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The shapes of the grains in a polycrystalline mass are the result of several kinds
of forces, all of which are strong enough to counteract the natural tendency of each
grain to grow with well-developed flat faces. The result is a grain roughly polygonal
in shape with no obvious aspect of crystallinity. Nevertheless, that grain is a crystal
and just as “crystalline” as, for example, a well-developed prism of natural quartz,
since the essence of crystallinity is a periodicity of inner atomic arrangement and
not any regularity of outward form.

2-12 CRYSTAL DEFECTS

There are a number of types of imperfections in the periodic structure of the indi-
vidual grains of crystalline solids. These crystallographic defects are broadly classi-
fied as point, line and planar defects and can have important consequences in the
mechanical, electrical, optical, etc. properties of a material. A large part of materi-
als science and engineering concerns itself with the control and/or characterization
of the different defects. Point defects such as substitutional or interstitial impurities
were briefly discussed in Sec. 2-9. Edge and screw dislocations and dislocations with
character intermediate between the two are linear defects in the periodic array of
atoms within a crystal. In metals, multiplication and motion of dislocations occur at
relatively low stress, and the relatively easy plastic deformation and high ductility
of metals is the product of this. Large strains and very high dislocation densities can
be introduced by operations such as forging, rolling. machining, shot peening or ball
milling: how these stress and strains can be measured is the subject of portions of
Chap. 14 and Chap. 15. There are a variety of planar defects including stacking
faults and twins; these are described below.

In Sec. 2-9 the stacking sequence of close packed planes of the fcc and hep strue-
tures was discussed. Stacking faults occur when the normal stacking sequence
is interrupted. In the fec structure, the normal stacking sequence
... ABCABCABC ...can become ... ABCAB'ABC ...or ... ABCA'CABCA ...,
for example, by the removal of a C-layer or a B-layer, respectively. The asterisk in
the previous sentence is used to indicate the position of the stacking fault. In
the hcp system, the stacking sequence... ABABABAB...can become
... ABABA'CBCBCB ... Faults producing AA, BB or CC neighboring layers have
a very high energy of formation, would require extraordinary circumstances to
appear and would probably rapidly split into a set of closely-spaced, lower energy
faults. In writing sequences such as those shown above, each letter represents a
layer of atoms. Each layer extends to the end of the fault, and such planar faults
must extend to the edge of the crystal or grain or must terminate at one or more
dislocations [2.8, 2.9].

Some crystals have two parts symmetrically related to one another. These, called
twinned crystals, are fairly common both in minerals and in metals and alloys. For
a detailed discussion of twinning, see Barrett and Massalski [G.10].

The relationship between the two parts of a twinned crystal is described by the
symmetry operation which will bring one part into coincidence with the other or
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with an extension of the other. Two main kinds of twinning are distinguished,
depending on whether the symmetry operation is 180° rotation about an axis, called
the twin axis, or reflection across a plane, called the twin plane. The plane on which
the two parts of a twinned crystal are united is called the composition plane. In the
case of a reflection twin, the composition plane may or may not coincide with the
twin plane.

Of most interest to those who deal mainly with FCC, BCC, and HCP structures,
are the following kinds of twins:

1. Annealing twins, such as occur in FCC metals and alloys (Cu, Ni, a-brass,
Al etc.), which have been cold-worked and then annealed to cause recrys-
tallization.

2. Deformation twins, such as occur in deformed HCP metals (Zn, Mg, Be,
etc.) and BCC metals (a—Fe, W, etc.).

Annealing Twins

Annealing twins in FCC metals are rotation twins, in which the two parts are
related by a 180° rotation about a twin axis of the form <111>. Because of the high
symmetry of the cubic lattice, this orientation relationship is also given by a 60°
rotation about the twin axis or by reflection across the {111} plane normal to the
twin axis. In other words, FCC annealing twins may also be classified as reflection
twins. The twin plane is also the composition plane.

Occasionally, annealing twins appear under the microscope as in
Fig. 2-26(a), with one part of a grain (B) twinned with respect to the other part (A).
The two parts are in contact on the composition plane (111) which makes a straight-
line trace on the plane of polish, More common, however, is the kind shown in Fig.
2-26(b). The grain shown consists of three parts: two parts (A, and A,) of identical
orientation separated by a third part (B) which is twinned with respect to A, and
A,. B is known as a twin band.

Figure 2-27 illustrates the structure of an FCC twin band. The plane of the main
drawing is (170), the (111) twin plane is perpendicular to this plane, and the [111]

(a)

Figure 2-26 Twinned grains: (a) and (b) FCC annealing twins; (¢) HCP deformation twin.
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twin axis lies in it. Open circles represent atoms in the plane of the drawing and
filled circles those in the layers immediately above or below. The reflection sym-
metry across the twin plane is suggested by the dashed lines connecting several
pairs of atoms.

The statement that a rotation twin of this kind is related to the parent crystal by
a 180° rotation about the twin axis is merely an expression of the orientation rela-
tionship between the two and is not meant to suggest that a twin is formed by a
physical rotation of one part of the crystal with respect to another. Actually, FCC
annealing twins are formed by a change in the normal growth mechanism. Suppose
that, during normal grain growth following recrystallization, a grain boundary is
roughly parallel to (111) and is advancing in a direction approximately normal to
this boundary, namely [111]. To say that the boundary is advancing is to say that
atoms are leaving the lattice of the consumed grain and joining that of the growing
grain. The grain is therefore growing by the addition of layers of atoms parallel to
(111), and these layers are piled up in the sequence ABCABC ... in an FCC crys-
tal. If, however, a mistake should occur and this sequence become altered to
CBACBA ... | the crystal so formed would still be FCC but it would be a twin of
the former. If a similar mistake occurred later, a crystal of the original orientation
would start growing and a twin band would be formed. With this symbolism, a twin
band appears as follows:

ABCABCBACBACABCABC

parent | twin |  parent
crystal | band | crystal
—_ | “— | —

In this terminology, the symbols themselves are imaged in the mirror C, the twin
plane. At the left of Fig. 2-27 the positional symbols A, B, C are attached to various
(111) planes to show the change in stacking which occurs at the boundaries of the
twin band. Parenthetically, it should be remarked that twin bands visible under the
light microscope are thousands of times thicker than the one shown in this drawing,

There is still another way of describing the orientation relationship between an
FCC crystal and its twin: the (111) layers of the twin are in positions which would
result from homogeneous shear in a [112] direction, each layer moving by an
amount proportional to its distance from the twin plane. In Fig. 2-27, this shear is.
indicated by the arrows going from initial positions D, E, F to final positions in the
twin. Although it has been frequently suggested that such twins are formed by
deformation, it is generally held that annealing twins are the result of the growth
process described above. Nevertheless, this hypothetical shear is sometimes a use-
ful way of describing the orientation relationship between a crystal and its twin.
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Figure 2-27. Twin band in FCC
lattice. Plane of main drawing is
(110). PLAN OF CRYSTAL PLAN OF TWIN

peformation Twins

Deformation twins are found in both BCC and HCP lattices and are all that their
name implies, since, in both cases, the cause of twinning is deformation. In each
case, the orientation relationship between parent crystal and twin is that of reflec-
tion across a plane.
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In BCC structures, the twin plane is (112) and the twinning shear is in the direc-
tion [111]. The only common example of such twins is in a—iron (ferrite) deformed
by impact, where they occur as extremely narrow twin bands called Neumann
bands. It should be noted that, in cubic lattices, both {112} and {111} reflection twin-
ning produce the same orientation relationship; however, they differ in the inter-
atomic distances produced, and an FCC lattice can twin by reflection on (111} with
less distortion than on {112}, while for the same reason {112} is the preferred plane
for BCC lattices.

In HCP metals, the twin plane is normally (1012). The twinning shear is not well
understood; in a gross sense, it takes place in the direction [211] for metals with ¢/a
ratios less than /3 (Be, Ti, Mg) and in the reverse direction [211] for metals with
¢/a larger than /3 (Zn, Cd), but the direction of motion of individual atoms during
shear is not definitely known. Figure 2-26(c) illustrates the usual form of a twin
band in HCP metals, and it will be noted that the composition “plane,” although
probably parallel or nearly parallel to the twin plane, is not quite flat but often
exhibits appreciable curvature.

General

Twins, in general, can form on different planes in the same crystal. For example,
there are four {111} planes of different orientation on which twinning can take
place in an FCC crystal. Accordingly, in the microstructure of recrystallized copper,
for example, one often sees twin bands running in more than one direction in the
same grain,

A crystal may also twin repeatedly, producing several new orientations. If crys-
tal A twins to form B, which twins to form C, etc., then B, C, etc., are said to be first-
order, second-order, etc., twins of the parent crystal A. Not all these orientations are
new. In Fig. 2-26(b), for example, B may be regarded as the first-order twin of A,
and A, as the first-order twin of B. A, is therefore the second-order twin of A, but
has the same orientation as A .

2-13 THE STEREOGRAPHIC PROJECTION

Crystal drawings made in perspective or in the form of plan and elevation have
their uses but are not suitable for displaying the angular relationship between lat-
tice planes and directions. These angular relationships are often more interesting
than any other aspect of the crystal, and a kind of drawing is needed on which the
angles between planes can be accurately measured and which will permit graphical
solution of problems involving such angles. The stereographic projection [2.10] fills
this need. For details not given below, see Barrett and Massalski [G.10] and McKie
and McKie [G.3].

The orientation of any plane in a crystal can be represented just as well by the
inclination of the normal to that plane relative to some reference plane as by the
inclination of the plane itself. All the planes in a crystal can thus be represented by
a set of plane normals radiating from one point within the crystal. If a reference
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Figure 2-28 {100] poles of a cubic crystal.

sphere is now described about this point, the plane normals will intersect the sur-
face of the sphere in a set of points called poles. This procedure is illustrated in Fig,
2-28, which is restricted to the {100} planes of a cubic crystal. The pole of a plane
represents, by its position on the sphere, the orientation of that plane.

A plane may also be represented by the trace the extended plane makes in the
surface of the sphere, as illustrated in Fig. 2-29, where the trace ABCDA represents
the plane whose pole is P,. This trace is a great circle, i.e., a circle of maximum diam-
eter, if the plane passes through the center of the sphere. A plane not passing
through the center will intersect the sphere in a small circle. On a ruled globe, for
example, the longitude lines (meridians) are great circles, while the latitude lines,
except the equator, are small circles.

The angle a between two planes is evidently equal to the angle between their
great circles or to the angle between their normals (Fig. 2-29). But this angle, in
degrees, can also be measured on the surface of the sphere along the great circle
KLMNK connecting the poles P, and P, of the two planes, if this circle has been
divided into 360 equal parts. The measurement of an angle has thus been trans-
ferred from the planes themselves to the surface of the reference sphere.

Figure 2-29 Angle between two planes.
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Measuring angles on a flat sheet of paper rather than on the surface of a sphere,
requires the same sort of transformation as used by the geographer who wants to
transfer a map of the world from a globe to a page of an atlas. Of the many known
kinds of projections, a map-maker usually chooses a more or less equal-area pro-
jection so that countries of equal area will be represented by equal areas on the
map. In crystallography, however, an equiangular stereographic projection is most
useful since it preserves angular relationships faithfully although distorting areas. It
is made by placing a plane of projection normal to the end of any chosen diameter
of the sphere and using the other end of that diameter as the point of projection. In
Fig. 2-30 the projection plane is normal to the diameter AB, and the projection is
made from the point B. If a plane has its pole at P, then the stereographic projec-
tion of P is at P’, obtained by drawing the line BP and extending it until it meets

projection plane

basic circle

reference
sphere

point of
projection

SECTION THROUGH
AB AND PC

P'e P

A B
Figure 2-30 The stereographic
projection
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the projection plane. Alternately stated, the stereographic projection of the pole P
is the shadow cast by P on the projection plane when a light source is placed at B.
The observer, incidentally, views the projection from the side opposite the light
source.

The plane NESW is normal to AB and passes through the center C. It therefore
cuts the sphere in half and its trace in the sphere is a great circle. This great circle
projects to form the basic circle N'E'S"W’ on the projection, and all poles on the
left-hand hemisphere will project within this basic circle. Poles on the right-hand
hemisphere in Fig. 2-30 will project outside this basic circle, and those near B will
have projections lying at very large distances from the center. In order to plot such
poles, the point of projection must move to A and the projection plane to B; minus
signs designate the new set of points while plus signs identify, the previous set (pro-
jected from B). Note that movement of the projection plane along AB or its exten-
sion merely alters the magnification; this plane is usually tangent to the sphere, as
illustrated, but it can pass through the center of the sphere, for example, in which
case the basic circle becomes identical with the great circle NESW.

A lattice plane in a crystal is several steps removed from its stereographic pro-
jection, and it may be worth-while at this stage to summarize these steps:

1. The plane C is represented by its normal CP.

2. The normal CP is represented by its pole P, which is its intersection with
the reference sphere.

3. The pole P is represented by its stereographic projection P,

After gaining some familiarity with the stereographic projection, the student will
be able mentally to omit these intermediate steps and will then refer to the pro-
jected point P~ as the pole of the plane C or, even more directly, as the plane C itself.

Great circles on the reference sphere project as circular arcs on the projection or,
if they pass through the points A and B (Fig. 2-31), as straight lines through the cen-
ter of the projection. Projected great circles always cut the basic circle in diametri-
cally opposite points, since the locus of a great circle on the sphere is a set of dia-
metrically opposite points. Thus the great circle ANBS in Fig. 2-31 projects as the
straight line N'S” and AWBE as W'E"; the great circle NGSH, which is inclined to
the plane of projection, projects as the circle are N'G’S". If the half great circle W
AE is divided into 18 equal parts and these points of division projected on W* AE",
a graduated scale, at 10° intervals, is produced on the equator of the basic circle.

Small circles on the sphere also project as circles, but their projected center does
not coincide with their center on the projection. For example, the circle AJEK
whose center P lies on AEBW projects as AJ'E'K". Its center on the projection is at
C, located at equal distances from A and E”, but its projected center is at P, located
an equal number of degrees (45 in this case) from A and E".

The device most useful in solving problems involving the stereographic projec-
tion is the Wulff net (named after its popularizer) [2.11] shown in Fig. 2-32. It is the
projection of a sphere ruled with parallels of latitude and longitude on a plane par-
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Figure 2-31 Stereographic projection of great and small circles.

allel to the north-south axis of the sphere. The latitude lines on a Wulff net are small
circles extending from side to side and the longitude lines (meridians) are great cir-
cles connecting the north and south poles of the net. These nets are available in var-
ious sizes and can be plotted readily from equations available elsewhere [G.16], one
of 18-cm diameter giving an accuracy of about one degree, which is satisfactory for
most problems; to obtain greater precision, either a larger net or mathematical cal-
culation must be used. Wulff nets are used by making the stereographic projection
on tracing paper and with the basic circle of the same diameter as that of the Wulff
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Table 2-4
Interplanar Angles (in degrees) in Cubic Crystals between Planes
of the Form [k k ] and {h kL]

{hk 1}
(kL) 100 110 111 210 211 221 310
100 0
90
110 45 0
90 60
90
111 547 353 0
90 70.5
109.5
210 26.6 184 39.2 0
63.4 50.8 75.0 36.9
90 71.6 53.1
211 35.3 30 19.5 24.1 0
65.9 54,7 61.9 43.1 33.6
73.2 90 56.8 482
90
221 482 19.5 15.8 26.6 17.7 0
70.5 45 54,7 41.8 353 273
76.4 78.9 53.4 47.1 39.0
90
310 18.4 26.6 43.1 8.1 25.4 325 0
716 479 68.6 58.1 498 425 25.9
90 63.4 45 58.9 582 36.9
771
311 252 31.5 295 19.3 10.0 252 17.6
72.5 64.8 58.5 47.6 424 453 40.3
90 80.0 66.1 60.5 59.8 55.1
320 337 19.1 222 17.0 10.9 115 21.6
56.3 54.0 80.8 29.8 37.6 423 37.9
90 66.9 419 55.6 497 52.1
321 36.7 113 36.9 7.1 252 224 153
57.7 40.9 51.9 332 29.2 27.0 32.3
74.5 AN 72.0 53.3 40.2 36.7 40.5
90
331 46.5 13.1 22.0
510 11.4
511 15.6
711 113

Largely from R. M. Bozorth, Phys. Rev.26,390 (1925); rounded off to the nearest
0.1°. A much longer list is given on p. 120-122 of Vol. 2 of [G.11].
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Figure 2-32 Wullf net drawn to 2° intervals.

net; the projection is then superimposed on the Wullf net, with the centers always
coinciding.

Drawing the stereographic projection on tracing paper is not only more eco-
nomical than drawing it directly on a Wulff net, but it also allows differentiation
between the frame of reference of the crystal (represented by the stereographic
projection on the paper) and the frame of reference of the laboratory, i.e., of the
equipment on which the crystal is positioned for various measurements (the Wullf
net). The sample and laboratory reference frames are not identical and both are
needed. The sample may be mounted in a number of orientations on the equip-
ment, and it may be necessary to realign the sample relative to the apparatus, e.g.
with <001> in different orientations relative to vertical and to the incident beam
direction S;.
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To return to the problem of the measuring the angle between two crystal planes,
Fig. 2-29 showed that this angle could be measured on the surface of the sphere
along the great circle connecting the poles of the two planes. This measurement can
also be carried out on the stereographic projection if, and only if, the projected poles
lie on a great circle. In Fig. 2-33, for example, the angle between the planes® A and
B or C and D can be measured directly, simply by counting the number of degrees
separating them along the great circle on which they lie. Note that the angle C-D
equals the angle E-F, there being the same difference in latitude between C and D
as between E and F.

If the two poles do not lie on a great circle, then the projection is rotated relative
to the Wulff net until they do lie on a great circle, where the desired angle meas-
urement can then be made. Figure 2-34(a) is a projection of the two poles P, and P,
shown in perspective in Fig. 2-29, and the angle between them is found by the rota-
tion illustrated in Fig. 2-34(b). This rotation of the projection is equivalent to rota-
tion of the poles on latitude circles of a sphere whose north-south axis is perpendi-
cular to the projection plane.

As shown in Fig. 2-29, a plane may be represented by its trace in the reference
sphere. This trace becomes a great circle in the stereographic projection. Since
every point on this great circle is 90° from the pole of the plane, the great circle may
be found by rotating the projection until the pole falls on the equator of the under-
lying Wulff net and tracing that meridian which cuts the equator 90° from the pole,
as illustrated in Fig. 2-35. If this is done for two poles, as in Fig. 2-36, the angle
between the corresponding planes may also be found from the angle of intersection
of the two great circles corresponding to these poles; it is in this sense that the stere-
ographic projection is said to be angle-true. This method of angle measurement is
not as accurate, however, as that shown in Fig. 2-34(b).

Often poles must be rotated around various axes. Rotation about an axis normal
to the projection is accomplished simply by rotation of the projection around the
center of the Wulff net. Rotation about an axis lying in the plane of the projection
is performed by, first, rotating the axis about the center of the Wulff net until it coin-
cides with the north-south axis if it does not already do so, and, second, moving the
poles involved along their respective latitude circles the required number of
degrees. Suppose it is required to rotate the poles A, and B, shown in Fig. 2-37 by
607 about the NS axis, the direction of motion being from W to E on the projection.
Then A, moves to A, along its latitude circle as shown. B, however, can rotate only
40° before reaching the edge of the projection; then it moves 20° in from the edge
to the point B, on the other side of the projection, staying always on its own lati-
tude circle. The final position of this pole on the positive side of the projection is at
B, diametrically opposite B’,.

(The student should carefully note that the angle between A, and A,, for exam-
ple, in Fig. 2-37 is not 60°, The pole A, is the position of A, after a 60° rotation about

§ Here the planes are represented by their normals, as was discussed above.
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Figure 2-33 Stereographic projec-
tion superimposed on Wulff net for
measurement of angle between
poles. For illustrative purposes this
net is graduated at 10° intervals.. s

NS. which is not the same thing. Consider the two great circles NA,S and NA,S;
these are the traces of two planes between which there is a true dihedral angle of
60°. Any pole initially on NA,S will be on NA,S after a 60° rotation about NS, but
the angle between the initial and final positions of the poles will be less than 60°,
unless they lie on the equator, and will approach zero as the poles approach N.)

Rotation about an axis inclined to the plane of projection is accomplished by
compounding rotations about axes lying in and perpendicular to the projection
plane. In this case, the given axis must first be rotated into coincidence with one or
the other of the two latter axes, the given rotation performed, and the axis then
rotated back to its original position. Any movement of the given axis must be
accompanied by a similar movement of all the poles on the projection.

For example, suppose A must be rotated about B, by 40° in a clockwise direction
(Fig. 2-38). In (a) the pole to be rotated A, and the rotation axis B, are shown in
their initial position. In (b) the projection has been rotated to bring B, to the equa-
tor of a Wulff net. A rotation of 48° about the NS axis of the net brings B, to the
point B, at the center of the net; at the same time A; must go to A, along a parak-
lel of latitude. The rotation axis is now perpendicular to the projection plane, and
the required rotation of 40° brings A, to A, along a circular path centered on B,
The operations which brought B, to B, must now be reversed in order to return By
to its original position. Accordingly, B, is brought to B, and A, to A, by ad8
reverse rotation about the NS axis of the net. In (c) the projection has been rotated
back to its initial position, construction lines have been omitted, and only the initial
and final positions of the rotated pole are shown. During its rotation about B, 4,
moves along the small circle shown. This circle is centered at C on the projection
and not at its projected center B,. To find C, use the fact that all points on the cir-
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2-34 (a) Stereographic projection of poles P, and P, of Fig. 2-29. (b) Rotation of projection to
 on same great circle of Wulff net. Angle between poles = 30°.
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Wulff net

Figure 2-35 Method of finding the trace of a pole (the pole P, in Fig. 2-34).

PROJECTION N

Figure 2-36 Measurement of an
angle between two poles (P, and P,
of Fig. 2-29) by measurement of the
angle of intersection of the corre-
sponding traces. i
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Figure 2-37 Rotation of poles about
NS axis of projection.

cle must lie at equal angular distances from B,;in this case, measurement on a Wulff
net shows that both A, and A, are 76° from B,. Accordingly, locate other points,
such as D, which are 76° from B,, and, knowing three points on the required circle,
its center C can be found by the methods of plane geometry.

In dealing with problems of crystal orientation a standard projection is of very
great value, since it shows at a glance the relative orientation of all the important
planes in the crystal. Such a projection is made by selecting some important crystal
plane of low indices as the plane of projection [e.g., (100), (110), (111), or (0001)]
and projecting the poles of various crystal planes onto the selected plane. The
construction of a standard projection of a crystal requires a knowledge of the inter-
planar angles for all the principal planes of the crystal. A set of values applicable to
all crystals in the cubic system is given in Table 2-4, but those for crystals of other
systems depend on the particular axial ratios involved and must be calculated for
each case by the equations given in Appendix 3. A simple spreadsheet program suf-
fices if interplanar angles are needed beyond those listed in Table 2-4 (for cubic
crystals). Much time can be saved in making standard projections by making use of
the zonal relation: the normals to all planes belonging to one zone are coplanar and
at right angles to the zone axis. Consequently, the poles of planes of a zone will all
lie on the same great circle on the projection, and the axis of the zone will be at 90°
from this great circle. Furthermore, important planes usually belong to more than
one zone and their poles are therefore located at the intersection of zone circles. It
is also helpful to remember that important directions, which in the cubic system are
normal to planes of the same indices, are usually the axes of important zones.

Figure 2-39(a) shows the principal poles of a cubic crystal projected on the (001)
plane of the crystal or, in other words, a standard (001) projection. The location of
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Figure 2-38 Rotation of a pole about an inclined axis.
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Figure 2-39 Standard projections of cubic crystals, (a) on (001) and (b) on (011).

the {100} cube poles follows immediately from Fig. 2-28. To locate the {110} poles
first note from Table 2-4 that they must lie at 45° from {100} poles, which are them-
selves 90° apart. In this way (011) is found for example, on the great circle joining
(001) and (010) and at 45° from each. After all the {110} poles are plotted, the {111}
poles are found at the intersection of zone circles. Inspection of a crystal model or
drawing or use of the zone relation given by Eq. (2-6) will show that (111), for
example, belongs to both the zone [101] and the zone [0T1]. The pole of (111) is
thus located at the intersection of the zone circle through (010), (101), and (010) and
the zone circle through (100), (011), and (100). This location may be checked by
measurement of its angular distance from (010) or (100), which should be 54.7°. The
(011) standard projection shown in Fig. 2-39(b) is plotted in the same manner.
Alternatively, it may be constructed by rotating all the poles in the (001) projection
45° to the left about the NS axis of the projection, since this operation will bring the
(011) pole to the center. In both of these projections symmetry symbols have been
given each pole in conformity with Fig. 2-8(b), and it will be noted that the projec-
tion itself has the symmetry of the axis perpendicular to its plane, Figs. 2-39(a) and
(b) having 4-fold and 2-fold symmetry, respectively.

Figure 2-40 is a standard (001) projection of a cubic crystal with considerably
more detail and a few important zones indicated. A standard (0001) projection of a
hexagonal crystal (zinc) is given in Fig. 2-41.

It is sometimes necessary to determine the Miller indices of a given pole on a
crystal projection, for example the pole A in Fig. 2-42(a), which applies to a cubic
crystal. If a detailed standard projection is available, the projection with the
unknown pole can be superimposed on it and its indices will be disclosed by its
coincidence with one of the known poles on the standard. Alternatively, the method
illustrated in Fig. 2-42 may be used. The pole A defines a direction in space, normal
to the plane (hkl) whose indices are required, and this direction makes angles
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Figure 2-40 Standard (001) prajection of a cubic crystal, after Barrett [1.7].

p, o, 7 with the coordinate axes a, b, ¢. These angles are measured on the projection
as shown in (a). Let the perpendicular distance between the origin and the (hkl)
plane nearest the origin be d [Fig. 2-42(b)], and let the direction cosines of the line
A be p, g r. Therefore

d d
P=Cosﬂ=m~ q=0050'=b/—k, r=cosr=c—ﬂ,
h:k:l = pa:gb:re. (2-13)

For the cubic system the simple result is that the Miller indices required are in the
same ratio as the direction cosines.

The lattice reorientation caused by twinning can be shown clearly on the stereo-
graphic projection. In Fig. 2-43 the open symbols are the (100} poles of a cubic crys-
tal projected on the (001) plane. If this crystal is FCC, then one of its possible twin
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Figure 2-41 Standard (0001) projection for zinc (hexagonal, ¢/a = 1.86) [1.7]
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Figure 2-42 Determination of the Miller indices of a pole.
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planes is (111), represented on the projection both by its pole and its trace. The cube
poles of the twin formed by reflection in this plane are shown as solid symbols;



(111)
twin plane

Figure 2-43 Stereographic projection of an FCC
crystal and its twin.

100
these poles are located by rotating the projection on a Wulff net until the pole of
the twin plane lies on the equator, after which the cube poles of the crystal can be
moved along latitude circles of the net to their final position.

The main principles of the stereographic projection have now been presented
and they will be used later in dealing with various practical problems in x-ray crys-
tallography. Merely reading this section is not sufficient preparation for such prob-
lems. Practice with a Wulff net and tracing paper is required before the stereo-
graphic projection can be manipulated with facility and before three dimensions
can be visualized from what is represented in two.

PROBLEMS

2-1 Draw the following planes and directions in a tetragonal unit cell: (001), (011),
(113),[110], [201], [101]. Show cell axes.

2-2 Show by means of a (110) sectional drawing that [111] is perpendicular to (111)
in the cubic system, but not, in general, in the tetragonal system.

2-3 In a drawing of a hexagonal prism, indicate the following planes and directions
(1210), (1012), (T011), [110], [11T], [021]. Show cell axes.

2-4 Derive Eq. (2-2) of the text.

2-5 Show that the planes (170), (121), and (312) belong to the zone [111].

2-6 Do the following planes all belong to the same zone: (110), (311), (132)? If so,
what is the zone axis? Give the indices of any other plane belonging to this zone.
2.7 Prepare a cross-sectional drawing of an HCP structure which will show that all
atoms do not have identical surroundings and therefore do not lie on a point lattice.
2-8 Show that ¢/a for hexagonal close packing of spheres is 1.633.

2-9 Show that the HCP structure (with ¢/a = 1.633) and the FCC structure are
equally close-packed, and that the BCC structure is less closely packed than either
of the former.




