
direct average minimum path through the structure and a lower
φM. φBr deviates significantly from 0.5 for the higher N simula-
tions indicating enhanced connectivity in the higher molecular
weight simulations. φBr seems to follow close to a linear depen-
dence in log(z) allowing for a rough extrapolation toφBr=1 for a
collapsed (or folded) structure.24 This crude extrapolation pre-
dicts a collapsed structure at roughly z = 97 or N = 8700 units
for the simulated cyclics. It is unclear if this extrapolation is valid
with only three data points over a rather narrow range of z.

Conclusion

A new scaling model for cyclic polymers was presented and
applied to literature SANS data. The new analysis can character-
ize fundamental structural and thermodynamic features asso-
ciated with cyclic macromolecules. It was demonstrated that
uncollapsed cyclic structures, regardless of their size and molar
mass, can be characterized by φBr = 0.5 as predicted by the
model. This approach results not only in an effective description
of cyclic structures in general, but also pinpoints problems with
traditional approaches in the literature, viz. the Casassa form
factor. The scaling model was also applied to simulation results
showing coil collapse at highmolecular weight. It was shown that
the approach could be used to discern early stages of cyclic
collapse due to topological constraints. Coil collapsewas not seen
in the experimental data. It is hoped that this approach could be
used to further our understanding of a variety of structures
encountered in biological as well as in synthetic cyclic molecules.

Figure 5. (a)Unified fit to structure factor calculated byVettorel,Grosberg andKremer. Structure factor is for a cyclic of 512 units. Inset shows fit and
calculated results for three molecular weights shown in ref 15. Data is digitized from the inset to Figure 9 in Vettorel et al.15 (b) φBr and φM for the
experimental data of Semlyen’s group,12-14 the Casassa eq 14 and the simulations of Vettorel, Grosberg, and Kremer15 versus the log of z.



Article Macromolecules, Vol. 43, No. 1, 2010 537

Acknowledgment. This work was supported by the NSF
(CTS-0626063) and by a grant from Equistar Corporation. The
application of scaling models to cyclics was suggested to the
authors in discussions with S. J. Clarson and he is acknowledged
and thanked for raising our interest in this area. Discussions with
S. K. Sukumaran of Yamagata University, Yonezawa, Japan,
were important to this manuscript.

References and Notes

(1) Hoeffler, J. P.; Meyer, T. E.; Yun, Y.; Jameson, J. L.; Habener, J.
Science 1988, 242, 1430–1433.

(2) Takasawa, S.; Nata,K.; Yonekura, H.; Okamoto, H.Science 1993,
259, 370–373.

(3) Atwood, J. L.; Holman, K. T.; Steed, J. W. Chem. Commun. 1996,
12, 1401–1407.

(4) Dietz,M. L.; Dzielawa, J. A.Chem. Commun. 2001, 20, 2124–2125.
(5) Deutman, A. B. C.; Monnereau, C.; Elemans, J. A. A. W.;

Ercolani, G.; Nolte, R. J. M.; Rowan, A. E. Science 2008, 322,
1668–1671.

(6) deGennes, P. G. Scaling concepts in polymer physics; Cornell Univ.
Press: New York, 1979.

(7) Cates, M. E.; Deutsch, J. M. J. Phys. (Paris) 1986, 47, 2121–2128.
(8) Obukhov, S. P.; Rubinstein,M.;Duke, T.Phys.Rev. Lett. 1994, 73,

1263–1266.
(9) McLeish, T. Science 2002, 297, 2005–2006.
(10) Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.;

Richter, D.; Cho, D.; Chang, T.; Rubinstein,M.Nat.Mater. 2008, 7,
997–1002.

(11) Nam, S.; Leisen, J.; Breedveld, V.; Beckham, H. W. Macromole-
cules 2009, 42, 3121–3128.

(12) Arrighi,V.;Gagliardi, S.;Dagger,A.C.; Semlyen, J.A.;Higgins, J. S.;
Shenton, M. J.Macromolecules 2004, 37, 8057–8065.

(13) Gagliardi, S.;Arrighi,V.;Ferguson,R.;Dagger,A.C.; Semlyen, J.A.;
Higgins, J. S. J. Chem. Phys. 2005, 122, 064904.

(14) Gagliardi, S.;Arrighi, V.;Dagger,A.; Semlyen,A. J.Appl. Phys. A:
Mater. Sci. Process. 2002, 74 (Suppl.), S469–S471.

(15) Vettorel, T.; Grosberg, A. Y.; Kremer, K. Phys. Biol. 2009, 6,
025013.

(16) Mueller,M.;Wittmer, J. P.; Cates,M. E.PRE 2000, 61, 4078–4089.
(17) Mueller,M.;Wittmer, J. P.; Cates,M. E.PRE 1996, 53, 5063–5074.
(18) Hur, K.; Winkler, R. G.; Yoon, D. Y. Macromolecules 2006, 39,

3975–3977.
(19) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297,

2041–2044.
(20) Casassa, E. J. Polym. Sci. Part A 1965, 3, 605–614.
(21) Beaucage, G. Phys. Rev. E 2004, 70, 031401.
(22) Kulkarni, A. S.; Beaucage,G.Macromol. RapidCommun. 2007, 28,

1312–1316.
(23) Kulkarni, A. S.; Beaucage, G. J. Polym. Sci., Part B: Polym. Phys.

2006, 44, 1395–1405.
(24) Beaucage, G. Biophys. J. 2008, 95, 503–509.
(25) Ramachandran, R.; Beaucage, G.; Kulkarni, A. S.;McFaddin, D.;

Merrick-Mack, J.; Galiatsatos, V.Macromolecules 2008, 41, 9802–
9806.

(26) Ramachandran, R.; Beaucage, G.; Kulkarni, A. S.;McFaddin, D.;
Merrick-Mack, J.; Galiatsatos, V.Macromolecules 2009, 42, 4746–
4750.

(27) Edwards, C. J. C.; Richards, R.W.; Stepto, R. F. T.; Dodgson, K.;
Higgins, J. S.; Semlyen, J. A. Polymer 1984, 25, 365–368.

(28) Higgins, J. S.; Benoit, H. C. Polymers and Neutron Scattering;
Oxford Science Publications: New York, 1994.

(29) Beaucage, G. J. Appl. Crystallogr. 1995, 28, 717–728.
(30) Beaucage, G. J. Appl. Crystallogr. 1996, 29, 134–146.
(31) Beaucage, G.; Kammler, H. K.;Mueller, R.; Strobel, R.; Agashe, N.;

Pratsinis, S. E.; Narayanan, T. Nat. Mater. 2004, 3, 370–374.
(32) The appropriateness of the athermal simplification can be assessed

by considering the change in I(0) due to excluding the interaction
parameter for linear 15 kg/mol PDMS in a H/D mixture of 50%
volume fraction which is about 4.5% from the values given by
Beaucage et al.33 This effect diminishes with increase in scattering
vector and with reduction in the molecular weight. The absolute
intensity measurement is generally good to about 10%. For the
samples listed in Tables 1 and 2, the impact of the athermal
assumption is not particularly significant. The interaction para-
meter should be considered for higher molecular weight blends, for
example for 75 kg/mol blends I(0) changes by 33%.33 In order to
include the interaction pararamter the Unified function could be
included as the structure factor in the RPA equation for example.

(33) Beaucage,G.; Sukumaran, S.; Clarson, S. J.; Kent,M. S.; Schaefer,
D. W. Macromolecules 1996, 29, 8349–8356.

(34) A single Rg value has been reported in Table 1 from the fits and
because the model assumes that the H and D components have the
same radius of gyration. However, some of the H/D mixtures in
Table 1 are asymmetric. The model can be extended to account for
polydispersity through the use of an additional parameter as
proposed by Sorensen and Wang, Cp.

35 Cp for Gaussian chains is
equivalent to the ratio of Mz/Mw as described by Ramachandran
et al.25 The molecular weights for PDMS 3 in Table 1 are particu-
larly asymmetric. For this blend we can calculate Mz/Mw, con-
sideringmonodisperse components, as 1.03 (whileMw/Mn=1.17).
This “worst case” value will shift dmin from 1.51 to 1.47, and z from
10.5 to 9.9 while c is unchanged, and φBr changes from 0.51 to 0.50.
Hence, the scalingmodel is fairly insensitive to polydispersity in the
range of molecular weights studied here.

(35) Sorensen, C. M.; Wang, G. M. PRE 1999, 60, 7143–7148.
(36) Flory, P. J. Statistical Mechanics of Chain Molecules; Interscience:

New York, 1969; p 174.
(37) Lapp, A.; Picot, C.; Benoit, H. Macromolecules 1985, 18, 2437.
(38) Schultz, G. V.; Haug, A. Z. Phys. Chem. (Frankfurt) 1962, 34, 328.
(39) Lapp, A.; Strazielle, C.Makromol. Chem., Rapid Commun. 1985, 6,

591.
(40) Rai, D. K.; Ramachandran, R.; Beaucage, G. Macromol. Rapid

Comm. 2009, submitted for publication.
(41) Scattering from the lattice structure will lead to a finite I(0) value

just as light scattering from nanoscale molecules leads to a finite
I(0) at qRg , 1. In light scattering this constant intensity is used to
calculate the weight average molecular weight from a static light
scattering measurement. The I(0) associated with lattice scattering
in Figure 5a leads to an excess intensity of about 0.22 that should
be subtracted to obtain a reasonable power-law regime for the
coil scattering. Here, 0.22 was determined by inspection of the
corrected scattering curve compared to the expected power-law
dependence of arbitrary slope - df in Figure 5a. This inherent
“background” is also important in experimental determination of
the structure factor at high-q and can be experimentally quantified
through high-q measurements in the diffraction regime.


