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Scattering or Microscopy?

1 Microscopy good for:

| « Local detail
e Surface detalil

| = Faithfully represents
| local complexities

E.g. if objective is to
monitor the degree to
which Mickey’s nose(s)
and ears hold to a circular
micromorphology... use
microscopy not scattering




Scattering or Microscopy?

Scattering good for:

» Global parameters,
distributions; 1st order

* Different sample states

* Non destructive sample
preparation

* |n-situ transitional studies

Solid Melted & Sheared Recrystallized



Complementary Scattering and Microscopy

Ag-Au dealloyed in 70% HNO,
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Forming a bi-continuous
porous network with
ligament width on the
nanoscale by removing
the less noble element
from a binary alloy, in this
case Ag-Au (multiple
films for trans scattering)



Scattering: Neutrons or Photons?

X-rays

Sensitive to electron density
contrast

Neutrons

Sensitive to nuclear
scattering length contrast

Neutron scattering: Deuteration allows species selection
X-ray scattering:
Relatively small sample quantities required

Relatively fast data acquisition times - allows time resolved
effects to be characterized



Scattering: Neutrons or Photons?

Neutrons: Deuteration
allows species selection

This essentially permits a dramatic
alteration to the ‘visibility’ of the tagged
elements in terms of their contribution to
the reciprocal space scattering pattern
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Scattering: Neutrons or Photons?
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Scattering: Neutrons or Photons?

X-rays: Order of magnitude better spatial resolution
Fast data acquisition times for time resolved data

Shear rate / Orientation parameter P2
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Oscillatory Shearing of lyotropic HPC — a liquid crystal polymer



X-ray Scattering: Transmission or Reflection?

Need to be conscious of:
Constituent elements, i.e. absorption cutoffs
Multiple scattering
Area of interest: surface effect or bulk effect

Transmission geometry appropriate
for:

« Extracting bulk parameters,
especially in deformation

 Weakly scattering samples:
can vary path length




X-ray Scattering: Transmission or Reflection?

Reflection geometry appropriate for:
* Films on a substrate (whether opaque or not)
« Probing surface interactions




Rheology of Straight and Branched Fatty Alcohols

Linear Eicosanol /\
/

Study phase transitions of Langmuir
monolayers of mixed fatty alcohols in
terms of molecular branching and
surface tension

linear eicosanol (C,,H,,0, MW = 298)
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X-ray Scattering: SAXS or WAXS?

No fundamental difference in physics: a consequence of chemistry

WAXS patterns contain data
concerning correlations on an intra-
molecular, inter-atomic level

SAXS patterns contain data concerning
correlations on an inter-molecular level:
necessarily samples where there is
macromolecular or aggregate order

Cel :: L) v
e % Ay As synthesis design/control improves,
el Lt SAXS becomes more relevant than
ever before



X-ray Scattering: SAXS or WAXS?
-

Experimental consequences

WAXS: Detector close to sample, consider:
* Distortion of reciprocal space mapping
» Thermal effects when heating sample
* No ion chamber for absorption

SAXS: Detector far from sample, consider:
« Absorption from intermediate space
* Interception of appropriate g range
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Recognizing Reciprocal Space Patterns: Indexing

(111) planes

Face centered cubic pattern from diblock copolymer gel



Recognizing Reciprocal Space Patterns: Indexing
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Recognizing Reciprocal Space Patterns:
Preferential Orientation

Real
space
paCkng. .
Reciprocal
Space Randomly Preferentially
'mage aligned rods aligned rods




Extracting Physical Parameters from X-ray data
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Extracting Physical Parameters from X-ray data

Molecular size: Radius of gyration (R,)
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I(q) = 1(0) exp [-g°R,?/ 3]
% Ry alnl(q)/g?

Guinier plot Guinier region: q < 1/R,



Extracting Physical Parameters from X-ray data

Molecular conformation: Scaling exponent

In 1(q)
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Gradient of profile in
intermediate region
implies fractal dimension
of scattering unit
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Molecular Conformation in Dentin
John H Kinney

Department of Preventive and Restorative Dental Sciences,
University of California, San Francisco, CA 94143

SAXS pattern



Molecular Conformation in Dentin
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Molecular Conformation in Dentin

Shape change of mineral crystallites from needle-like to plate-like from pulp to

dentin-enamel junction (DEJ).
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Dentinogenesis imperfecta (DI) teeth
shown to exhibit impaired development
of intrafibrillar mineral: characteristic
scattering peaks are absent from the
diseased tooth.
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Extracting Physical Parameters from X-ray data

Molecular conformation: Persistence length of coiled chain
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Extracting Physical Parameters from X-ray data

Molecular orientation: Orientation parameter P,

<P, (cos ¢)> = J I(s,9) Ppy(cos ¢) sin ¢ d¢

Azimuthal profile b

J 1(s,0) sin ¢ do

Normalized:




Molecular Orientation in Injection Moldings

Measuring the degree and inclination of preferential molecular
orientation in a piece of injection molded plastic (e.g. hip replacement

joints). ~ 1500 WAXS patterns Marks the injection point

Orientation parameters: 0 < P, <0.3 Axis of orientation




SSRL Beamline 1-4: SAXS Materials Science
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