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Scattering or Microscopy?

• Local detail

• Surface detail

• Faithfully represents 
local complexities

Microscopy good for:

E.g. if objective is to 
monitor the degree to 
which Mickey’s nose(s) 
and ears hold to a circular 
micromorphology… use 
microscopy not scattering



Scattering or Microscopy?

• Global parameters, 
distributions; 1st order

• Different sample states

• Non destructive sample 
preparation

• In-situ transitional studies

Scattering good for:

Solid Melted & Sheared Recrystallized



Ag-Au dealloyed in 70% HNO3 
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Forming a bi-continuous 
porous network with 
ligament width on the 
nanoscale by removing 
the less noble element 
from a binary alloy, in this 
case Ag-Au (multiple 
films for trans scattering)
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Complementary Scattering and Microscopy



Scattering: Neutrons or Photons?

X-rays

Neutrons

Neutron scattering: Deuteration allows species selection

X-ray scattering:
Relatively small sample quantities required
Relatively fast data acquisition times - allows time resolved 
effects to be characterized

Sensitive to nuclear 
scattering length contrast

Sensitive to electron density 
contrast



Scattering: Neutrons or Photons?
Neutrons: Deuteration
allows species selection

Atom Scattering length Incoherent scattering
(x 1012 cm2) (x 1024 cm2)

1H -0.374 80
2D 0.667 2

This essentially permits a dramatic 
alteration to the ‘visibility’ of the tagged 
elements in terms of their contribution to 
the reciprocal space scattering pattern



Scattering: Neutrons or Photons?

λ = 0% λ = 300%

SANS patterns

Photos of deformation



X-rays: Order of magnitude better spatial resolution 
Fast data acquisition times for time resolved data

Scattering: Neutrons or Photons?

Oscillatory Shearing of lyotropic HPC – a liquid crystal polymer



X-ray Scattering: Transmission or Reflection?

Transmission geometry appropriate 
for:

• Extracting bulk parameters, 
especially in deformation

• Weakly scattering samples: 
can vary path length

Need to be conscious of:
Constituent elements, i.e. absorption cutoffs
Multiple scattering
Area of interest: surface effect or bulk effect



X-ray Scattering: Transmission or Reflection?
Reflection geometry appropriate for:

• Films on a substrate (whether opaque or not)
• Probing surface interactions



linear eicosanol (C20H42O, MW = 298)

Study phase transitions of Langmuir 
monolayers of mixed fatty alcohols in 
terms of molecular branching and 
surface tension

branched eicosanol (C20H42O, MW = 298)
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Rheology of Straight and Branched Fatty Alcohols



X-ray Scattering: SAXS or WAXS?
No fundamental difference in physics: a consequence of chemistry

WAXS patterns contain data 
concerning correlations on an intra-
molecular, inter-atomic level

SAXS patterns contain data concerning 
correlations on an inter-molecular level: 
necessarily samples where there is 
macromolecular or aggregate order

As synthesis design/control improves, 
SAXS becomes more relevant than 
ever before



X-ray Scattering: SAXS or WAXS?
Experimental consequences
WAXS: Detector close to sample, consider:

• Distortion of reciprocal space mapping
• Thermal effects when heating sample
• No ion chamber for absorption

SAXS: Detector far from sample, consider:
• Absorption from intermediate space
• Interception of appropriate q range



Recognizing Reciprocal Space Patterns: Indexing

Face centered cubic pattern from diblock copolymer gel



Face centered cubic

Recognizing Reciprocal Space Patterns: Indexing
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Recognizing Reciprocal Space Patterns:
Preferential Orientation

Real 
space 

packing

Reciprocal 
space 
image

Randomly 
aligned rods

Preferentially 
aligned rods

Hydrated DNA



Extracting Physical Parameters from X-ray data
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Extracting Physical Parameters from X-ray data
Molecular size: Radius of gyration (Rg)

Guinier plot

Rg
2 α ln I(q) / q2

I(q) = I(0) exp [-q2Rg
2 / 3]

Guinier region: q  <  1 / Rg

ln
I(q

)

q2



Extracting Physical Parameters from X-ray data

Molecular conformation: Scaling exponent

Guinier plateau
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Gradient of profile in 
intermediate region 
implies fractal dimension 
of scattering unit



Molecular Conformation in Dentin
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Molecular Conformation in Dentin
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Shape change of mineral crystallites from needle-like to plate-like from pulp to 
dentin-enamel junction (DEJ).
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Dentinogenesis imperfecta (DI) teeth 
shown to exhibit impaired development 
of intrafibrillar mineral: characteristic 
scattering peaks are absent from the 
diseased tooth. 

Molecular Conformation in Dentin



Extracting Physical Parameters from X-ray data

Kratky plot

Molecular conformation: Persistence length of coiled chain

I(q) q2

q

q* persistence length 
= 6 / (π q*)
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Extracting Physical Parameters from X-ray data

0
0

I(φ)

φAzimuthal profile

Molecular orientation: Orientation parameter P2

<P2n(cos φ)> = ∫ I(s,φ) P2n(cos φ) sin φ dφ
∫ I(s,φ) sin φ dφ

Normalized: 
-0.5  <  P2 <  1



Orientation parameters: 0 < P2 < 0.3 Axis of orientation

Measuring the degree and inclination of preferential molecular 
orientation in a piece of injection molded plastic (e.g. hip replacement 
joints). ~ 1500 WAXS patterns

Molecular Orientation in Injection Moldings

Marks the injection point



SSRL Beamline 1-4: SAXS Materials Science
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