APPENDIX 1
THE RECIPROCAL LATTICE

Al-1 INTRODUCTION

All the diffraction phenomena described in this book have been discussed in terms
of the Bragg law. This simple law, admirable for its very simplicity, is in fact
applicable to a very wide range of phenomena and is all that is needed for an

understanding of a great many applications of x-ray diffraction. Yet there are

diffraction effects which the Bragg law is totally unable to explain, notably those
involving diffuse scattering at non-Bragg angles, and these effects demand a more
general theory of diffraction for their explanation. The reciprocal lattice provides
the framework for such a theory. This powerful concept was introduced into the
field of diffraction by the German physicist Ewald in 1921 and has since become an
indispensable tool in the solution of many problems.

Although the reciprocal lattice may at first appear rather abstract or artificial,
the time spent in grasping its essential features is time well spent, because the
reciprocal-lattice theory of diffraction, being general, is applicable to all diffraction
phenomena from the simplest to the most intricate. Familiarity with the reciprocal
lattice will therefore not only provide the student with the necessary key to complex
diffraction effects but will deepen his understanding of even the simplest.

Al-2 VECTOR MULTIPLICATION

Since the reciprocal lattice is best formulated in terms of vectors, we shall first
review a few theorems of vector algebra, namely, those involving the multiplication
of vector quantities.

The scalar product (or dot product) of two vectors® a and b, written a * b, is
a scalar quantity equal in magnitude to the product of the absolute values of the
two vectors and the cosine of the angle « between them, or

a-b = abcos

Geometrically, Fig. Al-1 shows that the scalar product of two vectors may be
regarded as the product of the length of one vector and the projection of the other
upon the first. If one of the vectors, say a, is a unit vector (a vector of unit length),
then a- b gives immediately the length of the projection of b on a. The scalar
product of sums or differences of vectors is formed simply by term-by-term
multiplication:

(a+b:c—d=(@+c)—(ard)+(b+ec)—(b-d).

* Bold-face symbols stand for vectors. The same symbol in italic stands for the abso-
lute value of the vector.
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Fig. A1-1 Scalar product of two vectors.

Fig. A1-2 Vector product of two vectors.

The order of multiplication is of no importance; i.e.,
a*b=">b-a

The vector product (or cross product) of two vectors a and b, written a x b,
is a vector ¢ at right angles to the plane of a and b, and equal in magnitude to the
product of the absolute values of the two vectors and the sine of the angle «
between them, or

£ = A %h,
¢ = gb sin .

The magnitude of ¢ is simply the area of the parallelogram constructed on a and b,
as suggested by Fig. A1-2. The direction of ¢ is that in which a right-hand screw
‘would move if rotated in such a way as to bring a into b. It follows from this that
the direction of the vector product ¢ is reversed if the order of multiplication is
reversed, or that

axhb= —(bxa)

Al-3 THE RECIPROCAL LATTICE

Corresponding to any crystal lattice, we can construct a reciprocal lattice, so called
because many of its properties are reciprocal to those of the crystal lattice. Let the
crystal lattice have a unit cell defined by the vectors a,, a,, and a;. Then the

o
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corresponding reciprocal lattice has a unit cell defined by the vectors by, b,, and
b, where

1

b, = F{az X @), (1)
i 1

, = l—/(a3 X ay), )
|

b; = v (a, x ay), (3)

and V is the volume of the crystal unit cell. This way of defining the vectors by,
b,. b; in terms of the vectors a,, a,, a3 gives the reciprocal lattice certain useful
properties which we will now investigate.

Consider the general triclinic unit cell shown in Fig. Al-3. The reciprocal-

lattice axis by is, according to Eq. (3), normal to the plane of a, and a,, as shown.
Its length is given by

by = la; X a,
V

n (area of parallelogram OACB)
(area of parallelogram OACB)(height of cell)

since OP, the projection of a; on by, is equal to the height of the cell, which in turn
is simply the spacing d of the (001) planes of the crystal lattice. Similarly, we find
that the reciprocal lattice axes by and b, are normal to the (100) and (010) planes,
respectively, of the crystal lattice, and are equal in length to the reciprocals of the
spacings of these planes.

By extension, similar relations are found for all the planes of the crystal lattice.
The whole reciprocal lattice is built up by repeated translations of the unit cell by
the vectors by, b,, by, This produces an array of points each of which is labeled
with its coordinates in terms of the basic vectors. Thus, the point at the end of the

b;

0 a; A

Fig. A1-3 Location of the reciprocal-lattice axis bs.
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b, vector is labeled 100, that at the end of the b, vector 010, etc. This extended
reciprocal lattice has the following properties:

1. A vector H,,, drawn from the origin of the reciprocal lattice to any point in it
having coordinates hkl is perpendicular to the plane in the crystal lattice whose
Miller indices are /ikl. This vector is given in terms of its coordinates by the
expression

H,,, = hb, + kb, + /bs.

2. The length of the vector Hy, is equal to the reciprocal of the spacing d of the
(hkl) planes, or

1
Hukf e

gy

The important thing to note about these relations is that the reciprocal-lattice
array of points completely describes the crystal, in the sense that each reciprocal-
Jattice point is related to a set of planes in the crystal and represents the orientation
and spacing of that set of planes.

Before proving these general relations, we might consider particular examples
of the reciprocal lattice as shown in Figs. Al-4 and A1-5 for cubic and hexagonal
crystals. In each case, the reciprocal lattice is drawn from any convenient origin,
not necessarily that of the crystal lattice, and to any convenient scale of reciprocal
angstroms. Note that Egs. (1) through (3) take on a very simple form for any crystal
whose unit cell is based on mutually perpendicular vectors, i.e., cubic, tetragonal,
or orthorhombic. For such crystals, by, by, and b, are parallel, respectively, to
a,, a,, and a5, while b,, b,, and b; are simply the reciprocals of a,, a;, and a5. In
Figs. A1-4 and A1-5, four cells of the reciprocal lattice are shown, together with
two H vectors in each case. By means of the scales shown, it may be verified that
each H vector is equal in length to the reciprocal of the spacing of the corre-
sponding planes and normal to them. Note that reciprocal lattice points such as
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Fig. A1-4 The reciprocal lattice of a cubic crystal which hasa, = 4 A. The axes a5 and
b are normal to the drawing.
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Fig. A1-5 The reciprocal lattice of a hexagonal crystal which has @, = 4 A. (Here the
three-symbol system of plane indexing is used and a; is the axis usually designated ¢.) The
axes a; and by are normal to the drawing.

nh, nk, nl, where n is an integer, correspond to planes parallel to (hk/) and having
I/n their spacing. Thus, H,,, is perpendicular to (220) planes and therefore
parallel to H, o, since (110) and (220) are parallel, but H,,, is twice as long as
H,,, since the (220) planes have half the spacing of the (110) planes.

Other useful relations between the crystal and reciprocal vectors follow from
Egs. (1) through (3). Since b, for example, is normal to both a, and a,, its dot
product with either one of these vectors is zero, or

b3' a = h3‘a2 ==
The dot product of b, and a5, however, is unity, since (see Fig. A1-3)
by+ a; = (b;3) (projection of a; on b;)

|
~ (@)

= I
In general,
b=l ifm = n, 4)

n

= 0, if m # n. (5)

The fact that H,;, is normal to (hk!) and H,,, is the reciprocal of d,,, may l?e
proved as follows. Let ABC of Fig. A1-6 be part of the plane nearest the origin in
the set (hkl). Then, from the definition of Miller indices, the vectors from the
origin to the points 4, B, and C are a,/h, a,/k, and as//, respectively. Consider the
vector AB, that is, a vector drawn from A to B, lying in the plane (hk/). Since
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then

Forming the dot product of H and AB, we have

H- AB = (hb, + kb, +{b3}-(%— %)

Evaluating this with the aid of Eqgs. (4) and (5), we find
H-AB=1-1=0.

Since this product is zero, H must be normal to AB. Similarly, it may be shown
that H is normal to AC. Since H is normal to two vectors in the plane (hk/), it is
normal to the plane itself.

To prove the reciprocal relation between H and 4, let n be a unit vector in the
direction of H, i.e., normal to (hkl/). Then

d=0N=—"n
h
But
H
n=—.
H
Therefore
a, H
d === =
h H
s
_a, (hb, + kb, + Ib3)
h H
= 4
e
g
/ H

a

Fig. A1-6 Relation between reciprocal-lattice vector H and crystal plane (hk/).
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Used purely as a geometrical tool, the reciprocal lattice is of considerable help
in the solution of many problems in crystal geometry. Consider, for example, the
relation between the planes of a zone and the axis of that zone. Since the p];meg,
of a zone are all parallel to one line, the zone axis, their normals must be coplanar
This means that planes of a zone are represented, in the reciprocal lattice, by a sei

of points lying on a plane passing through the origin of the reciprocal lattice. [f
the plane (/ik/) belongs to the zone whose axis is [urw], then the normal to (hkl),

namely, H, must be perpendicular to [urw]. Express the zone axis as a vector in
the crystal lattice and H as a vector in the reciprocal lattice:

Zone axis = ua, + va, + was,

H = hb, + kb, + Ib,.

I

If these two vectors are perpendicular, their dot product must be zero:
(Ma; + Uaz + “r’a_!)' (hbl '1" kbz + {ha) = 0,
hu + kv + lw = 0.

"

This is the relation given without proof in Sec. 2-6. By similar use of reciprocal-
lattice vectors, other problems of crystal geometry, such as the derivation of the
plane-spacing equations given in Appendix 3, may be greatly simplified.

Al-4 DIFFRACTION AND THE RECIPROCAL LATTICE

The great utility of the reciprocal lattice, however, lies in its connection with
diffraction problems. We shall consider how x-rays scattered by the atom O at the
origin of the crystal lattice (Fig. A1-7) are affected by those scattered by any other
atom A whose coordinates with respect to the origin are pa,, ga, and ra;, where
P, q, and r are integers. Thus,

OA = pa, + ga, + ra,.

Let the incident x-rays have a wavelength 4, and let the incident and diffracted
!Jeams be represented by the unit vectors S, and S, respectively. S, S. and OA are,
in general, not coplanar.

To determine the conditions under which diffraction will occur, we must
determine the phase difference between the rays scattered by the atoms O and A.
The lines Ou and Ov in Fig. A1-7 are wave fronts perpendicular to the incident
beam S, and the scattered beam S, respectively. Let § be the path difference for
rdys scattered by O and A. Then

d=ud + Av
Om + On
= 8, 0A + (—S)- 0A

= —0A- (5 — Sy).

]
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(S — Sp)

Fig. A1-7 X-ray scattering by atoms at O and 4. After Guinier [G.10].

The corresponding phase difference, in radians, is given by

_
R

- o (S - SO) . OA. (6)

Diffraction is now related to the reciprocal lattice by expressing the vector
(S — S,)/4 as a vector in that lattice. Let

S = So _ b, + &b, + b

This is now in the form of a vector in reciprocal space but, at this point, no par-
ticular significance is attached to the parameters h, k, and I. They are continuously
variable and may assume any values, integral or nonintegral. Equation (6) now
becomes

¢ = —2n(hb, + kb, + [bs)" (pa, + qa, + ray) = —2n(hp + kq + Ir).

A diffracted beam will be formed only if reinforcement occurs, and this requires
that ¢ be an integral multiple of 2x. This can happen only if 4, k, and / are integers.
Therefore the condition for diffraction is that the vector (S — S,)/4 end on a point
in the reciprocal lattice, or that 3

= H = hb, + kb, + Ib; @)

where h, k, and / are now restricted to integral values.
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Both the La.uc equations and the Bragg law can be derived from Eq. (7). Th
former are obtained by forming the dot product of each side of the cqualio'n a 3
the three crystal-lattice vectors a,, a,, a, successively. For example 3

S -8
a,-( 3 °)=8,-(hb, + kb, + [by)

—f
or
a, *(S—S;) = hi
Similarly, : el (8)
a, (S . SO) = kA, (9)
a; (S —8g) =14, (10)

Equations (8) through (10) are the vector form of the equations derived by von
Laue in 1912 to express the necessary conditions for diffraction. They must be
satisfied simultaneously for diffraction to occur.

. As shown in Fig. Al1-7, the vector (S — S,) bisects the angle between the
incident beam S; and the diffracted beam S. The diffracted beam S can therefore
be considered as being reflected from a set of planes perpendicular to (8 — S )

In fact, Eq. (7) states that (S — S,) i?;?ﬁ?allel to H, which is in turn perpendicult;lr'
to the planes (#k/). Let 8 be the angle between S (or Sy) and these planes. Then

since S and S, are unit vectors, :

(§ — Sp) = 2sin 0 lv
Therefore b . 51’ < 5(\
\ /

281 —
sinf _ S S°=H=-l—,
A A d

or
A = 2d sin 0.

The conditions for diffraction expressed by Eq. (7) may be represented
graphically by the “Ewald construction™ shown in Fig. A1-8. The vector Sp/4 is
drflwn parallel to the incident beam and 1/4 in length. The terminal point O of
this vector is taken as the origin of the reciprocal lattice, drawn to the same scale
as t_he vector S,/4. A sphere of radius 1// is drawn about C, the initial point of the
incident-beam vector. Then the condition for diffraction from the (hk/) planes is
that the point hk/ in the reciprocal lattice (point P in Fig. A1-8) touch the surface
_of' t'he sphere, and the direction of the diffracted-beam vector S// is found by
joining C to P. When this condition is fulfilled, the vector OP equals both Hy
and. (S — S,)/4, thus satisfying Eq. (7). Since diffraction depends on a reciprocal-
lattice point touching the surface of the sphere drawn about C, this sphere is
known as the “sphere of reflection.”

Our initial assumption that p, g, and r are integers apparently excludes all
f:rystals except those having only one atom per cell, located at the cell corners. For
if the unit cell contains more than one atom, then the vector OA from the origin
to “"any atom" in the crystal may have nonintegral coordinates. However, the
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P k1)

sphere of
reflection

Fig. A1-8 The Ewald construction. Section through the sphere of reflection containing
the incident and diffracted beam vectors.

presence of these additional atoms in the unit cell affects only the intensities of the
diffracted beams, not their directions, and it is only the diffraction directions which
are predicted by the Ewald construction. Stated in another way, the reciprocal
Jattice depends only on the shape and size of the unit cell of the crystal lattice and
not at all on the arrangement of atoms within that cell. If we wish to take atom
arrangement into consideration, we may weight each reciprocal-lattice point hk/
with the appropriate value of the scattering power (= |F|?, where F is the structure
factor) of the particular (hk/) planes involved. Some planes may then have zero
scattering power, thus eliminating some reciprocal-lattice points from con-
sideration, e.g., all reciprocal-lattice points having odd values of (h + k + [) for
body-centered crystals.

The common methods of x-ray diffraction are differentiated by the methods
used for bringing reciprocal-lattice points into contact with the surface of the sphere
of reflection. The radius of the sphere may be varied by varying the incident wave-
length (Laue method), or the position of the reciprocal lattice may be varied by
changes in the orientation of the crystal (rotating-crystal and powder methods).

Al-5 THE ROTATING-CRYSTAL METHOD

As stated in Sec. 3-6, when monochromatic radiation is incident on a single crystal
rotated about one of its axes, the reflected beams lie on the surface of imaginary
cones coaxial with the rotation axis. The way in which this reflection occurs may
be shown very nicely by the Ewald construction. Suppose a simple cubic crystal is
rotated about the axis [001]. This is equivalent to rotation of the reciprocal lattice
about the by axis. Figure A1-9 shows a portion of the reciprocal lattice oriented
in this manner, together with the adjacent sphere of reflection.

All crystal planes having indices (hk1) are represented by points lying on a
plane (called the **/ = 1 layer”) in the reciprocal lattice, normal to bs. When the
reciprocal lattice rotates, this plane cuts the reflection sphere in the small circle
shown, and any points on the / = 1 layer which touch the sphere surface must



490 Appendix 1: The reciprocal lattice
rotation axis rotation axis of

of erystal and reciprocal lattice

axis of film

| o 5>

sphere of
reflection

Fig. A1-9 Reciprocal-lattice treatment of rotating-crystal method.

touch it on this circle. Therefore all diffracted-beam vectors S/’ must end on this
circle, which is equivalent to saying that the diffracted beams must lie on the surface
of a cone. In this particular case, all the hk1 points shown intersect the surface of
the sphere sometime during their rotation about the b; axis, producing the dif-
fracted beams shown in Fig. A1-9. In addition many hk0 and hkT reflections would
be produced, but these have been omitted from the drawing for the sake of clarity.

This simple example may suggest how the rotation photograph of a crystal of
unknown structure, and therefore having an unknown reciprocal lattice, can yield
clues as to the distribution in space of reciprocal-lattice points. By takinga number
of photographs with the crystal rotated successively about various axes, the
crystallographer gradually discovers the com plete distribution of reflecting points.
Once the reciprocal lattice is known, the crystal lattice is easily derived, because it
is a corollary of Egs. (1) through (3) that the reciprocal of the reciprocal lattice is
the crystal lattice.

Al-6 THE POWDER METHOD

The random orientations of the individual crystals in a powder specimen are
equivalent to the rotation of a single crystal about all possible axes during the x-ray
exposure. The reciprocal lattice therefore takes on all possible orientations relative
to the incident beam, but its origin remains fixed at the end of the Sy/A vector.
Consider any point hk/ in the reciprocal lattice, initially at P, (Fig. Al1-10).
This point can be brought into a reflecting position on the surface of the reflection
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gphere of reflection

Fig. A1-10 Formation of a cone of diffracted rays in the powder method.

sphere by a rotation of the lattice about an axis through O and normal to OC, for
example. Such a rotation would move P, to P,. But the point k[ can still remain
on the surface of the sphere [i.c., reflection will still occur from the same set of
planes (hkl)] if the reciprocal lattice is then rotated about the axis OC, since the
point Akl will then move around the small circle P,P5. During this motion, the H
vector sweeps out a cone whose apex is at 0, and the diffracted beams all lie on the
surface of another cone whose apex is at C. The axes of both cones coincide with
the incident beam.

The number of different hkl reflections obtained on a powder photograph
depends, in part, on the relative magnitudes of the wavelength and the crystal-
lattice parameters or, in reciprocal-lattice language, on the relative sizes of the
sphere of reflection and the reciprocal-lattice unit cell. To find the number of
reflections we may regard the reciprocal lattice as fixed and the incident-beam
vector S,// as rotating about its terminal point through all possible positions. The
reflection sphere therefore swings about the origin of the reciprocal lattice and
sweeps out a sphere of radius 2/, called the “limiting sphere™” (Fig. A1-11). All
reciprocal-lattice points within the limiting sphere can touch the surface of the
reflection sphere and cause reflection to occur.

It is also a corollary of Egs. (1) through (3) that the volume v of the reciprocal-
lattice unit cell is the reciprocal of the volume ¥ of the crystal unit cell. Since there
is one reciprocal-lattice point per cell of the reciprocal lattice, the number of
reciprocal-lattice points within the limiting sphere is given by

ol (4Tr,r’3']{2)’,1)3 = 2aV
v TEL

an

Not all of these n points will cause a separate reflection: some of them may have a
zero structure factor, and some may be at equal distances from the reciprocal-lattice
origin, i.e., correspond to planes of the same spacing. (The latter effect is taken
care of by the multiplicity factor, since this gives the number of different planes in
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Fig. A1-11 The limiting sphere for the powder method.
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Fig. A1-12 Reciprocal-lattice treatment of the Laue method. (S

There is a whole series of spheres lying betw
line segment 4B, Therefore any reciprocal-latti

of the diagram is on the surface of one of these spheres and corresponds to a set of
crystal planes oriented to reflect one of the incident wavelengths. In the forward
direction, for example, a 120 reflection will be produced. To find its direction, we
locate a point C on 48 which is equidistant from the origin O and the reciprocal-
lattice point 120: C is therefore the center of the reflection sphere passing through
the point 120. Joining C to 120 gives the diffracted-beam vector S/ for this
reflection. The direction of the 410 reflection, one of the many backward-reflected

beams, is found in similar fashion; here the reciprocal-lattice point in question is

situated on a reflection sphere centered at D.

There is another way of treating the-Laue method which is more convenient

many purposes. The basic diffraction equation, Eq. (7), is rewritten in the form

een these two and centered on the
ce point lying in the shaded region

for

$—=8,=JH (12)

Both sides of this equation are now dimensionless and the radius of the sphere of
reflection is simply unity, since S and Sy are unit vectors. But the position of the
reciprocal-lattice points is now dependent on the wavelength used, since their
distance from the origin of the reciprocal lattice is now given by 4.

In the Laue method, each reciprocal-lattice point (except 000) is drawn out
into a line segment directed to the origin, because of the range of wavelengths
present in the incident beam. The result is shown in Fig, Al-13,* which is drawn

to correspond to Fig. A1-12, The point nearest the origin on each line segment has

* In this figure, as well as in Figs. Al

1 —11 and Al1-12, the size of the reciprocal lattice, |
relative to the size of the reflection sph

ere, has been exaggerated for clarity,
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Fig. A1-13 Alternative reciprocal-lattice treatment of the Laue method. § — §, = /H.

a value of AH corresponding to the shortest wavelength present, while the point on
the other end has a value of AH corresponding to the longest effective wavelength.
Thus the 100 reciprocal-lattice line extends from A to B, where QA = AoinH oo
and OB = Ay Hioo- Since the length of any line increases as / increases, for a
given range of wavelengths, overlapping occurs for the higher or.ders, as shown.by
200, 300, 400, etc. The reflection sphere is drawn with unit radius, and rcﬁr;:ctmn
occurs whenever a reciprocal-lattice line intersects the sphere surface. Gra?mcaily,
the advantage of this construction over that of Fig. A1-12 is that all d:ﬁ'racted
beams are now drawn from the same point C, thus facilitating the comparison of
the diffraction angles 20 for different reflections.

This construction also shows why the diffracted beams from planes of a zone
are arranged on a cone in the Laue method. All reciprocal-latfic'e lines repre;enlmg
the planes of one zone lie on a plane passing through the origin of‘the reciprocal
lattice. This plane cuts the reflection sphere in a circle, and all the dJﬂ'ractf:d beam
vectors S must end on this circle, thus producing a conical array of diffracted
beams, the axis of the cone coinciding with the zone axis. _

Another application of this construction, to the problem of temp_erature-dlﬂ'u?e
scattering, will illustrate the general utility of the reciprfacal-lattnce method in
treating diffuse scattering phenomena. The reciprocal lattICl? of any crysta_l mli:)‘
be regarded as a distribution of “scattered intensity” in reciprocal space, in l e
sense that a scattered beam will be produced whenever the sphere. qf reflection
intersects a point in reciprocal space where the “scattered imens_ity".]s nqt zt’:!'Oi
If the crystal is perfect, the scattered intensity is concentrated at points in n:clprutlt‘ci_lr
space, the points of the reciprocal lattice, and is zero evef'ywhere else. BU_ :s
anything occurs to disturb the regularity of the crystal latnf:c, t_hen tl'}ese Pci'_”‘ 3
become smeared out, and appreciable scattered intensity exists in regions Df rlee
ciprocal space where h, k, and / are nonintegral. For example, if the_ atoms © :i.:e
crystal are undergoing thermal vibration, then each point of the reciprocal lat

: St s
spreads out into a region which may be considered, wwt;e
roughly spherical in shape, as suggested by Fig. Al-14(a). In other words,
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Fig. A1-14 The effect of thermal vibration on the reciprocal lattice.

thermally produced elastic waves which run through the crystal lattice so disturb
the regularity of the atomic planes that the corresponding H vectors end, not on
points, but in small spherical regions. The scattered intensity is not distributed
uniformly within each region: it remains very high at the central point, where A, k,
and / are integral, and is very weak and diffuse in the surrounding volume, as
indicated in the drawing.

What then will be the effect of thermal agitation on, for example, a transmission
Laue pattern? If we use the construction of Fig. Al1-13, i.e., if we make distances
in the reciprocal lattice equal to A/, then each spherical volume in the reciprocal
lattice will be drawn out into a rod, roughly cylindrical in shape and directed to
the origin, as indicated in Fig. A1-14(b), which is a section through the reflection
sphere and one such rod. The axis of each rod is a line of high intensity and this
is surrounded by a low-intensity region. This line intersects the reflection sphere
at a and produces the strong diffracted beam A, the ordinary Laue reflection. But
on either side of A there are weak scattered rays, extending from B to C, due to
the intersection, extending from b to ¢, of the diffuse part of the rod with the
sphere of reflection. In a direction normal to the drawing, however, the diffuse
rod intersects the sphere in an arc equal only to the rod diameter, which is much
shorter than the arc be. We are thus led to expect, on a film placed in the trans-
mission position, a weak and diffuse streak running radially through the usual
sharp, intense Laue spot.

Figure A1-15 shows an example of this phenomenon, often called thermal
asterism because of the radial direction of the diffuse streaks. This photograph
was obtained from aluminum at 280°C in 5 minutes. Actually, thermal agitation
is quite pronounced in aluminum even at room temperature, and thermal asterism
is usually evident in overexposed room-temperature photographs. Even in Fig.
3-6(a), which was given a normal exposure of about 15 minutes, radial streaks are
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Fig. A1-15 Transmission Laue pattern showing thermal asterism. Aluminum crystal,
280°C, 5 min exposure,

faintly visible. In this latter photograph, there is a streak near the center that
does not pass through any Laue spot: it is due to a reciprocal-lattice rod so nearly.
tangent to the reflection sphere that the sphere intersects only the diffuse part of
the rod and not its axis. |

The enlargement of reciprocal-lattice points caused by thermal vibration,
depicted in Fig. Al-14(a), is not observed in powder patterns. It is so weak and
diffuse that it is lost in the background.

APPENDIX 2
ELECTRON AND NEUTRON DIFFRACTION

A2-1 INTRODUCTION

Just as a beam of x-rays has a dual wave-particle character so, inversely, does a
stream of particles have certain properties peculiar to wave motion. In particular,
such a stream of particles can be diffracted by a periodic arrangement of scattering
centers. This was first predicted theoretically by de Broglie in 1924 and demon-
strated experimentally by Davisson and Germer in 1927 (for electrons) and by
Von Halban and Preiswerk in 1936 (for neutrons).

If a stream of particles can behave like wave motion, it must have a wavelength
associated with it. The theory of wave mechanics indicates that this wavelength
is given by the ratio of Planck’s constant / to the momentum of the particle, or

2 (1)

mv

where m is the mass and v the velocity of the particle. If a stream of particles is
directed at a crystal under the proper conditions, diffraction will occur in accord-
ance with the Bragg law just as for x-rays, and the directions of diffraction can be
predicted by the use of that law and the wavelength calculated from Eq. (1). Both
electrons and neutrons have proved to be useful particles for the study of
crystalline structure by diffraction and numerous applications of these techniques
have been found in metallurgy and in solid state physics and chemistry. The
differences between x-ray, electron, and neutron diffraction by crystals are such
that these three techniques supplement one another to a remarkable degree, each
giving a particular kind of information which the others are incapable of supplying.

A2-2 ELECTRON DIFFRACTION

A stream of fast electrons is obtained in a tube operating on much the same
principles as an x-ray tube. The wavelength associated with the electrons depends
on the applied voltage, since the kinetic energy of the electrons is given by

im? = eV, (2)
where e is the charge on the electron and V the applied voltage., Combination of
Egs. (1) and (2) shows the inverse relation between wavelength and voltage:

. f150

A= f—

V%

where / is in angstroms and the applied voltage ¥ is in volts. This equation requires
small relativistic corrections at high voltages, due to the variation of electron mass




