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PREFACE

X-ray diffraction was first utilized in establishing the atomic structure
of crystals. Later the technique of X-ray diffraction found other appli-
cations, however, and branched off from pure erystallography, extending
to studies of imperfections in crystals, sizes of crystallites, and even to
studies of the atomic structure of amorphous bodies. These fields of
application of X-rays were made possible by further developments in
the theory of the diffraction of X-rays by matter and also by improve-
ments in experimental methods.

The small-angle scattering of X-rays is one of these fields that has
been rather recently opened. Although the first observations were made
in 1930 [205] particular attention has been given to this field only since
the lute 1930’s. At the present time a large, ever-increasin:z number of
laboratories are interested in small-angle scattering, as is shown by the
number of references compiled in the bibliography of this book.

For these reasons it scemed worth while to us to devote a monograph
to this specific branch of X-ray diffraction. In fact, the theories that
are used in this field are generally not discussed in textbooks on X-rays.
They are quite distinct from the concepts that are customarily associated
with X-ray diffraction; almost no use of Bragg's law will be made in this
book, except to point out that the habit, so natural to crystallographers,
of interpreting every detail in a diffraction pattern in terms of lattice
distances should be discarded. The experimental aspect also is different ;
small-angle scattering in general cannot be studied with the usual
apparatus of a crystallography laboratory; special cameras and some-
times special tubes are required.

Since the late 1930's many theoretical works have appeared in this
field; starting from diferent points of view, these have occasionally
arrived at different, but non-contradictory, results. In a parallel man-
ner, apparatus based on quite varicd principles have been used in ex-
perimental methods. We believed that it was now time to collect and
evaluate the results that have been obtained from the different ap-
proaches. Our object has been to make the new research in this field
more rapid and more efficient. Finally, we have also tried to evaluate
the different attempts st applications in order to specify those which
are the most fruitful.
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The plan of this book ix as follows: in a first, short chapter we present
the phenomenon of small-angle scattering and investigate its physical
significance,

The second chapter is devoted to a discussion of the progress realized
in the theoretical study of small-angle scattering. We have tried to
show the problems that have actually been solved and the limitations
that now appear to us as diffienlt to overcome.

In a third chapter we discuss the experimental methods that have been
employed, trying not to treat all the detaiis but giving the general prin-
ciples that should be satistied in a small-angle seattering system.  Evi-
dently these techniques will be similar whether the objective is the study
of continuous scattering or the study of erystalline diffraction patterns,
Thus it will be seen that problems are mentioned in this seetion which
are not considered from a theoretienl point of view in the second chapter.

The fourth chapter is devoted to the problem of the interpretation of
the experimental results and includes several examples which demonstrate
the validity of the theoretieal results,

In a fifth chapter we compure the results of small-angle Xerny seat-
tering with the results of other physical methods for measuring particle
sizes, such as interpretations of Debye-Seherrer line widths and mensure-
ments with the eleetron microseope,

The sixth and Lust chapter is devoted to a diseussion of the applications
of small-angle X-ruy seattering.  These are found in a number of diverse
fields, such as chemistry, biology, and metallurgy.  Some applications
are of technieal interest, ns, for example, the study and testing of cata-
lysts.  Others are of interest to theoretienl physics, ns, for example, the
structure of liquid helium below the A-point.

Although the object of the first chapters of this book is to present all
the theoretical and experimental data necessary to the specialist in X-ray
diffrnetion, the last chapter has been written without use of mathematics
und without details of Xeruy technigues so that it ean be rend without
difficulty by # non-specinlist.  Our objeet has been to present the differs
ent 1y pes of problems that ean be studied by smallamgle seattering and
the results that have actually been obtained up te the present. Thus
a chemist, biologist, or metallurgist should be able to decide from this
whether or not any given problem can he approached effectively by
menns of N-rayva,

In this monograph we have tried more to give o logiea), ordered press
entation of this subject than to give a complete compilation of all the
published papers.  Any gaps can be fillad by the reader by referrifg to
the bibliography.  Let us point out that several general articles on small-
angle scattering have now appeared: the article by Hosemann [84] and
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another by Porod [137] are particularly noted. As a result we have
been able to shurten our discussion on soveral points, since the reader
can find the complete development of these ideas in the works cited.

When reference is made in the text to a formula in the same chapter,
the formula is denoted by a single number, as, for example, 36. When
the formula has been developed in a different chapter, it is denoted by a
double number, such as 2.36 (equation 36 of Chapter 2).

If a hibliographie reference appears us numbers within brackets, [ ],
the reference will be found in the general bibliography at the end of the
book. References appearing as “Author (year)"” are tabulated in a
special bibliography at the end of each chapter.

Our sincere thanks are extended to Dr. R. S, Bear, Dr. W. W. Beeman,
Dr. J. W, M. DuMond, Dr. A. N. J. Heyn, Dr. R. A. Van Nordstrand,
and Dr. C. B. Walker for having made available to us papers which are
as yet unpubkished and drawings or original photographs which they have
authorized us to reproduce here,  Permission has been given to repro-
duce u number of illustrations from teehnical Journals, for which we wish
to thunk both the authors and the publishers.,

Wo are particularly geateful to Professor 1%, P, Ewald, who encouraged
us to publish this book, and to Professor W. W, Beentan, whose eriticism
and wdvice were very helpful in the final editing of our manuseript.

Finully we want to thank Dr. C. B. Walker for the careful translation
which has made the original manuseript more accessible to many readers.

A, Guinier
G. Fourxer
Paris, France
August, 1955
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1. ORIGIN AND CHARACTERISTICS OF
SMALL-ANGLE X-RAY SCATTERING

The fundamental relation describing the diffraction of X.rays by
erystalline matter, A = 2d sin §, shows that the angle of diffraction, 6,
varies inversely with the scparation of the diffracting lattice planes. In
ordinary crystals, particularly those of inorganic matter, the majority of
the observed lattice spacings are of the same order of magnitude as the
X-ray wavelengths generally employed, so that the angles 0 are usually
rather large. This advantageous condition has had important con-
sequences, both in the discovery of the phenomenon of X-ray diffraction
and in its employment in studies of crystal structures.

The study of small-angle X-ray diffraction was introduced when it
became desirable to detect large lattice spacings, of the onder of tens or
hundreds of interatomic distances, These spacings are found in some
particular minerals and in certain complex molecules, such as the high
polymers or proteins, In studies of the structures of macromolecular
ceystals the Xeray diffraction patterns must be extended to include very
small angles. For example, with Cu Kx radiation and & spacing of 100 A
the diffraction angle @ is cqual to 0.45°, and, with a period of 1000 A,
0 equals 0.045° or 2'. This illustrates the importance of small-angle
scattering techniques in such fields as biochemistry, for example.

One might consider using longer-wavelength X-rays to obtain larger
diffraction augles for a given lattice spacing. This is not generally

* feasible, however, since the long-wavelength X.rays are absorbed to a

vory great extent in matter, which not only complicates the necessary
diffraction apparatus and the means of detection i the Xerays but also
considerably diminishes the intensity of the diffracted beam.  For these
practical reasons we must recognize & gap in the spectrum of useful
electromagnetio radintion extending from wavelengths of the onderof 2 A
up to those of the remote ultraviolet.

In studying crystals with large periodicitics only the operational
technigue is different, since tie interpretation of the patterns is based on
the same principles as the usual structure determinations.  The difficultics
éncountered are greater, however, as a result of the complexity of the
unit cell and the imperfection of the crystals. One can intuitively picture
“perfect” crystals as being formed only by the grouping of small numbera

1
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of atoms bound by strong forces. In molecular and macromoleoular
crystals the degree of perfection is much less; only rarely ia the theory of
diffraction by perfect crystals a good approximation in small-angle
diffraction phenomena. In this domain the theory of diffraction by
impoerfect erystals assumes particular importance, as is illustrated by the
correlation of small-angle diffraction and the diffraction by imperfect
erystals in an Xeray study of high polymers by Hosemann [84]. Since
diffraction by imperfect erystals is a theoretical problem not confined to
small-angle scattering and one that has been well discussed elsewhere,
we shall not examine it further in this monograph.

If n sample has a non-periodie structure or if its lattice has been
sufliciently perturbed, the diffraction patterns are not limited to spots or
linex but contain more or less extended regions of scattering.  Let us
examine schematically the origin of this seattering at small angles,

It is well known that the diffraction pattern of a sample can be simply
described in terms of a reciproeal, or Fourier, space.  If we designate by
pix) the electronic density of the diffracting body at a point defined by the
vector X, then A (h), the transform of p(x) at the point defined by the veetor
b in reciproeal space, is given by

A(h) = fptx}r v ax (1)

The theory of Xeray diffraction is based hn the fact that A(h) represents

the amplitude of the diffracted radiation when b is defined as

h = (2n/d)(8 —s,)
where 4 is the wavelength of the radiation and s, and 8 are unit vectors in
the direction of the incident and diffracted rays, respectively. The
magnitude of b is then equal to (4 sin 0)/4, where 20 is the scattering
angle (the angle between the incident and seattered rays). Thus acattering
at very small angles corresponds to small values of A,

Equation 1 can be interpreted as follows: the seattered intensity
observed for conditions corresponding to a certain value of h is equal to
the square of the value of A (h), where A (h) is the component corresponding
to hin the development of p(x) in a Fourier series.  For small values of b,
that is, at very small angles, the terms in p(x) that primarily control the
mugnitude of A(h) are those thut show a pericdicity of z = 2n/h, a
periodicity large with respect to the X.ray wavelength. These genera’
considerations show again that diffraction at very small angles (less than a
few degrees) gives information concerning the structure of matter on a
scale that i large compared to the X-ray wavelength. ‘

It has been experimentally observed that certain samples cause an
intense, continuous seattering below angles of the order of 2° without
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producing the usual type of diffraction cffects found on ordinary X-ray
patterns, This was first oboerved by Krishnamurti [295] and Warren
[171] for certain varicties of finely divided carbons, carbon blacks, and
various other substances, all having in common the characteristic of being
present as fine particles of submicroscopic size. Actually it was later
recognized that the continuous scattering in the neighborhood of the direct
beam is related to the existence of matter in the form of small particles,
or, more generally, to the existence of heferogeneities in the matter, these

heterogeneities having dimensions from several tens to several huadred

times the X-ray wavelength. This offers another example of the general
relation previously cited,

It is relatively easy to deseribe qualitatively the central scattering due
to the presence of small particles.  This is analogous to the well-known
phenomenon of optical diffraction, where a halo is produced by the passage
of a light ray in a powder whose grain dimensions are of the onder of a
hundred times the wavelength of the light.

Let us consider a particle bathed in a beam of X-rays; all the electrons
are then sources of scattered waves. When the scattering direction is
the eame as that of the incident ray, these scattered rays are all in phase,
and, as the scattering angle increases, the difference in phase between the
various scattered waves also increases,  The amplitude of the resultant
scattered wave then decrenses with increasing angle because of increasing
destructive interference; it becomes zero when there are as many waves
with phases betwew, 0 and w7 as there are between  and 27, This will
oocur for a scattering angle of the order of 20 == /D, D wing the
“average dimension™ of the particle. demonstrating how the study of the
continuous central scattering offers a method for obtaining particle
dimensions.

Thix method is applicable only for particles whose sizes lie within
certain limits. If D is too large the scattering is limited to angles so
small as to be inaccessible to experiment, and if D is too small, of the
order of several wavelengths, the scattering is widely spread but too weak
to be observable.

These rough qualitative considerations can be made more precise.  To
show exactly on which factors the small-angle scattering depends, let us
consider & small particle that has been cut from a scction of matter of
electronic density p(x). Let us define a “form factor™ of this particle,
#(x) (Ewald (1940)), that has the value 1 when the vector x lies wit'in the
particle and the value 0 when X lies outside the particle.  The amalitude
of radiation scattered by this particle, as found from equation 1, 1s then

i) = [omstare=e dx @)

4 SMALL-ANGLE BCATTERING OF X.RAYS

There is a general theorem related to the operation of “folding"” in the
theory of Fourier transformations stating that, if A(h) and S(h) are
respectivly the Fourier transforms of p(x) and s(x), then

Ayth) = _f A(y)Sth — y) dy ®

where ¥ is a variable of integration.

Given the dimensions of the region in which s(x) is different from zero,
its transform, Sth), is fully determined, and, if the particle has dimensions
of several tens to several hundreds of atomic diameters, S(h) will be
different from zero only for very small values of b

Let us consider now the function Ath). If we first assume that the
sample is of constant electronic density, p(x) = k, the transform A(h)
acts as o Dirac delta-function,! being zero everywhere except at h =0,
where it is infinite.  For the more general case of a homogeneous body
whose electronic density shows periodicities only on an atomic or molecular
scale, the transform A(h) shows a large number of peaks. However, all
these peaks except the one for h = 0 arz produced for values nf b well
outside the domain in which S(h) has a non-zero value.

Then, since A(y) is essentially a Dirac delta-function about y =0, it
may be predicted that around the origin of the reciprocal space the
amplitude A (h) is simply proportional to S(h), the function p(x) not
intervening.  The scaftering arownd the center is thus practically independent
of the “short-ranye order” of the atoms, depending only on the exterior form
and dimensions of the particle.

Small-angle scattering thus appears as a means of studying the dimen.
sions of colloidal particles, and it is in this direction that the technique has
been generally exploited. It was quickly reatized, however, that the
assumptions adopted in the first theoretical approaches (widely separated,
identical particles) were not being satisfied in the constitution of real
samples.  Interpretation of the scattering then demanded that the
theory be generulized to take into account the diversity of particles sizes
and the effect of the eloser packing of the particles.  Also, without
speaking of particles, the possibility should be considered of obtaining an
expression for the intensity scattered near the center in terms of the
clectronic density at all points of the sample. The theoretical approaches
to these and other problems are discussed in the following chapter,

REFERENCE FOR CHAPTER 1
Ewald, P, P, (1140), Proc, Phya, Soe., (Londun), 32, 167.

¥ ' The Dirae delts-function d(x) in sero for x £ 0, infinite for ¥ = 0, and
‘ﬂ{!j dx = 1.
()’
j ’
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2. GENERAL THEORY

In this study we shall consider only coherent scatiering, meglecting
Compton scattering which is always small at small angles. We shall
discuss only the single-scattering process, disregarding the phenomenon of
multiple scattering [31], [33].

Fig. 1. Diffraction by a single particle.

We shall assume always that the transverse dimensions of the X-ray
beam are large enough so that a large number of particles are irradiated,
yet sufficiently small compared to the sample.receiver distances so that
the beam can be likened to a single ray in the macrogeomctry of the
experimental apparatus,

1.1. SCATTERING PRODUCED BY A SINGLE PARTICLE
2,1.1. FIXED PARTICLE
The classical formula in the theory of X-ray diffraction gives the ampli-
tude of radiation scattered by the point M, (Fig. 1) (ol scattering factor
Ji) in the direction defined by the unit vector g as

—"‘I —a)-0M,
A, mAfe X m

where A, designates the amplitude scattered by one electron for the same
conditions; 0, an arbitrary origin serving to describe the path differences
between different rays; and 8, the unit vector defining the dircction of
the incident radiation. Let us designate by h the vector (2n/i)(® — 8,).
If 20 represents the angle of scattering, x sy, the magnitude of b is
A = (4 sin 6)/A.

s
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The total amplitude of radiation scattered by a particle is then
A(h) = 34, = A,[0)3fye= W% @
¥ ¥

and the scattered intensity, the product of the amplitude A and its
complex conjugate A*, is

Ih) = -'l.'(hlgjif.f; cos (b - “ﬁ (3)
The intensity scattered by one electron

. ]
Lh) = A,%(h) = 790 X 10- J gt x 1" 20

4
S )
is a function only of 0, that is, of the magnitude of h; I, representa the
intensity of the incident beam, and p is the distance between the particle
and receiver, expressed in centimeters,

2.1.1.1. Centrosymmetric Particle

If the particle possesses a center of symmetry, the expression for the
diffracted amplitude can be simplified, for, if the origin is taken at the
center of symmetry, then to each vector OM, there corresponds another
vector —OM,. Therefore

A) = XAy = A,(B) S, cos (k+ OM,)
K E
We shall define the structure factor of the particle as the ratio of the

total seattered amplitude to the amplitude of radiation scattered by one
electron under the same conditions:

£ Al
= = T -
Fb) = A = Sy cos (0 OM,) (®)
The seattered intensity is then
I(h) = .lhllgﬁ cox (B« OM,)]* = 7,(h) F¥(h) ©)

The term “point M,"" has been used to refer to and define the structure
of & particle. In considering a large particle the basic element in ita
description is the atom; the point M, then refers to the “center of the
kth atom,"” and the scattering factor f, is the scattering factor of this ith
atom. As f, varies with the scattering angle, it should be denoted by
Silb). However, in the angular range where the structure factor of a
Inrge particle is different from zeto, fiih) van be offe tively considered as a
constant, equal to f,(0).  For exumple, the structure factor of a molecule
of human hemoglobin s effectively rero for all angles such  that
b > 018, and in this range the variation of the seattering factor of a
carbon atom is less than 0.4 per cont.
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When a amall particle (an atom, for example) is being considered, the
point M, will refer to & volume element, small even on the angstrom
scale, surrounding the point M,. The scattering factor f, then equals
pa dvy, Where p, is the electronic density of the particle in the neighborhood
of the point Af,, and dv, is the volume element considered.

In general we will find it convenient to describe the structure of a
particle in terms of elements which are small enough so that the scattering
factors of these elements can be considered as constants, independent of
the angle of seattering, over the range in which the structure factor of the
particle under consideration is different from rero.

2.1.2, MOVING PARTICLE

In the majority of low-angle scattering investigations, such as exami.
nations of solutions, suspensions, and emulsions, the particles are capable
of motion. This motion can always be described as the sum of a trans-
lation and a rotation. A translation, defined by a vector V, introduces
the maltiplicative factor e~V in the expression for the scattered
amplitude, but this has no effect on the scattered intensity. Ouly
rutations intervene in the caleulation of an average intensity,

When the probabilities of different orientations are defined, we can
obtain from equations 3 or 6 the expression for the observed average
intensity

1d) = I,0)F¥h)

this relation defining the average of the square of the structure factor,
There would be a temptation to describe F3(h) as equal to F(h)", the
square of the average of the structure factor. However, in order that the
average of a product, ab, be equal to the product of the averages of a and
b, it is necessary that the variables bo completely independent, that is,
that knowledge of the value of @ in no way maodifies the probabilities of the
different values of &, Thia limitation is not met by the structure factors,
since a: box Fh). The ouly general case in which F* and F* are
equal is that pertaining to spherically symmetric particles, for then a
rotation of the particle around its center does not modify the distribution
of scattering centers and consequently leaves F(h) unchanged.  For this
case one finds
iz Pt 0

In this section, the disoussion is restricted almost entirely to considering .

all particle ovientations aa equally probable; & treatment of the more
general case will be found at the end of the chapter.  When this assump-
tion is made, the only mathematical problem is ore of caleulating the
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average of the funotion, cos (b + r), aa the veotor r, of magnitude r, takes
all orientations with equal probability, To caloulate this average, let ua
define the angle between the vectors h and ¢ as the angle g, & variable
with limita of 0 and w radians. The probability that this angle is con.
tained between the values ¢ and g + dp is equal to §ain pdp. The
average of the phase function, cos (h - r), is then

J:m{hrmmq'}ii%!df
i
-aJ‘ cos (hr con @) sin g dp
o
S A
=—.;L cos (hr cos @) d(hr cos @)

1 L]
g J;oul wdu
leading to the classic result
cos (B - p) = ——- M

The result depends only on the magnitude of h; the distribution of
scattered intensity thus containg an axis of revolution coinciding with
the incident beam.,

Equation 3 then resolves into the expression for F(h) expreased by

Debye (1915),
0~ SIS ®

2.1.2.1. Centroaymmetric Particle

When a center of symmetry exists, application of equation 7 to equation
5 results in a simple expression for the average of the structure factor:

sin (h | OM, |)
A oM,

Generalization of this cquation to include particles with a continuous
distribution of scattering points leads to the following expression:

— sin (A | OM, |)
Fh) = M, d
() J: pl d—”%i:rl g

! The notation f (A) will be used when the function depends only on the magnitude
of b; the notation f(b) willd rato dopend of the function on both magnitude
and direction of h.

Fh) = i‘ff. ©)
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Tho coefficient of the term ain Ar/hr in this integral, obtained by con.
sidering the ensemble of pointa defined by | OM, | =r, is
rdr
J: plM,) dv, = prHdmrtdr

this defining the function s(r). The gencralization of equatiun 9 then
takes the form

sin lr

Fh) (A) = Jl plr) drrtde (10)
We see thus that the average of the structure factor is uniquely deter-
mined by the distribution of scattering centers as a function of their
distance from the center of the particle.

Equation 3 shows that the parameters possessing physical significance
in the expression for the intensity are the distances | MM, | between
each of the pairs of scattering centers. Nevertheless, for convenience of
caloulation one might on oceasion prefer an expression for the intensity in
which the distances | OM, | wiadl |OM,| are the essential parameters,
where 0 designates the center of symmetry of the particle.  Fournet [48]
has shown this to be

Fi(h) =
= apity, (V| OM )y, 0, (A| OM, |)
s- i» 2 Iy
?:2[f”r'.-‘-'»"(z“r b Av/[om,||oM, il 0"‘}

(an
where P, represents the Legendre polynomial of order m, and @, the
angle X M,0M,. [The Legendre polynomial of order m, P_(x), can be
described as the coefficient of the term y™ in the expansion of the function
(1 — 2yr -+ y)"V%] In certain cases this equation can be rmpluwl
more simply than equation 8 (Fournet [48]).

Fournet has employed equation 11 to illustrate the difference between
m and F(A)E. If we evaluate the sum of terms for p = 0,

c g ¢ ™ualh| OM, | W, oA | OM, | wdy (| 0N, ]?
T3 VA|OM,| VA|OM,| [?‘J; VA|OM, ]

then, on tunsfufmmg the Bessel functions into aine functions with the
relation Jy(x) == vV (2fma) 2mx) sinx, we find that the sum of these terns is

equal to
e
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which is the square of the average of the structure factor. Thus we can
write

FY{h) = F(a)*

soialh | OM, [ 74, 1a(h | OM, ]
+ Y"i' frf: (2p+ b ) ‘mt‘“/on.]o_rl_lui “;;i - Py, (cos ou}]

2.1.2.2, Spherically Symmetric Particle
A particularly important case to be considered is that of the spherically
symmetric particle. The electronic density at any point depends only on
the distance r of this point from the center of the particle and can thus
be denoted by p(r).
The structure factor is then obtained from equation 10, replacing

Br) by plr):
Fih) = J'
(1]

For this particular case, rotation of the particle does not modify the
amplitude of seattered radiation, leading to the relation

Fi(h) = F(h)* = Fh) (14)

(12)

" st dr (13)

2.1.2.3, Calculation of the Average Intensity

The caleulation of the average intensity can be made by several methods,

(a) Analytical Method: The intensity scattered by the particle in an
arbitrary position is caleulated (see equation 3). Then the expression
is averaped, taking into acconnt the different orientations, in a manner
similar to that employed by Guinier ([65], p. 195) and Fournct ([48],
p- 45).  This method i particularly simple when applied to a spherieally
synunetric particle; equations 13 and 14 can then be used dircctly.

(h) Geometrical Method: Kratky and Porod [108]).  Equation 8 can be
gencralized intuitively to allow the consideration of a particle-of volume
¥V, defined by an cleetronio density p(M,); the resulting expression is

Fh) = I _[ p[‘",‘.}pl.ﬂljwﬂ‘. do, (15)
e A MM, |

Let us consider the cocficient of sin hrfhr in the integral, assuming for
the moment that p is a constant. This coefficient is obtained by con-
sidering the cnsemble of terms where |MM, | =r. The number of
electrons at distances between r and r 4 dr from & volume element dv,
of the particle is simply p{V,(r + dr) — V,{r)}, in which V,(r) designates
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the part of the volume of the particle situated at a distance smaller than
or equal to r from dr,. When we now consider all possible positions of
dv,, we can introduce a function, p(r), defined by the relation

J:, p{Vilr + dr) — Vi(r)}pdv, = pp(r) dr (16)
The average of the square of the structure factor can then be expressed as
i = ¢ [ B ar an

0 hr

In order to determine the physical significance of p(r), let us describe
the volume element dv, of equation 15 in a system of spherical coordinates
centered on the point M,, for which dv, = r*dwdr. Equation 15 then

— in A
7 = [ o [ pary B2 v de ad o, 18)

The point M, in the integral with respect to de dr is any point in the
particle situated at a distance r from the point Af,, where
OM, — OM, =r with |r|=r
and the integral extends only over the volume V of the particle. This
integral can be extended over all space by writing
sin Ar

Fip) = _“ p(OM,) _Ln J:' pLOM, + 1) — rumdrl e, (19)

on condition that p(OM, + r) is taken equal to the density of the particle
p if the point OM, + r is inside the particle, and to zero if the point is
outside.

We can now write that the partial integral

.L p(OM,)p(OM, + r) de,

is equai to the product of p? times the volume V(r) of the solid common
to the particle and to the “ghost™ of the particle translated by the vector
r (Wilson (1049)) (Fig. 2).  V(r) is evidently a function of the direction of
the vector r. If we introduce the average value, as defined by the
relation

J:“l'(l'} dw = 47 V{r)
equation 19 becomes ;
Pl =g [ 705

uhr’dr
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Let us now introduce a function y,(r), defined as
Vin _Vi

Our last equation then becomes
iyt - win hr
Fi(h) = Vp? J; Yolr) T 4rrtdr (21)

Fig. 2. A roprosontation of the function V(r),

A comparison of equationa 17 .nd 21 shows that the functiona p(r) and
yo(r) are related by the following expression:

plr) = 4mr?Vyy(r) ("2)

2.1.2.4. The Characterlstic Function of the Particle yo(r)

The characteristic function yo(r) was introduced by Porod [137). It
has no intuitive connection with the form of the particle,

yolr) represents the probubility that a point at a distance r in an arbi.
trary direction from a given point in the particle will itself also be in the
particle.

Lot us consider an arbitrary line in the particle, terminating on its
boundaries to form a segment of length M, and let us further connider
an arbitrary point on this segment. The probability that a seconc point
on the line at a distance r from the first is also inside the segment M is:

ya(r) == 1= (e[ M) i€ 7 << M and in zero if £ > M (Fig. 3). 1 g(AN)" is

1A procise dofinition of g(M) in as follows: Through & point £ in the particle
thers will pass an infinite set of fomly oriented lines, 17 ge(M) in the distei-
bution function for the longths A of theso lues, then g{M) is the averuge of this
function sa the point © takes all positions in the particlo, ie.,

plM) - il, IMMlaﬂ\
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the distribution function for the group of such lines in the particle, then
” r

It can be shown from equation 23 that
%y,
M)=M (——
| Ve (1)
1
e |

-
Fig. 3 The fuction yu(r) for a single segment of length M.
The function y,(r) posscascs the following general propertics:
1. At r =0, y,(r) has the value unity; as r increases, yo(r) decreases,
always staying positive, and becomes zero beyond the value » = R,

ing to the line of maximum length through the particle,
2. An integration from zero to infinity of the two sides of equation 16

gives
ot J;° pir) dr = Jl,r, dny = VS
which, when combined with equation 22, leads to the relation
L‘ dmrlyplr)dr =V
3. The initial slope of y,(r) is a function of the external aurface of the

particle, 8. Let us trace around the particle the shell of thickness r
(Fig. 4), where r is small with respect to the dimensions of the particle.
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We can now calculate y,(r) by means of equation 16, neglecting the terma
smaller than r3, :

.“r’[ Vilr + dr) — Vy(r)lp dv, = 4mp?Vriy (r) dr

Fig. 4. Culeulation of the initial slope of the characteristic

function yylr).
For a point M. in the inner volume V' =V — 8r
Vilr + dr) — Vi(r) = 4mridr
and therefore
J:- plVilr -+ dr) == Vi(r)]p dv, = 4mp*XV — Sr) dr

For a point M, in the shell at a depth  from the surface (Fig. 4),
Vilr 4 dr) — Vi(r) = 2nr(r + z)dr

and thercfore

J' pLVAlr 4 dr) — Vy(r))p do, = I"éw,w + 58 drdr =3mrp'Sdr
ahell = Sr a=0
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Thus as & first approximation .
AmprtVyy(r) dr = dmp'r? (V - 7) dr
or yolr) =1 —(S[AVIr 4 =+ @

Ww(r)

(-]

pr)}

— -
0 3

2R r
Fig. 5. The functions p(r) and y(r) for the sphere of radiua R.

Almemp!e.htuuomidua'pkﬁmlpnichofndlul. The
volums th}u-f(:r_)eommnwtwsphemnl‘mlim R whose centers are

separated by the distance r ia given by a simple geometrical caleulation as
V) = (@12)2R — r)*ER + 1)

Consequently, 3r l. ( r )a
r=1-5*w\&

Equation 24 gives a similar result when ¥ is replaced by
by 4w R? (Fig. 6).

(4/3mR3and S
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Figure 3 shows that, for the line in the particle of length M, Sy lr) dr
= AM[2. The integral of the characteristic function of the particle is thus

- =M I

e [ oy

J; Yolr) dr Jo FOMNAMN =3 (25)

The integral of the characteristic function is therefore equal to one-half
of an average length of all the lines contained in the particles.

Thus for a spherical particle

n 3r 1 /{r\? K]
1=2 ['—iﬁ*‘ﬁ(i)]‘“é”

It can be verified that (3/2)R is the average length of the lines passing
through all the points in a sphere in all dircetions and terminating on ita
boundaries, |

We see therefore that this function shows properties analogous to
those of the Fourier transform of the profiles of Debye-Scherrer lines
broadened by the effect of the small size of a crystal (Bertaut (1950)).

2.1.2.5. General Properties of FX(h)
From these general properties of the function yg(r) we can deduce the
fullowing consequences for the function F3(A):
L The value of FIA) at b = 0, FY0), is

F0) = l'p"“n Anrtyylr) dr = Vigt
o

This is the square of the total number of cleotrons in the particle. All
the scattercd waves are in phase and the amplitudes are added,
2. The value of F¥A) at small values of & is found from equation 21
by making the expansion
sinhr . Mt A

w o T Tim

Then, by introducing the factor F3(0), this equation beonmes

Fi(h) = FY0) [l - gl.’l.lm‘ solr) dr
i g V.Jo ¥
g 'r; vy de ] 21a)
TmT s it
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Thus, as A increases from zero, Fi(k) decreases following & parabolic
curve. The curvature of this curve is determined by an integral in which
the values of y,(r) for large r play a predominant part because of the factor
rt. In §2.1.3.1 weshall see a simple and much more important expression
for the curvature of F‘m at small angles, e

3. A useful representation of the value of F*(h) for large values of A
can also be obtained from the function ye(r). This comes from the fact
that, since AF*(h) and rYolr) are s related by a Fourier transform, the high-
angle part of the curve of F(h) corresponds to the part of the curve of
7o(r) at small values of r, and an approximate expression for this part of
Yolr) is known.

3o(r) can be expressed as a polynomial in r, of which the fimt two
terms are known:

Yolr) =1 — (SA¥)r + ++

Wo also know that yg(r) becomes zero beyond r = R,. Therefore, by
making the substitutions Ar = y awd AR, = , equation 21 becomes

["
:‘*m-—‘—"—f( ‘uy‘+‘y:+---)unydy

By integrating by parts the following formulas can be established:

ryainydy wn —u con M - 8inw

Jo

.ry'ainyd'y— —wutcosu - 2usinw 4 2coan — 2
(1]

ry'aiuydym —u" cos u 4 nu"gin w —-fa[n— 1)y*-? sin y dy
L]

Therefore . s
— 2mp'8 A j"[u ) cos u u,h) ain »
f‘(&)=—‘.—+*—.+" o + W

i
At largo values of A the principal term in FH(A) is 2wp'S/A%, to which
aro added damped oscillations of pseudoperiod AR,[2w. The average
curve of the continuous decrease of F(A) is therefore given as

.np’S

At

This depends uniguely on the external surfuce of the particle.

i) ~ —— 26)
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4. A Fourier inversion of equation 21 gives

2 rlm
'?n'["l—;J; oy — nin hr dh

or
1 - nin hr
Yolr) = E.;;r-'p_'l.'- KT (k) h) ——dh 27)
Evaluated at r = 0, this becomes
_L KAFH(R) dh = 2m2p?V (28)

The integral of AYFI(A) depends only on the volume of the particle and
not on its form. This is a particular illustration of a general theorem
regarding the integral in reciprocal space of the intensity seattered by an
arbitrary objeot, which relates this integreal to the total number of seatter-
ing electrons in the object,

5. Let us caleulate an average value [ of the length of all the lines
contained in a particle by evaluating the integral I yolr) dr. By making
0

the substitution y = hr, the integral of equation 27 becomes

= 1 - ——sin hr
, 2J. ' z [ I "
A yolr) dr e b AR (h) —— dh dr

1 T uiny \ =
4 ..—,.Tf “f;“""... AP e

or )
l -t s
lumﬁ hEh) dA (20)

Thix integral can be expressed in terms of the total energy K scattered in
all the low.angle seattering region.  On a film placed at a distance p from
the sumple, the avea that receives the rays seattered through the small
angles contained between 20 and 20 4 d(20) can be written to a fiest
approximation as

da = 2np®20 d(20)

or .
da =~ (A*[2m) p*h dh

Equations 4 and 8 then give

rT=—=——xr| 1
K= ,{&]J.F'{l) da = ﬁ—w I, X 7.90 X m—nITr WA dA
= 700 X 10-%2 ot V! (30)
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All the results of the preceding discussion are still valid if the electronic
density of the particle is not a constant but shows fluctuations around an
average value j, if these fluctuations are such that statistically the sur-
roundings of all the atoma in the particle are the same.

If, on the other hand, 5 variea from one part to another of the particle
(for example, & hollow particle, ote.), equation 16 can be gencralized by
introducing the function ny(r), which represents the number of electrons
situated at distances smaller than or equal to r from the volume element
dv, enclosing the point M, In order to modify our notation as little as
possible, we redefine p(r) by the relation

[ e +-d) — ot o, = gyt

where 3 is the average electronie density.  FY(A) can now be obtained by
replacing p by § in equation 17, but it is necessary to note carefully
that p(r) is no longer uniquely aletermined by the grometry of the particle.

2.1.2.6. A Tabulation of the Average Intensity Distribations for Particles of
Different Shape+
We list below the average intensity distributions for particles of different
shapes which take all orientations with equal probability. The intensity
distribution function tabulated is i(A), rather than Fih), which is defined
by the relation

FIQ) == wh(A) = V2pN(A)

whete # == 1'p is the total mumber of eloctrons i the particle; 4(0) in then

always equal to unity.
(a) Sphere of radius R (Rayleigh (1014)) (Fig. 8),

. WinAR — AR con AR]Y  Or [J,, AR))
l(‘] = QYAR) = [3 -——-‘—'T‘-i—'—' = —2- W (31)
(6) Ellipsoid of revolution, axes 2a, 2a, 2va (Guinier [63]) (Fig. 7).
wid ————
i(A) = L @ (Aa\/cos? @ 4+ v¥uint 6) coa 040 (32)

Another equation has been developed for this case by Schull and Roees
[185), employing hypergeometric functiona.
l (¢) Cylinders of revolution of diameter 2R and height 2H (Fournet [+8])

R yin® (AH cos 8) ; 4J, YA R sin 0) .in 020 83)

= Niicnt0 . ARTsin'0
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10* 8% (AR)

"f-\
: o
0 3 10 15 ﬁﬁ
Fig. 8. Scattered intensity from a sphers of radiua R, ®YAR). The
of AR

ourve in drawn with different scaloa for the various ranges
(% 1000 for 4 < AR << 1y x 10,000 for AR > 10},

AN
Exj ial approximation; ¢ & (equation 30); moan aaymptotio

i ™y
ourve: 3 (AR (equation 28).

(d) Rod of infinitesima! tranaverse dimensions and length 2H (Neuge-
bauer (1943)) (Fig. 8a)

i) = Si(2hH)  sin? (AH)

YT
where 8ilx) = I fi‘i'a
(']

(34)
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Table 1
(¢) Flat diso of infinitesimal thickness and diameter 2R (Kratky and minx — rconx
Porod [108)) (Fig. 83) Bl oo il G)
2 1 ] (35) p O(x) ¥x) z O(x) o)
W= 5m [l Y M 0.000 1.000 1.000 2,100 0.622 0.388
0.100 0,909 0.998 2,250 0.575 0.330
- ions of the ;
These various functiona i(A) behave according to the predict 0,200 0.996 0.092 2.500 0,489 0.243
general study: at A =0, i(A) is unity and the tangent to the curve is 0.300 0.991 0.982 3.000 0.346 0.119
0,400 0.083 0,968 3.200 0.288 0,083
0.500 0.975 0.051 3,500 0.205 0.042
i 0.600 0,904 0.930 4000 0.0875 0.0076
0.700 0.952 0.908 4.493 0.0000 0.0000
0.800 0,037 0.879 5.000 —0.057 0 0.003 25
0.900 0.921 0.849 5.600 —0.085 0 0.007 22
1.000 0.003 0.516 5.760 —0.086 3 0.007 45
1.200 0.503 0.745 5.500 —0.086 0 0.007 40
1.400 0.818 0.068 8.000 —0.084 3 0.007 10
1.600 0.706 0.587 7.300 —0.023 0 0.000 53
1,500 0,702 0.502 7,720 —0.000 0.000 00
2.000 0.654 0.427
Table 2
| Si(2r) sintz
R fale—stals o
z i(x) %(x)
0.0 1.000 1.6 0.768
0.2 0,990 1.8 0.719
0.4 0,984 2.0 0.673
0.6 0.961 2.9 0.627
0.8 0.931 2.4 0.583
Intensit ollipscida of revolution of axea 1.0 0.508 3.0 0.473
;‘j::um h{-mnhmum the radius of gyration 1.2 0.858 3.0 . 0,408
of each ellipsoid eorresponds to the same length (§2.1.3.1, p. 26). 14 0.813 4.0 0.357
Al 240
S RO 2 Table 3
xp Pr x J;(‘] x J, Wx)
creases, i(A) decreases parabolically, tending 0.0 0.0000 26 0.4708
Dottacural, Wl v ) Muceesscy, M), ecesemn B -hl;.t bout & 0.2 0.0095 2.8 0.4007
finally towards zoro along & curve which oscillates somew a ot s b B atet
curve varying as A~ For narrow cylinders or thin discs whoe'e small e 0.2667 32 0.9813
dimension is ¢, this asymptotio law is valid only if A 5-(1/e).  Ifin these 08 0.3688 24 0.1702
cases A is largo with respect to 1/H or 1/R but small with respect to /e, 1.0 0.4401 5.8 0.0055
; : . decrease respectively as A-! 1.2 0.4083 3.8 0.0128
equativns 34 and 35 show that the curves pec : 14 S sy hapdi
(eylinder) and A~* (disc). y 3 : 1.6 0.5099 .2 —0.1386
An examination of Figs. 8,7, and 8 shows that particles of very dif 1.8 0.6415 4 —0.202%
Jorma can kave nearly the same scallering currves, X 2.0 0.5707 4.0 —0.2500
Tables 1-3 will facilitate numerical calculations of quations 31 2.2 0.5500 48 —0.2084
Rl 2.4 0.6202 5.0 —0.3276
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Fig. 8. (a) Seattored intonsity from Mh‘nll' bll‘l.’:,gr':‘“ Mﬁlyll!pldh

H) (equation 34). (b} % y
"Mef.;'ﬁnim R. Asymptotic curve: 2[(h*K?) (equation 33).

2.1.2.7. Particle with Prefecred Oricntations

For simplicity we shall consider only particles \:t'ilh a center of sym-
metry; the structure factor is then given by equation 5. Lot us fix the
particle in a system of three mutually perpendicuiaraxes, Or, Oy,0:. The
space in which the particle is found is deseribed by a second st of three
mutually perpendicular axes, 0.X, @Y, 0Z. The centers of t!lm two
systems or axes can be made to coincide without le of generality, since
only relative orientations are of interest.  Euler's angles, g, 0, and @,
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will be employed to mark the orientation of the particle system with
respect to the spatial system, (In this paragraph 0 will designate only
the Euler angle, the scattering angle appearing only in terms of A)) We
arbitrarily orient the spatial axes so that h is directed along the axis
0Z. The amplitude seattered by a particle of orientation, 8, @, can be
denoted as: A, (A)Fih,0,¢). Then, by designating by Py(h,0) and
Py(h, g) the probability density functions of 0 and @ (where the notation
P,(h, 0) is to recall the particular choice of 0Z), the average intensity is
found as

Fi(l) = f IF'(I:. 0, ¢)Py(h, 0)Py(h, ¢) dO dp (36)

This approach will be useful whenever exterior physical conditions
impose a preferred orientation as, for example, when molecules are
oriented by the flow of a solution.

2.1.3, CONCEPT OF A RADIUS OF GYRATION OF A PARTICLE
2.1.3.1. Moving Particle
We shall consider primarily particles for which all orientations are
equally probable.
Let us rewrite equation 8, expanding the trigonometric function in a
power series:

- At
P = S3A{1 - gl )

Il

= 1A

SS5hSi— = 23400, | MM, I‘ Al (37)

) L

The first term of the expansion is equal to (3 f,)% that is, F%0).
[ 3

To describe the second term, let us consider a point, 0, chosen so that
Sf,0M, = 0. The point O then defines the electronic center of mass of
¥

the particle. Employing this point as an origin, we can write
| M, |2 = | OM, [* -+ | OM, |* — 2| OM, | | OM, | cos By,

In the second term of our expansion in equation 37 the contribution of
the factor | OM, [*is

K At
— =5y = —— Y
AL NS MAYAT A
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The contribution of the factor | OM, |* is the same. The contribution of
the angularly dependent term is zero, since

2??!J,IOI.IIOI,IM°“=z_lUJIOI,I{).J.IMIm"uI

and the sum over k can be recognized as being the pm;edmm of Sf,0M,
on the vector OM,. Thus equation 37 reduces to the following:

: ]
0 = [ - SAsh ol 4]

j Thlom, !
F'(ﬁ=t§1.1'[l 7% TR

We can now introduce the parameter R,, defined by the relation

oM, |2
R'=§fe! gl o
. :2!.

By analogy with classical mechanics, R.ombemm'idemdutheleem;?
rl{liu of gyration of the particle about its electronic center of mass. Pe
can thus hope to have a good approximation by writing (Guinier [63))
P _NR} =~
Fih) =nte ¥ (39)

where n = 3 f,, the total number of electrons in the particle. This

i inci i ion for terms
i inier, coincides with the exact expression -‘

!:: :;m:;l:k\;::ﬁr h and, like the exact expression, vanishes with
meEqu.utio:::lO can be derived from the general relation, equation 12, in
which m and F(h) were upu:rsml in an e:rphcat “T:uw;rul:x
simplicity we shall limit the derivation to the case of part ™
.c;::“p::;;w;x of the double summation over indices k and ,.i
involves terms in A® or still higher powers. ?‘lu any ma:aut !}:ﬂ auw
the term in h® in the expression for the average inlensity :u.al :n.n:, oy
square of the average amplitude and wmufnfly nnml‘ 3::: “:' ;m %
distribution of scattering centers as a function .u! t:r;:o :ﬁ e
center of the particle (see equation 9). The ratio of the coe
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term involving A? to the constant term should then be a universal function
of this distribution. A ealculation

h? L]
' gfu'— ry gf.'.‘ , X _w ‘?"f""'. .
i (N7 R %

. i

shows that this function is simply
1 2hndt 1
e SN ; -
3SR AT
E

confirming the results of the preceding paragraph,

The curves of the seattering by two particles having the same radius
of gyration then coincide at vory small angles, and it is only the tails of
the curves, due to terms in A%, A%, ete,, which show the influence of the
forms of the particles. When the scattering curves of particles of two
different forms ars to be compared, it i thus essential to choose two
particles having the same radius of gyration (see Fig. 7). For example,
to a sphere of radius R, one should compare an ellipsoid of revolution of

axes
SRR e S s
3 e 3
-J:! + ot B 3 24 o R 2 TT o ”\R

v being the ratio of the unequal axes. Certain authors (Kratky and
Porad [108]) have compaied reduced curves (curves of the function
i(h), chosen so that the abscissae for both are the same for the ordinate
ith) = 1/2), but this arbitrary choice does not permit the separation of the
influences of the dimensions and of the forms of the particles.

In order to elimina‘e any possible confusion, we want now to emphasize
separately two points: .

1. The validity of the concept of a radius of gyration. We must re-
emphasize that the concept of a radius of gyration i3 sound, whatever
the form of the particle (viz., Guinier [65], p. 191, or the discussion of
equation 12}, since it seems that some authors have recognized this
concept only for spherical particles. The magnitude of the slope of the
curve of log I(h) vs. h* at the origin is always equal to one-third of the
square of the radius of gyration. The influence of the form of the particle
manifests itself particularly at larger values of A in the form of deviations
of the curve of log I{k) from the ext rapolation of its tangent at the origin.

2. The validity of the approzimate law of Guinier. To illustrate this,
let us consider a family of ellipsoids of revclution of the same radius of
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gyration, Ry, and of half axes R.R, and ¢R; vand R are thus variables.
Tbeﬁrstteﬂnlinﬂlﬂpomnriudueribimthimemitymgivcn by

F‘Ti')=no;*[1-.’f.:_"+...]

In thhﬁmﬂyofdlipooidlthemawtwﬁxthlehtManwﬁw
scattered intensity coincidea with the law of Guirier (equation 39) up to
terms of the 6th power of A; theso aro the flat ellipsoid defined by v = 0.24
and the elongated ellipsoid, where ¢ = L88.

Again, in a family of cylinders of revolution of diameter 2R and height
211 there is a cylinder for which the same precision of agreement is found;
this is the oylinder for which H/R = V/30/11 = 1.65.

These examples show that the particles that obey the approximate
law of Guinier closely are those that are nearly isodiametric (see Fig. 6
for the casv of & sphere).

Ou the other hand, rather wide differences will be found for the curves
of very elongated ellipsoids, thin discs, and narrow cylinders,

Finally, let us call attention to the fact that experiments have verified
that the exponential law, equation 39, is a very good approximation for a
large number of scattering curves, a surprisingly large number in view of
the approximations involved in the derivation.

The precision with which a radius of gyration can be measured in an
experiment depends to a certain extent on the form of the particles. The
determination of the radius of gyration to the same degree of precision
fur a series of particles having the same radius of gyration but different
forms requires information on the scattering at smaller and smaller angles,
the further the particle departs from a spherical form.

Kratky and Porod [108] have given an approximate formula for particles
in the form of narrow eylinders or thin discs which is valid for values of A
large with respeet to the reciprocal of the large particle dimension but
amall with respect to the reciprocal of the small dimension. In its
dependence on the small dimension of the particle this scattering function
behaves as though the low-angle region of the curve (the exponential
approximation) were involved, whereas in its dependence on the large
dimension the scattering behaves as though the tail of the curve (the
curves in A-) and A-%, respectively, for cylinders and discs) were involved.

An accurate caleulation based on equation 33 gives as the relation for
narrow cylinders of diameter 2R and length 2H, containing a electrons
each,

o AR e

— 4J,MAR) W'
P =nt o (GR)*  2aH

(40)
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and for thin discs of diameter 2R and thickness 2/1

2 ain®(hH) 2t _ Mt
[l Py e, xeantnd JiF S et g
= oy = “n

Let us also recall the equation relatin i
. g the radius of gyration
particle and its characteristic function y,(r). By comparing the expu::o:
of F(h), equation 21a, p. 16, with cquation 39, this is found to be

R = vl dmrtyo(r) dr = =0 ; (42)
2"; riy(r) dr

We‘ note that the radius of gyration can then be defined either b
equation 39, where, following the method of Guinier, it is dﬂerm!nﬂ{
from a trace of the curve of log I va. A2, or by cquation 42, in which case

it is convenient to determine i i
0 s the funetion y(r) with the aid
27 and then Rg? with equation 42, ’ S o

2.1.4. SPHERICALLY SYMMETRIC PARTICLE
The r-&l.rulalilm of the average intensity is considerably simplified when
the particle possesses spherical symmetry, The clectronic density

fl‘l'lll‘ii(m ‘p(r) is *hen suflicient to determine A(k) and, consequently
Fih).  Conversely, 1 Fourier transformation of equation 13 gives "

l L &
plr) = = J.u h F(h) sin ke ok (+3)

and the radi £ ourat % o ! !
s ing of gyration, from its definition, is determined by the

I ") dr

P L e
1

J; rip(r) dr

2.1.5. THE DISTRIBUTION OF SCATTERING FROM A FIXED PARTICLE

) Figure 9§ shows the geometrieal relations between the film, the orienta-
!.n'm of tl-{e particle, and the distribution of seattered intmuit‘ on the fil
Weo are |ul‘¢-mlwl primarily in the distribution of !mttef«l radi ti:::
.Illlllﬂ tl.m line AB. The corresponding seattering vectors h are lll‘
tained in the plane fixed by 8, and AH. The limiting direction :;’“ l;

R,

. s the scattering angle 20 tends to zero is marked by the unit vector 1,

perpendicular to 8, (since £ hsy = (n/2) — 0; see Fig. 1)
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i under
.+ consider how the concept of a radius of gyration sppears
ﬂ:uéo%:mmmbyuudmthemilup‘mhndequn‘timl. An
analogous case las already been considered in §2.1.3, giving immediately
the result
A cryt _ SSf(heOM,)M 0
Pt = S = G — SATAG
where the point 0 is defined by the relation

104, =0
¥

relay il the
{on betwean the orientation of & particle o
“d&tﬂmm of :mmd intensity in the plane of ohesrvation.

Then
< «OM,)*
F‘(ll) 1 Jl' t‘ 'k Tl
_——=1—- <
FYO) .n

Ml-ld..ppmximthm.thomhrpmducth'ol.fwmlﬂvdmof

28 is equal to the wlurtnflhmnitmlelu\dﬂwhﬂupmdm

i itude to the
+OM,. This scalar product, 1o~ OM,, is equal in magn
:l..hlm d,(ly) of the point M, from the plane [1(ly) through O perpe:;
dicular loL. The notation d,(lg) serves to recall the dependence on t
orientation of I, We can now write the expansion of FHh) ax

N, )
}‘lih) 3l ll ....fx !‘(" N
Fi0) p .::f;

mcoeﬁeientofthelominl'mllnduigmmlnlhqmofm
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average inertial distance, D(l,), of the particle with respect to the par.
ticular plane I1(ly). Then, as in the law of Guinier, this expression can
be written to a good approximation as

FY(h) = Fy0)e-A0M (4)

Equation 44 explaing the distribution of scattered radiation found on
the film of Fig. . The particle is presenting its largest dimension in the
direotion parallel to AH. The average inertial distance, the factor of
primiary importance in determining the seattered intensity, is thus also
a maximum for this particular direction.  Equation 44 then shows that
it in along this line AR that the decrease in intensity with increasing A
will be the most rapid,

2.2. SCATTERING PRODUCED BY A GROUP OF IDENTICAL PARTICLES
121 GENERAL RESULTS FOR FLUIDS!
1.2.1.1. Basic Hypotheses

Seattering experiments are rarcly condueted with o single particle aa
the seatterer; thus it is of more practical importance to caleulate the
intensity seattered by a group of particles,  In this section we shall
vonsider the simplest such case, that of & group of identicnl particles,

We shall also restriet our stwdy by requiring that the steaeture of the
enwemble of particles satisty two hypotheses,  Tosaplify later roferen o,
these hypotheses will b denoted as 1y wnd Hy,

Hypothesis . We shall assume that:

LAl particles, vach possessing a center of symmetry, can with equal
probability take all possible arientations.

2, The knowledge of the relative positions of two particles tn no way
madifica the probabilities of their different orientations.

The secom] part of hypothesis Hy ix always realized for spherically
symmetrie particles. For the more general ease it wonld seem that, if
the particles are not too densely packed il if their shapes are not too
anisotropic, this hy pothesis should be good at least as o fiet approximation.

Hypothesis Ny We shnll nssume that the group of particles is iso.
tropio and without order at long distances,

Tn order to clarify hypothesis Hy, ot usodefine Ry as the veotor from
an urhitrary origin to the center of the bth particle.  The veotor joining
the centers of the kth and jth particles is then (R, — R,).  Hypothesis
Hy then requires that all vectors (R, — R,) of the same magnitude have
an equal probability of orientation in all direetions (isotropic) wid that
for long distances (viz., 1000 A) the probability of finding vectors (R, — R,)

' We inelude in the term “fluide™ grses, ligquids, solutions, and suspensiosw.  Thus
the word flurd refers to all matter sutisfying hypotheses H, and H,.
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of & given magnitude, r, is & continuous function of rand is nearly constant.
This hypothesis is well justified for fuids,

2.2.1.2, Consequences of Hypothesis H,

Lot ua consider a group of particles, cach possessing & center of
aymmetry, We shall dexignate by 1, the vector extendling from the
conter of the kth particle to & point { of scattering fabtor f, in the wme
particle.

The amplitwde of radintion seattered by this geoup of particles ix then
given as (of. equation 2)

) = AN (Nfye ~ W Bty
0

wineo the position of the seattering point, 1, is defined by the vector sum
R, |ty

By virtuo of the conter of aymmetry nf each purtivie, this van he written
Lt

Ab) = A, MV ® RN L con (heTy) (43)
& []

The sum N fy,cos (he 1) corresponds to the structure factor Fy(h) of
]

the &th particle (see equation Bt sinee the particles are identical, the
index & serves only to mark the kth partivle,

The mathematical formulations of equation 43 and equation 2 are
identical, with the sum over the index 1 playing the role of the quantity
Jiowo the nenttered intensity can b Found casily Ty analogy with egquation 3

Ih) — LMSSIY S con BN fw con (om0 oo B (R, R
T 0 - (48)

Tn equation 46 indices & and j refer to partivles, atl indives | and m
rofer to the different seattering points in particles £ and j, respectively.

The intensity caloulated above ix that furnished by one certain con.
figuration of the ensemble of particles,  In the courss of time this
configuration changes, the particles shifting and chanung srientation,
Thus weo can observe only average intensities,  We shall diseuss here only
the general method of calenlating the averaee intensityy for details, see
Fournet [48].

First wo separate the terms where & j in equation 46, These terms
represent the intensity seattered by one part icle multiplicd by the average
number of particles being examined (see §2.2.1.3).  For the caleulation
of the other terms, use is made of the sccond part of hypothesis Hy,
which enables us to separate the ealeulation of the averaging of the
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orientations of the particles from the averaging of the positions of the
particles, The final result is:

T(h) = LW (N Fim) + Fm‘:; Soox (bt (R, — R))} (47)
jek

where Fi(h) and f‘_[f]' are the guantities defined carlier (p. 7). The
problem that remains ix the caleulation of the sverage of the double sum
of terms.

2.2.1.3. Consequences of Hypotheals H,

Lot s connider two yery small volume elements, Av, and Avy, located
by vectors B, and Ry, which are contained in the volume Virradinted by
the Xerys, The contribution of thix elementary puir, Avy, Ay, to the
desired avernge ison,, con (B (R — R)J where wy, in the number ol pair
of partieles found in these volume clements, one particle being in ey aid
the other in Ae, Now, letting the clementary volumes Avy and Ar,
appronch the volume elements dvy, and dry, small even on an atomic scale,
wo introdues o probubility function p,. in teems of which the probability
of finding n particle in dey mind at the same time o different particle in
dey ine py o pydvgde,. 1t s eowntinl to consider that the particle in
dr, ix different from that in dry, sinee wo have exeluded the case of k- §
i the double sum ahove. The s of the cosing terms is now found as
the integral (see equation 7)

J. v .[ v :E;JFL%:TJR*LU Py oy ey

The volume element diey being infiniteximal, we shall deseribe & part iclo
s being in dey if the center of the particle is found there,

Refore ealoulating pi,, let us carefully define the experimental con.
ditions.  We shall designate by V', the total volume offered to the particles,
This volume containg a well-defined number of particles, Ng. The
voliime Vg must be distingnished from the volume ¥ actually irradiated
by the Xerays.

1. If Vg ix smaller than or equal to ¥, then it follows that N - Ng,
where N s the number of particles in ¥

2, If Vg is larger than ¥, the case generally met experimentally, then
N cannot be known exactly. ax previous anthors have implicitly assnmed,
Only statistical infornution, ggoh as an average value of N, can be known,

Wo she " assume that 1y 1§|rul- ax compared with ¥, as is true of most
experiments, and in any event asituation w hich is easily realizable. Lot
e now eviduate the probubilivy g, dey de,. We know that the probability
of peenrrenee of an etsemble of two events ix equal to the prolubility of
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the first multiplied by the probability of the second as modified by the
knowledge that the first event exists, The probability of vcourrence of the
first event, finding a particle in de,, is (Ng/Vg) dv,.  When this is realized:

1. The remaining Ny — 1 particles are distributed through a volume
Vo — du,.

2, If the centers of the two volumes dn, and dv,, each containing a
particle, are scparated by a distance r, the conters of the particles are
separated by a distance approximately equal to r. It is obvious that the
different distances (and unigquely the distances, if the matter being
examined is composed of only one phase) cannot all be equally probable;
if the particles aro spheres of radius R, the distance between particles
cannot be less than 2R, This behavior will be deseribed by a function
P(r) such that

Py ey dvy ‘, di. ‘\ l'{lk. R)|) dv, (48)

The manner in which P(r) has been imnuluv«l shows that this function
will tend towards unity as rinercases, for then the condition diseussed
above disappears or, rather, does not play a part.  We can neglect de,
with respect to Vo, and usually 1is negligible compared to Ng (see §2.4).

By introducing the average eodume offered to cach particle, v (VN ).
a quantity charseteristio of the ensemble of particles, equation 48
reduces to

dv,
Py deydey = -~ 71-! Pry) (4)
and the desived average of the double sum bhecomes

TS w -

kirk

sin hr, de, d
Y P 2 o)
n Y

2.2.1.4, General Expression for the Scattered Intenaity

Since P’(r) tends toward unity as r increases, the structure of the
ensemble of particles might be better characterized by the function

(1 — P(r)), this function being different from zero only for small values of:

r. By making the substitution P(rj) = 1 — (1 — P(r)) equation 50 takes
on the following form:

sin hry, dv, de
2 Sconlhs (B, — B.n—ff =t
Eisk ; lr., nyon

_.[ .[ m“"‘ll m.,ni'iE
"
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Lot ua examine separately each of these terms.
First term: The contribution of this term to the total neattered intensity

in
hry, d
1k l,{h)f'[h} J' J'lm Fis r.de‘
r v by vy oy

which (cf. equation 15) ean be interpreted as representing the intensity
weattered by a “particle” of volume V' with a uniform electronic density,
p= Fm]v,. Given the size of this particle, I,(h) is cffectively zero for
all observable angles.  (Fournet [48] discusses the reasoning of Compton
and Allison (1935) on this subject,)

It is important to note the simple, general interprotation of the term
I,(k). A further discussion of this factor is given by James (1048),
where the seattering of & spherical volume is considered,  To find simply
and schematically the limit Ay, beyond which Z,(A) in negligible, it might
be considered that for A == hy the largest phase difference between rays
seattered by two points in the particle will be of the order of 2o radiana,
Then, if the average dimension of the volume irrndinted is designated by
Dy, g in determined by by = 2nfD,,

Second term: Lot us consider first the integration with respect to dug:

sin hry, dr,
== [ = P —
J.- hry, 2y

Since the function [I — 2(r,)] approaches zero rapidly as rincreases, by
neglecting houndary effects this tern ean be written as

= wini hr N L

independent of the index j. The further mtrgralinn with respect to j
di
then results simply in multiplying equation 51 by a factof.[ o , which is

equal to N, the nverage number of particles in the irradiated \mlunw V.
The final velation for the seattersd intensity s thus (Fournet [44])

[M “ wnin hr
v Jo A

1,(k) is completely unobservable, and so for A > kg this becomes

)~ 1k + LT [r'm (1 — P(r)Jme dr} (62)

Fih ﬁ
Th) = I mN lrlm _ FO3 = sin de

v Je

Il — P(r)Hnr? dr}

If the particles considered are aplu-riully symmetric, we have seen
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(§2.1.2) that there is no distinction between the average of the square of
the structure factor F%(A) and the square of the average of the structure
factor F(A)". For this case equation 53 can be simplified to the following:

sin Ar

= - 1 =
I(.\)=I,(l).'\’F'(h}ll—:lJ; - Pr) ” 4:-'*] (54)

This expression was derived by Zernicke and Prina [308)] and by Debye
and Mencke [269]. Equation 53 thus appears as a generalization of this
lnat expression,

The integral figuring in equations 53 and 54 hax the dimensions of &
volume, We shall define this as the volume of perturbation, vy(h):

win hr Lt dv
hr

va(h) = L- (- P

We siall see in §2.2.3.1 that this function, which has also been called the
“characteristic volume' (Porod [137]), is actually a function of two
variables: vy = vy(h, v,).

To summarize, we have shown that the scattered intensity can be
expressed as & sum of two terma:

S = in Ary dv, dv,
= .*aJ.J"“‘ a Ch Ty
T = LFWY' | | S

+ L [P — =0 )
1
the first of these terms being negligible with respect to the second for
A > hy. The value of Ay is defined by the relation AgD)g = 2w, Dy being
the average dimension of the irradiated volume. In the remainder of this
section we shall designate by “intensity I(h)" only the second term of
equation 52, and when a misunderstanding is possible we shall employ
the expression “observable intensity™ to denote this second term,

2.2.2. WIDELY SEPARATED PARTICLES

The general expression which we have just established shows the
influence of interparticle interferences, through the intermediary of
v4(h), on the scattered int asity, Lot us now consider in detail the case of
rather widely scparated particles, for which the expression fos the
intensity takes on a particularly simple form.  We shall later indicate the
criterion which defines “widely sepatated particles,” but for the moment
we can indicate that a good example of such a system is a gas unler low

pressure.
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2.2.2.1." Expression for the Scattered Intensity

If the particles are widely separated, the average volume v, offered to
each will be large.  Any irregularities of the function [I — P(r)] demon.
strate that certain interparticle distances are favored while others are leas
probable.  These irregularities are the more marked, the more closely the
particles are packed, for, in order to contain more matter in a given volume,
the degree of organization of this matter must be increased.

We see thus for two reasons that the ratio of vy(h) to v, is very small
for widely separated particles,  More rigorously, the part of v,(h)
involving the integeation from » = 0 to r equal to the smallest particle
dinmeter will not vary as the particles beeome more separated, but, since
vy increases, the corresponding part of the ratio of vo(h) to v, decreases,
In the limit of large separations, we find the elassical result

1(h) = 1,0 F3h) (66)

where ve recall that this expression, derived from equation 53, is valid
only for A > h, (hg has been defined on p. 34).

The intensity of radiation scattered by an ensemble of widely separated
particles is thus identical on a relative scale to th> mean intenaity scattered by
ane isolated particle; in obtaining the intensity relative to an ensemble of
purticles it is necessary only to multiply the intensity scattered by one
particle by the average number of particles, N.

Realizing the practical importance of this simple result, it is opportune
to underline its significance and to recognize its limits of validity, Later
(§2.2.3.2) we shall demonstrate the connection existing between this
expression and the equation of state for ideal gases, pry = kT

Let us compare equation 55 with & well-known problem in optics, It
is often indicated in the literature that the intensity of scattering by
identical elements distributed at random is formed by the addition of the
intensitics seattered by each element.  This is not always correct, for
ifh = 0, we are led to the result .Tll} =N }'T(lﬁ. whereas the exact result
is known to he T(EI-} = N®F30), The usual reasoning behind the above
statement consists of desceribing the double sum

> 2 cod(he (R, —R)

Eisk
as containing a8 many positive terms as negative terms, so that con-
scquently the sum is zero.  Butif A = 0 all the cosine terms are equal to
unity and this reasoning is no longer true.  As a criterion for applicability
we can say that this reasoning is correct when the largest phase difference
between particles reaches 2 rndlinns; that is, if 1), is the average dimension
of the volume offered to the particles, the reasoning is correct when
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k> (2n|Dy) = hy. This is simply a restatement of the result that was
established in §2.2.1.3.

The classical reasoning is a little too simplified, if not incorrect, and it
should be replaced with that due to Lord Rayleigh (1919), who tries first
to caleulate the probability that the intensity will be between Fand I -+ df
and then afterwands caleulates the average intensity., By correcting one
error and slightly modifying the reasoning of Lord Rayleigh to render it
applicable to the problem of Xeray seattering, equation 55 can be obtained
as & first approximation when b > by, The corrective terms that appear
are m*glfp,ilnlc when N is very large (Fournet [48]).

Remarks
For the sivipls ense of widely separated, spherical particlos, the scattorsd intensity
{0 equation 47) s given by

TR} = ILWFPYRIN 4 5 S B (K — )
bjrk

Let us comparo the mathematical structure of the square of the structure factor of
the purticle, F2(k), with *he beacketed term. The intennity seattored by & spherically
symmetrie particle, whose p seattering eenters cach have the mune seattering fnctor
J. ean ho deseribed wa (ef, oquation 3)

LM FHR) — Lo .“.:S cos (b MM
= L{p* 4+ LR X cos (b (ra — 1)) (56)
Imel

Tho provious discwsion shows that the second term is negligible with respect to
the first when h in greater thun b, — 2g/d, d being the average dimension of the
particle.  For angles where b s the onder of A, /10, however, cach of the terims of
equation 56 has approximately the swme value, sc that the term pf? is negligible
d to the doubile sum, .

Tho tatul scattersd intensity is thus _ '
I = L/ {p+ £ E con(b(ra — 1))
Imzl
» (N4 X X cou(lr (R — RB)) (57)
k jek
The symmetry of this relation is evident; math tically the & iption i the
samo, whether for an eusemble of points in & particls or for sn ble of particls,

but the physical results are very different.

For 0 << A < kg, the values of the bracket conecerning the ensemblo of particlos
are not intercsting to the physicist, since they cannot be reached experimentally.
For hy < h < b, the values of the bracket ing the blo of points in a

iolo are essentinl and permit the dotermination of the radius of gyration, For
an angle of the order of A /10 wind Tor quasi-homogensous particles, the seecnd term
of the firt bracket and the fiest term of the second brscket smo the terns that wre
iy toin this expr The two parts of this equation are shown sopneately
in Fig. 10, in which curve a refom to the finst fuctor and curve & to the seconl,
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| 2.2.2.2. Remarks on the Babinct Principle of Reciprocity

This principle will be considered at this point not because it is applicable
uniquely to ensembles of widely separated particles but rather because our
recent coneern with just such ensembles permits us to treat it very quickly.

First term,equation 57

i
|
|
1
|
1
]
]
]
]
|
1

hy/10 A

Curve a
b Second term, equation 57
N == T
H
ho )
- Curve b

Fig. 10. A g;:}:‘h:el:iﬂ m‘.&:;‘ m,t:: factors o.l' equation 87,

Let us first recall the simplest enunciation of Babinet's theorem:
complementary objects produce the same diffraction effects. The con.
cept of complementary objects will be more precisely defined in the follow-
ing paragraph, but we can give a simple illustration of a pair of such
objects: a screen pierced with circular holes, and an ensemble of circular
discs, each disc corresponding in size and paosition to a particular hole.

The general expression for the amplitude scattered by matter con-
tained in a volume V is

A,(h) = A,(k) ‘LPI(TF_"" dr
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position is fixed by the vector r. Let us now consider a complementary
space, whose electronic density py(r) is defined as: p,(f) = py — py(T).
where p, is & constant. The amplitude scattered by this complementary

apace is then
A4b) = AH) J-'[p. — ™t

The problem now is to compare
‘ I,(h) = 4,(0) 4,°(h)

and
I4(h) = A,4(h) 4,°(h)
If we write
Ayh) = Ay(h) - Ay(h) = A,(A) I VH_"'*
then the function,
I,(h) = Agh) 4,°(h)

is a maximum for A =0
[1400) = L) V?p%)
decreases rapidly with increasing A, and effectively hmnu zero beyond
an angle defined by Aq = 2w/ Dy, Dy being the average dimension of V.
We can now calculate the following:

I(h) = [Ah) — A, ()] (R) — 4,*(h)]
= I,(h) + Io(h) — A,(h)A,*(h) — Agk)4,*(h) (58)

If A > hg, Io(h) is effectively zero, and consequently 4q(h) Ind. A.‘fh}
are also zero. Then /,(h) = I,(h), the usual statement of tl.ae rmpmelty
principle. However, if A < hg, equation 58 shows that thia principle is

true.

m’lfhoz?trhe principle of reciprocity can be applied on!y to calculate the
intensity scattered at angles such that the corresponding values of A are
greater than the limit 2m/Dg. The dimension Dy wfm to !h? average
dimension of the volume in which a “complementary™ electronic density
: R _

i (l’:ﬁtrl:: experimental systems generally used for tl_w study of low-angle
scattering, the principle of reciprocity can be applied to an e‘a.unlue of
particles (that is, an ensemble of cavities ina hunwgeneoua.m.hutfa can be
considered equally well in place of an ensemble of punules) since the
intervening dimension is defined by the transverse dlmv:nst_un of the bﬂm
generally of the order of 1 mm. wide, but it cannot be applied to mc'h single
particle (as, for example, replacing a spherical putu-}n of 100 A l.llll‘!lle'lel‘
containing a concentric spherical cavity of 20 A diameter by a simple
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sphere of 20 A diameter). This latter method has been employed by
some authors, leading to incorreet results; we cite for example the artiole
of Kratky and Porod ([108], p, 45f), in which these authors tried to
evaluate the intensity scattered by a “finite packing of lamellae” of
submicroscopic dimensions by replacing the lamellae with the interstices
contained between them.  Inoa later article, however, Porad is in agree.
ment with the ideas expressed here,

Another application of these ideas is the ealeulation of the seattering
from particles which, instemd of heing in & vacuum, are immersed in a
homogeneous medium of eleetronic density pg (for example, the solvent of a
colloidal suspension).  The seattering body can be considered as the
superposition of a continuous medium of density p, and particles of
density p — p,. The seattered amplitude is the sum of the amplitudes
seattered by the continuous medim and by the fictitions paeticles.  The
Jirst of these is zero throughout the region aceessible to experiment.  The
observed seattering is theeefore simply that due to the particles of densit y
p — po-  All the equations which have been establishied are thus valid on
condition that p is considered as the differcnce between the cleetranic density
of the particle and that of the surrounding mediom. The small-angle
seattering beeomes zero if the particles have a density equivalent to that
of the surrounding medium, even if they have a quite different atomie
structure,

2.23. INFLUENCE OF THE CLOSER PACKING OF PARTICLES
2.2.3.1. Generul Considerutions

We have just treated the simple case of widely separated particles, in
which the total seattered intensity, proportional to the intensity relative
to a single particle, gencrally decreases continuously with increasing
scattering angle. It is only for the very particular ease of particles with
a strongly marked internal structure (for exnmple, CCl, molecules) that
intensity maxima at non-zero nngles enn be observed for widely separated
particles,

It is well known that numerous liguids whase elementary particles
possess simple structures give rise to maxima of intensity &t non.zero
angles.  Zernicke and Pring [308] established their well-known formula
(equation 54) in order to expluin these results. We should point out that
it is difficult to study the effect of the closer packing of particles on the
seattering distribution from this equation; when the concentration of
matter inerenses, oy decreases, but there is also an waknown change in the
Junction P(r).  Writing the equation for the intensity in the form given by
Zernicke and Prins could lead to the assumption that the concentration
of matter has no influence on the function P(r). To climinate the
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possibility of this assumption, we propose to modify slightly the expression
of the Zernicke-Prins formula, writing:

= - iah
I(h) = LIWNF*(h) [l —;‘ _L - P 'Jln—:—r: dnr? "} (59)
1

in which the functional dependence of P(r, v,) appears explicitly.

Numerous authors have studied the influence of the mutual approach of
particles on the distribution of seattered radiation, assuming a priori &
function F(r) more or less well chosen but independent of the concens
tration of the matter. Among the latest attempts we may cite that of

rudowiteh [186].  We believe that it is difficult to determine the validity
of the results thus obtained, for in these studies of the influence of con-
centration on the intensity I(h), one of the most important functions
determining this intensity has been assumed a priori to be independent of
coneentration.

The real problem then in any such study is to obtain the function
P(r, v,). This problem is difticult. We feel certain that its solution
will require s profound analysis of the thermodynamics of ensembles of
particles.  We can hope that by such an approach, eqnations 53 and 54,
which may be called “Zernicke-Prins type equations,” concerning only
the geometry of the ensembles of particles, can be transformed into
“thermodynamic equations” by the introduction of certain intrinsic
charncteristies of the particles.

1t is first necessary to find variables that can intervene ina detinition of
P(r). We have already noted one such variable, vy. The function P(r)
is connected to the probability of seeing a certain configuration of two
particles realized, so that the calculation of probabilities introduces itsell
paturally into the problem. If Boltzmann statistics are employed we
need to introduce both the temperature and the potentinl energy P(r) of
a pair of particles whose centers are separated by & distance r.

The problem of ealeuluting the funetion P(r) from vy, 7', and O(r) is the
central problem of the latest kinetic theories of Huids (Yvon (1933).
Kirkwood (1935), Born and Green |250]). Ourown problem is not limited
simply to the case of fluids: we are interested to a large extent in solutiona
of large molecules, suspensions, ete. In cach of these cases the functions
P(r) aud O(r) can always be defined. We shall introduce later the
varinble, pressure, and the equation of state of the matter being con-
sitlered.  This presents no difficulty in problems concerning gases or
liquids. Morcover, it is well known that in sofutions the osmutic pressure
plays a role analogous to that of pressure in fluids and that the equation of
state - of ideal solutions can be expressed in the form pry, = kT, A€
there is difficulty in extending these concepts to the study cf emulsions,
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we can always formally define the
A pressure by evaluating the cha
fl'o;nel:;:g}; :':: the n_\‘l:tem with respect to the total volume offered gl
. erent kinetie theories of fluids cited % .
cquation determining P(r) is of the form, ) 7 A o

9 I‘tr‘ (')
Pr) = bbb L
(r) = ¥ ( - :. T (60)

where F designates an integeation of the functions P(r)fe, and O(r)/kT
In mu.hliahiug this equation it has been necessary to m:&e a |h:!ik i
nppnfxlmnti{m known as the “principle of uuwhumitinn I \{'u. h‘ll
not give the details of this principle, for these can be found ‘ilt the a::'?l
of Kirkwood and Boggs (1942) in which this principle is deseribed 4 t;
omp!u:\-ml for the first time.  We may deserilie equation 80 as havie lm‘-‘
;:t;:hhnlu-il in & very general munner from considerations of 1:::'!;:::
dtzmann statistics, the ’ i i ili
g ,u|lu\|-|:.l:it‘i‘.l|:l;‘: msumption being that of the validity of

2.2.1.2. Scattered Intensity and the Fguation of State
; “.P qu'l; just seen that the kinetie theories of Huids furnish & relation
|mluwn P(r) aml‘ @(r); this shows the manner in which the relation
wtweeh the function T(h) and d(r) can be established. At this point it
u-oms.u.cl\'anmgu-mls to introduce the equation of state, a more familiar
:;‘;nnm_\' llum_ lhe. corresponding mutual potential energy function
is eant be written in the fullowing form (Green [273], Yvon (1149)): -
ke LT | ™ g
it % Py’ (r) dmrd e (61)
If the integral is neglected, this reduces simply to the ideal pas law

LT _NAT_ T
% N ¥
where N , is Avogadro’s number.,
Let us first consider the case for which the function ®(r) is identically
equal to zero. The equation determining P(r) then states that P(r) = N

l“(‘ m\puﬂant ﬂll\ S Tes il I.Hl ! T r
|l|l|| from t"l.
. Mt W in nl(ull function Pt ] can

1. The expression for the scattered intensity becomes (see equation 53)
Iy = LN Fh) (55)
the result for widely separated particles,
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2. The equation of atate, obtained from the general expreesion of
uation 81, becomes
- po, =T (62)
the ideal gas law,

This result shows that the domains of validity of equation 53 and
equation 82 are the same, These two expressions are rigtm-l;"true only
for point particles, small even on the angstrom wfk. as is required when
the potentisl cnergy is defined as O(r) -0, ) independent o-f r. In
§2.2.3.4 we shall discuss the conditions under which equation 33 is & gl

proximation,

‘l.i:tx\: remark also that if an attempt is made to find a 'l'mvmtiun Pir)
which is independent of i and which is to be defined by equation 60, the
only possible sotution will be found to be P(r) l.‘

Now let us loave the vase of widely separated particles wd try to treat
the general case, By develuping P(r, ;) in & series expansion with v, as
the variable, we find

P(r,vy) == Pylr) + e Py(r) + 2~
where the term Po(r) is identical to Pl et 8
Thus a first approximation of equation 6 i

Plr, v,) = e~ 0T (63)

For this approximation the equation of state becomes
@™ g0)
Y

pry = kT [I - o

and the seattersd intensity distribution is (of. equation 54)
- (2,}!!! 4
I = LAWNFYA) |1 + —r—ﬁ(ﬂ (84)
| §
where the function f(h) s defined by the relation
=
hp(h) = -i-._.J‘ ra(r) sin Ar dr {63)
VigJo

with
I‘r] == G—Mﬂ' A, |

An approximate solution for hard spheres of radius R and volume v
with no interactions other than impenetrability, has been considered by
Debye [265].  With the probability function defined (cf. equation 83) as

Pr)=0 " 0<r<2R
Piry=1 r>2R
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equations 31 and 64 lead to the following expression for the seattered
intensity:

I(h) = I(WNOUAR) [1 o 3? qem;] (68)
1

where the function ®(r) is describied by equation 31, We shall consider
the validity of this expression in §2.2.3.3.

The solution P(r, r) — ¢ ®4T hus bheen proposed as & general
solution by Raman (1924). who believed that the solution was exaot.
His oversight was the following: if an ensemble of only two particles is
considered, the probability that these particles are at a distance r from
one another is truly ¢~ P47 hut, if an ensemble of a large number of
particles is considered, the probability that any two particles are at a
distance r eannot be the same, sinee interactions with the other particles
must be taken into account,

A secomd approximation of equation 80 based on the mere complete
thearies of Rorn and Green [2539] leads to the fullowing result (Fournet
[44]. [45], [40]):

dnld— h)
10 - LS T + TP ——fh)
o~ LWS{FR T ] e
where e designates a constant approximately equal to unity.
For the simple case of spherically symmetrie particles, equation 67
becomes
- v
Ithy = LWN Fh) —— 0 —
(h) RN FH l"l =2 eih)
Let us emphasize that equations 67 and 68 have been derived from
certain results of the theory of Born and Green with no additional
physical hypotheses or mathematical simplifications,

(68)

A simple outline of the derivation of cquation 87 is aa follows:
The modification added by Rodriguez (1949) to the simple caleulation of Green
consisted in writing
Plr) = o= NET M) (89)

In obtaining fir) from equation 80 the value of the function a(r) = e~ ST _ ) i
asumed to be different from rero only for small values of r, amd in certain cases the
product 2(r) fir) is mesumed to be repluceable by the termis atr) te = 1), thus defining
(e — 1) na m mean value of fir) for small values of r.  From this, the function fir)
oun bo deseribed by the Fourier transform

K11 7 ehfith)
i) = T;; | Paldm) 2 — efilh)

neglecting terma in f'(r), f(r), ete.

sin hr dA (70)
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The caloulation of w(A) requires a knowledge of the function [P(r) — 1}. From

equation 09,

- Pir) = 1 =[alr) + 1][ +J07) +-+-1=1

Tk e ot il Pir) — 1 & ex(r) + fir)
‘%‘?‘i%;ﬁ-;'l; rex(r) + fir)) sin hr dh

which, by meana of equations 85 and 70, becomes

b L (Eepn AR
i L [d;kli + “F.TEFE‘—W\T:] )
Equation 87 is easily found from this last equation,

Let us try to analyze quite generally the different relations which we
have established by employing a criterion often used in the statistical
theory of ensembles (theory of fluids. the order-disorder transformations
in alloys, magnetism): the inclusion in the caleulation of particles in units,
paits, triplets, ete.  We must point out that a perfect theory should take
account of all such possible groups.

Equation 85, correet for witlely separated particles, takes account of

particles ouly in units; that is, all interactions between part icles have been

neglected,

The discussion we have given of the work of Raman with respect to
equation 64 shows that this expression takes into account particles
considered in units and in pairs; that is, interactions between particles
have been limited to a sum of interactions between pairs of particies
isolated in space,

In considering the validity of equations 67 and 68 we must lst point
out that the Kirkwood-Boggs principle of superpasition used in establishing
equation 60 is presented in the form of & relation, good to a first approxi-
mation, between the properties of particles considered in pairs and the
properties of particles considered in triplets.  Now in the form that
Rodriguez has given to the theary of Born and Green, one determines the
second approximation to the function f{r), defined by equation v and the
relation

P(r) = ¢~ S0WiTeltn

The first approximation, that of f(r)=:0, furnished the solution of
Raman, which takes into account only the influence of doublet terms.
Thus we can affirm that equations 67 and 63, established from the theory
of Born and Green, take account of triplet terms at least to a first approxi-
mation, contrary to the opinion of Oster and Riley [128].

To summarize these results, we have listed the expressions of certain
equations of state and the corresponding expressions for the scattered
intensity.

'] SMALL-ANGLE SCATTERING OF X.RAYS
Summary ’
EquaTiox or State SCATTERED INTENSITY
pV = RT I(h) = 1N FER)
2 3230 -
pV = RT [l - -{-—"2—‘-3-3] Ith) = I(nNF30) [l &+ &:‘lﬂm}]
1

Born and Green I{h) = I,(MEF'{M _{gjﬁa_"

1 — =2 )

) b

2.2.3.3. Limiting Value for the Intensity Scattered at Very Small Angles
We have just examined the relation between the equation of state and
the scattercd intensity, J(h). Let us now restrict the problem to deter-
mining which thermodynamic variables are related to J(0). From a
previously cstablished relation, equation 53, we find

IHm = J’,{n}f (u' —nt %ﬂ}} = !,unful[l — %ﬂl’
3| 1

n heing the number of electrons contained in a particle,

The function v,(0) can be evalunted as follows: wo have seen (§2.2.1.3)
that p,, dr, dr, represents the probubility that there is at the same time
a particle in dry and a different particle in dv,. The doulls integeal of
Pas dvy dvy extended over the domain ¥ should then give the average
number of pairs of particles existing in the volume ¥, Designating by N
the number of particles in 17 at & certain instant, we find that

.[ _[?'h dry dv, _[ fru,,;‘i'-! e NN —h=Vi-F
rJdr rJr oY
ginee the average of a sum always equals the sum of the averages of each
term,

Now by introducing the function (1 — P(r)) in terms of these quantitics,

we have
—_ = dr, [ dv dr, dv,
YIS I [yessi | (el R v = ——
N N I . J. " '[ . Jl[l P(ry,)] .

By making use of the caleulations employed in §2.2.1.4, and neglecting
only very small terms, we obtain the following expression:

e Tt s — it 1
Ni_F=N_-¥§ f (L — P -‘-‘fi- dr
Jo "
from which we find

1 T= _NiL NN TN
._Jl [lﬂpgﬂla,,fid,:E"_"l:L"._N_tﬁ:]_u
"o " N
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With this value of v,(0), we find that
- -
10) = IOWYXT — §*%) = LO¥N — N)? (z2)
Thia result was first established by the work of Einstein and Smoluchow-
ski; other papers developing this topic which might be cited are those
of Zernicke and Prins [309), Bhatia and Krishnan (1948), Yvon (1947),
and Fournet and Guinier [53). i
Equation 72, which is a result of the hypotheses H, and H, imposed on
the structure of ensembles of particles, shows that the observable scatt.red
intensity (see p. 35) at very small angles is a consequence of the existence
of fluctuations in the sample. A thermodynamic description of 1(0) can
be found by recalling a classical result of the kinetic theory of gases,!

kT (.\' — .\‘)'_ (N —N)®
N/ A

where f is the isothermal coeflicient of compressibility,

=-3(%).

¥ being 1he total volume offered to the gas. 10 N is large and the matter
ia not nea its eritical point, the terms neglected in equation 73 are small
when ons writes

+oee ()

1(0) = LOW*N f_—r i (74)
‘1

thus e-tabiishing & simple relation betweer: 1(0) and the isothermal com-
preasid lity.

Valres for 1(0) have been predicted by several different theories.  The
expressivn given by Debyo for o model of hard spheres is (ef. equation 46)

1(0) = 1,0m2N (I - “ﬂ)
Y

where v, is the volume of each sphere. (The coefficient, 8, has been
omitted in several references in the literature.) The maximum value of
vy/vy. that for close-packed hexagonal or cubic systems, is 0.74, leading to
the prediction of negative intensi*ies for a large domain (ve/ry > 0.125).
The linear model of Kratky and Porod [108], with assumptions similar to
those of Debye, leads to a similar factor: (1 —21y/l,), [2* =8]; since the
maximum possible value of [y/l, is unity, again negative intensities are
possible. .

1 See, for ple, R. C. Tol The Principles of Statistical Mlechanics, Oxford,
1948, p. 847,
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Equations 67 and 68 give negative results if v, is smaller than (2m)*®
¢fl0). This is not a valid criticism, however, since Fournet [40] has
ghown that the passage of the Zernicke-Prins type equation to equations
67 and 68 is possible only if there are no roots to the following equation:

o — (2m)"ef(h) = 0

When roots to this equation exist, as happens for liquids, equation 67 ia
no longer correct and must be replaced by another which does not predict
negative intensitics (for details, sce the article of Fournet cited above).

2.2.3.4. Thermodynamic Expression for the Intensity
Let ua now consider the general possibilities of employing equation 68,

— LIONFYR) ——
1 = LR P s
in a study of spherical particles.! Fournet [45], [40] has employed thia
equation together with the potentia! energy function ®(r) determined by
Lennard-Jones (1937) to prediet correctly the seattering by gascous and
liquick argon at 150° K.; this is shown in Fig. 11.  When considering a
fluid of hard spheres, for which fih) can be caleulated, equation 68
becomes

(88)

I(h) = I(\ND2(hR) L

1+ -;-" «D(2hR) (78)
1

The correaponding curves are given in Fig. 12 for various values of

(Bege/vy), Lot us reeall that, in practice, € can be taken as equal to 1.
We can now establish a precise eriterion for defining the term “widely

sepurated particles.”  Equation 68 can be written in the form

1
2
P e e,

"

I(h) = I(h)N F3(h) T

which allows ux to say that the equation relative to widely separated
particles is acourate to within n per cent when the ratio (2x)efi(h)fv,
has the value of n per cent.

A certain characteristic behavior of the scattered intensity can be
predicted from the mathematical structure of equation 68, If the value

' Wo shall connider only spherically symmwtrical particles in thin paragraph in
ordor to simplify tho diseuwsi For the g I cmme, ms x| d by equation 87,
the rosults are analogous.
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square of the structure factor, ). curve (equats
lﬁje(‘l.lnmuwing!nmgnmmn 149.3° K.uﬂnw?‘
proasure. (¢} Theoretival curves of the scattering from liguid argon

soveral densities at 149.3° K. (u = (2r)5e(e,)™" [woo equation 6R]).
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of B(h) is zero when h equals some value by, the reduced intensity,
I()/N1,(h), evaluated at k, is & constant, Fi(h,), regardiess of the con-
centration of the matter. This fact, predicted from equation 68, is
verified quite well by the results found for argon by Eisenstein and
Gingrich [40), when their results are considered on the basis of one

ICh)-[NT, ()"

I | |
1 2 3 AR

Fig. 12, Seattering curve for non-interacting hard sphores (equation 78).

temperature (see Fig, 7 of the reference cited); the condition of & common
temperature for the curves is necessary, since f(h) dependa on the
temperature, as is shown in equation 65,

If the coefficient of F2(h) in equation 08 is considered, it ia seen that
the mexima of this function always oceur at the same angles (those such
that fith) is a maximum), regurdless of the coneentration of scattering
matter; the only effect of & change in concentration ix to accentuate
the maxima to & greater or lesser degree. This same result is found if
the expression derived from only the first approxinud ion in used,  (Per-
sonal communication from G. WL Brindley.)

A detailed study of equation 65 by Fournet [48] has shown that for the
general ease, in which Fh) decreases in the observable region with
inereasing k. the intensity maxima are produced at larger und larger
angles, the greater the eonventration of seattering matter, This in
illustrated in Fig, 13, in which we have plotted representative curves of
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Ith)

A

Fig. 18, Scattering from a fluid for three different concontrationa of

particles, The solid curves correapond to & very low concentration,

the deshed ourvea to an aversge concentrabion, and the dotted

curves to & high concentration. Noto that the maxima of a(h),

the interparticlo interference  function, and  I(h), the obsmved
intonmity, ocour st differont seattering anglea,

the terms involved as & function of A for threo values of vy the solid
curves refer to the case of v, approaching infinity (i.e., widely scparated
particles), the dashed curves refer to a smaller value of v, and the dotted
curves to still smaller values of vy (i.e., still higher concentrations). The
first function, the interparticle interference function

L
A) = L
oA = M
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I(k)

is equivalent to 1___.(51 NF) the sccond is the function F¥A); and the
third, the product F¥hk)a(h) is proportional to the intensity. It can be
seen that the product of the continually decreasing function F¥A) and
the function a(h), with its only slightly accentuated maximum, resultsina
function I(h) having a still more diffuse maximum situated at a smaller
value of & than that for the original function, a(k), for each of these cases,
The position of the observed maximum thus depends markedly on the
function F2(h), that is, on the structure of the particle. The position
of the intensity maximum depends in a very complex way on ths
structure of the arrangement of the particles and on the particular structure
of each particle.

2.2.3.5. Fluids and Crystuls

In an examination of a erystalline substance by means of an experi-
mental method such as Debye-Scherrer photography, we find that the
function for a perfect erystal which plays the role of a(h), that is, the
function f—.l 7 :ih:‘a( T8 is identically equal to zero except for certain
specific values of A, at which points it takes on very large values. The
product of this function with the function F¥A) then gives a function
I(h) which shows the same structure as a(h), in that it also is identically
zero cxeept for certain specitio values of A, The positions of the intepsity
maxima (the Debiye-Seherrer lines in this example) are identical to those
of the function a(h) and thus can immedintely furnish information on the
structural arrangement of the particles (see Fig, 14),  This illustrates
one of the essential differences between the classical problems of Xeray
erystallography and the problems that are treated here: the degree of
order in a ceystal is in general such that the function I(h)/ F3(k) presents
sharp maxima,  As a result the maxima of the function 7(h) oveur at
the same values of A ns the maxinm of the function J(h)/ F4h).  This
resilt does not apply to fluids, for they are much less ondered than any
erystal.

We should like now to offer a physical explanation of the fact that the
maximum of the function J(k)] F2(h) is produced at a constant angle for a
fluid, independent of its concentration. For this very qualitative
explanation let us make the approximation that P(r) = e~ ®OET . The
factor of physical importance in this problem is the arrangement of par.
tieles avonnd wny one particle, At very low concentrations the probability
of tinding a particle in a volume element deg s deyfey, 10 i known that
this clement, dv,, is at a distance r from another particle, the probability
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Fig. W wxﬂwﬂw The maxima of a(A) and
becomes (dv,ju,)e~*"tT  and the probability density, d(r), from ita
definition, is (1/v,) e~ T We have plotted this probability density
in Fig. 15 for two concentrations, 7’ and v,". Whereas the mean
probability density increasca when the concentration increases, the
ratio of probability densities for arbitrarily chosen ry and ry remaing a
constant. Since the position of the maximum of I(A)/ F¥QA) is related to
this ratio of probability densitivs, it can thus be understood that the
position of the maximum will remain invariant.
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To summarize, we have shown that there is a great deal of difference
between the behavior of the function directly connected to the arrange.
ment of particles, I(A)/F3(h), and the function IA) which ia observed
experimentally. In §4.1.2.2 we shall return to this point to discuss ita
important consequences in the interpretation of experiments.

d(r)

NP

R R
1 v

I "1 r
Fig. 18. A »oh io roy tation of the probability denslty d(r)
for two differvut ¢ trations of partick

2.23.6. Secondary Maxima

In the course of experiments on the scattering of X-rays by suspensions
of latex, Yudowitch [186] and Danielson, Shenfil, and DuMond [25] found
several maxima in the scattering curve (Fig. 16). A study of this same
suspension by electron microscopy showed that the latex globules were
spherical and very regular in size, variations in diameter being less than
10 per cent. These globules were relatively close-packed, so that an
explanation based on the theoretical dovelopment of §2.2.3.4 can readily
explain the principal maximum, the maximum at the smallest angle.
The other maxima, which we shall refer to as secondary maxima, appear
to be more difficult to interpret.

Yudowitch advanced the hypothesis that these secondary maxima were
due to the particular form of the square of the particle structure factor,
F(h). Let us recexamine the function F2R), considering the latex
globules as analogous to hard spheres of constant electronic density, this
being the same model that we have herotofore designated sa “Debye's
model."”
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sin AR — AR coa AR
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The positions of the maxima and minima of this function are then given
by the solutiona of the equation

200" () = 20() =

@3

'-——alainu-l-hmum

ut 0
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.18, A microphotometer curve of the difftaction pattern of latex
e ln::l showing Illw woconatury diffraction rings. Intorvals ﬂL%h

il to & scattoring angle of 3 tes of are (Dani
POt Chentl, and DuMond (23])

where ¥ — AR. The solutions corresponding to the minima are those for
which ®(x) =0. The positions of the maxima are given as solutions
of the equation

Su,,
tanw, = 8_—__0,.. (78)
At these positions we note that
in®
sinu, 9 an

) = vt w349

A first approximation to the solutions of equation 76 is found by
placing u,, = kw, where the first maximum is that for £ =0, the‘aeeo.nd
for k = 2, the third, & = 3, etc. A better, second-order approximation
(except for k = 0) is obtained in writing

W = b — (3/bm) (8)
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the corresponding intensitics being given by
9 81
Iwg) = f=+ s (19)
Thus we can establish the following table:
Index of Maximum 1 2 3 4 5 L]
k 0 2 3 4 5 ]
u,_, equation 78 550 9.10 1233 1552 18.60
u,,, oxant 0000 576
10* x I, equation 79 737 128 039 018 007
108 x I, exact 1000 7.45

It should be noted that the second-order approximation gives correct
values even for k = 2,

Evidently the ratio of J(u,,) at its first maximum, at zero angle, to the
value of I{r,) at its second maximum is very large, actually a value of
1.3 x 10%, but, more imvortant, the ratio of the intensitics of any two
other successive maxima is small; the ratio of the second to the third is
only about 5. It is thus possible to observe experimentally several of the
maxima that theory predicts for the case of widely separated particles,

Next the effect of interparticle interference should be considered. We
shall employ equation 75, which has been established for the case of
particles with no mutual interaction other than impenetrability; though
this represents an approximation, it should be sufficient for the larger
angles. Neglecting constant factors (see §2.2.3.4), the scattered intensity
is

Du)
Ly(w) = e
1 + — ed(2u)
L
Expanding this function, Iy(x), around the point w = kr -+ z, we find
that to a second approximation this function is a maximum for
w=knr— (3kr) 4+
the same result as that found for the maxima of ®*(u). The values of the
intensity maxima are (cf. equation 79):
.8 8 Q%
hw) =pm+ s e
where ¢ designates the ratio (Svgefv;), which has a maximum value of
about 6.

We see thus that for this model the positions and magr tudes of the
secondary mazxima are only slightly modified in passing from a very dilute
system to a dense system. This is not true for the principal maximum;
the principal maximum occurs at zero angle for dilute solutions, and as the
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values of w between 0 and 2.8 for systema of average concentration.

The explanation of the secondary maxima observed by Yudowitch is
thua given by a complete calculation of interparticle interferences. 'Ijl:eso
maxima are present in the representative curves of ?"{6} for a ungb
particle, and interparticle interferences, instead of removing these maxima,
actually reinforce them slightly, as is shown in Fig. 17.

Ah)
-10-107*
1 A
[ 10 AR
Fig. 17. Scattering from hard The solid curve

We must point out that this explanation of the secondary maxima is
based on Mp:h:in of & model of the particles, but the hard-sphere model
peems particularly valid for suspensions of latex globules. |

Let us now consider as a second example the secondary maxima that
can be observed in the scattering curves of liquid or gaseous argon as
determined by Eisenstein and Gingrich (Fig. 11). A companison of
these curves with the square of the structure factor shows w!nMy
that these secondary maxima are due uniquely to interparticle inter-
ferences.

2.2.3.7. Remarks oa Fourier Transformations
When considering two mutually reciprocal spaces that are eonmtcd
bysmmrmﬂmm.mwamﬂe.mwwmmm
pmiclelmdthamipmulspmohhnminbhh.inwhchdmnuum
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related to scattered intensities, it is known that an unevennees in density
in one space corresponds to a periodic variation of density in the other
space, with the period in the second space being related to the position
of the unevenness in the first. We know thus that a Debye-Scherrer line,
which is a discontinuity in h space, is determined by the periodic dis-
tribution of certain crystallographic planes in real space, and the position

Roai space Reciprocal space
efr) FYn)

Hard
sphere

pfr) FYn)

2 )

Fig. 18. Schematic curves of p(r) and F*(A) for & hard sphere and
for an argon atom. The unevennees in p(r) for the hard sphere causes
a certain periodicity in its F'(A).

of the line is determined by the period, or distance between consecutive
planes, in real spice (Bragg's law). These remarks can now be applied in
a discussion of tle intensity scattered by a hard homogeneous sphere and
by an atom of argon, Buth particles are characterized in the real space
by the electronic density p(r) at a distance r from the center of a particle
and in the h space by the function F(h), related to p(r) by a Fourier
integral (seo §2.1).

Since the density p(r) is more uneven, in a general sense, for hard
spheres than for argon atoms, the graph of F{(4) for hard spheres will
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maxima from argon are due almost entirely to interparticle effects,
whereas form and internal structure are the predominant factors for the

ensemble of
I.gtmnoveuuidﬂmemmhleol‘hudcphumdn le B of hiard aplieree,

ol interparticle inmi:'htieh mm:t:
: . termined in real erms o

taken inta account, will be de sty 5 224, PARTICLES UNRESTRICTED BY HYPOTHESES H, AND H,

We have assumed from the beginning of §2.2 that the scattering
matter being examined satisfies hypotheses H, and H,. We should like
now to remove these restrictions.  If the detaila of the calculations which
led to equation 47 are considered, it is seen that the second part of our
hy pothesis—that which excludes all possible relations between relative
positions and probabilities of orientations of particles (i.e., all possible
relations between positions and structure factors)—has enabled us to
calculate the averages by describing the average of the factor

3 3 Fy(b)F(h) cos (b~ (R, — R,))
EiAk

#(r)

Hard
sphere

as the product of the averages of Fy(h), F,(h), and cos (h+ (R, — R)).
The first part of hypothesis H, gave knowledge of the average of F(h),
which was convenient for our considerations,

We should like now to try to consider the general problem in order to
determine the characteristic magnitudes that are involved in this
- question. )

The general relation, equation 46, shows that only information relative
to pairs of particles is necessary. ‘Thus it is sufficient to define the
statistical correlations oxisting betwesn two particles, We shall describe
these by means of the development offered by Fournet [48]:

py(F, b) designates the a priori probability density function of the
seattering factor F of a particle for a scattering angle corresponding to h.
We shall assume this function to be identical for all particies. If we have
" no information concerning the surroundings of a particle, the probability
that its scattering factor for a given value of h is contained between the
values Fyand Fy 4+ dFy is equal to p,(Fo, h) dFg.

PolF,, Fy 1, h) desimates the probability density function of the
scattering factor F, of a jth particle for a seattering angle corresponding
to h when it is known that the scattering factor for the same angle of a
kth particle has a value Fy, where R, — R, = 1. As a consequence of the
indistinguishability of particles, p, must be the same for the same vector
1, regardless of the position of the center of the kth particle.

There is no contradiction in stating that the probability density p, is
the same for al! particles, while defining p, as has been done above, if it
is realized that the function p, concerns ensembles of factors F and F,,

") e

i

i hard and for
Fig. 19. wumdﬂﬂﬂ::m?:pbﬂn e

atoma, Argon
B e function S(h) haa the more P

separated by a distance r. We have previously -Imrn that ?ha.inam
of ®(r) is f;{ through the intermediary ofa funﬁtc‘n-n.‘ﬂ'{ul.l; which :1, d:'ﬁne‘:
as the Fourier transform of a{r), where a(r) =€~ 7" — l.t i
can say immediately that, since the curve of Q{r] with respect to
the most uneven, the function ﬂl].uf ;l’gh:lg"l“ have the more marked
periodi iz is shown in Fig. 19.

The :c:mei;un?t:' is found by combining the functions FY(A) and
Bb) (see §2.23.2). The above discussion shows why the secondary
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ion
-mhwhw&w!‘,mﬂeﬂd by itself. The relat
between p, and p, can be & as

[Cnirs BB AR =
2 iati ble
Now let us consider the intensity ?1' radiation scattered by an ensem
of identical, arbitrarily shaped particles,
I(h) = LA S Fim)F() cos - (R, — R))
Ej
ws for which k=j. An analogous

the tern
pfb:e:n m@:rna:xe: Ii‘:z §2e.2.l.2. in which thie result for the sum of

these terms was shown to be
1mN F3(h) = (N _L Fp,(F.h)dF
on 81 for which k # j there are found

(80)

(81)

In the general term of equati

three types of variables:

f the functions
1. The scattering factor Fy

(F,isrelated to F, by means o

wﬁ. The angle Zh(R, — R).

i — R k o E
:n::;:‘:: ::xu‘::the g:\‘mp of terma for u:hu-h k # j we shall perft
successive integrations over each of these variables.

Average of the Variable Fy r
0
Let us consider first only the func!iom F, as \'u-:::le:“‘l‘he group
terms of equation 81 for which k 7 j can now be writte

@~ | Fup
?jgb{mm e ! L . (32}

ing factors
We shall assume that correlation belween m!-lel; o{ r:: nﬂe:;g:r" _:' s
i tion;

ot occur for large distances of separalic ledge g

:::.i:l‘ormntion about F, if |By— R,| is large compared

neighbor distances.

: that py(F,. Fu T, rd |
fu:thrgem“ :?u?l";:ls it i:tm;'ul to express the quantity Py as

po(Fy, Fpo1B) = p(Fb) — (P Fp ) — pol Fy Frum b))

On replacing py by this expression,
terms:

(FuB) _[ " F oy Fu D) dF, ar.] '
']

h) tends toward the function py(F;. b)

(83)

equation 82 breaks down into two
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Firat term: This term describes the scattering when the structure
factors F, and F, follow the same law of probability, independent of one
another. We have already solved an analogous problem (§2.2.1.2),

. which gave as a result

F(8)*(3 3 cos (b (R, — R)}
kjek

where Fb) = I Fp,(F,b)dF
(]

Second term: This term is of the form
=3 > {b(r,h) cos (b (R, — R))}
Ejrk
where

bir, b) = .[. J:. Fup(Fo.B) {py(F,.B) — py(F,, F, t0)}F,dF,dF, (84)

The bracketed term in the integrand appronches zero when | | becomen
large, and consequently the function b(r, h) behaves in the seme manner,
Thus in evalusting this second term we can negleet boundary effects and
treat the summation over the index j as indopendent of k:

—X X e, h) cos (h+r)

kren

where the sum extends over all veetors £ which exist in the sample (except

= 0). The sam aver k then results simply in multiplying this result by
the average number of particles,  The final expression for the seattered
intensity is then

}_‘E] = ’,M,A\_'{FT(];] -— ‘\: },{r. hi e lh 'l'}}
rel

+ LWFB'S 3 cos (b (R, — R,)} (85)
k jek

I®) = LN {(F¥(h) — FB)'] — 3 bir, b) cos (b + 1)}
re0
+ LF®m)? 33 con (b (R, — R)) (86)

Average with Respect to the Angle 7. b (R, —R))

Keeping the magnitudes of the distances fixed, let us assume that all
orientations of the vector r are equally probable. The function py then
depends only on the distance r between centers k and j. The terms in
cos (b +r) on averaging will then be replaced by terms in sin hrfkr (a
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calculation illustrated several times, vir., equation 7). The resulting
expression for the intensity is

- f e — sin Ar
) = I.tl)-"f{[l"'thl ~ @) - Z¥n N Tr_} »
+ LWFEP 3T )
‘ TT by

Average with Respect 1o Distance r

For this final averaging we proceed as in 52.2.1‘.3.%.&“‘”
P(r) which is related to the probability of finding the mteu ol' t:'lnl
different particles at a distance r. When no external field is applied,
orientations of a vectorial Jistance r are equally probable, so that :e_‘ can
begin with equation 87, modified only so that the term —NI,(h)Fib) is
included in the double sum over k and j.  Analogous problems have

sady been treated in §2.2.1.4. .
“t"l‘::“uumnmlium of uqial jon 87 must be replaced l-‘\'. iutt-gntifrm. taking
into account the probability of realization of theanhﬂ:«wm distances, r.
By replaving '(r) with 1 — [1 — P(r)] and conziddering only mg!--a ﬂ:rl
whivh & = hy (§2.2,1.4), ouly the term in [1 — £{r)] need be t‘t.tur-nll‘h
in the thind term of equation 87. Phis reasoning cannot be applivd to the
second term of cquation 87, since bir, h) tends to zero as r becomes large.
The final expression is thus {Fournet [4%])
sin

T A A
i E=——= F(hy T
I = LN {r-m - 'tr_.- L =Bl bt

sin Ar

- : I. P(r)bir, b) ~ 4nrt dr} (88)
v Jo r

The first two terms of this expression are identical to lh\.ne dmwd on
the assumption of complete independence between the orientations and
the positions of the particles. The term in b(r, h) thus appears as &
corrective term, necessary for the description of the general case. )

The complete expression, equation 88, must be used, for enrnple: 1:!
calculating the intensity scattered by a dmst: ensemble of lde‘nl“"i
ellipsoids of axes 2R, 2R, and 2eR.  The scattening l'n:tnr of an E“.lpe!ltl;
for a given scattering angle, 20, dependds on the orientation of the .el'lqtamt:.
If it is known that the distance between the centers of two ellipsoids is
2R. the axes of these ellipsoids cannot be oriented in & completely ar::;-
trary manner, and, consequently, their scattering factors must .be related.
We can sce by this example how a relation between scattering factors
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F, and F, and the distance between their centers can be introduced. It
ja this dependence which introduces the supplementary term in equation 88,
We have just seen that in the general case, in which the orientations
and the positions of particles are related, the expression for the scattered
intensity containa fwe characteristic functions, P(r) and b(r, h). This
makes it impossible to determine s parately these characteristic functions
Jrom the experimental curve of I(k). Equation 88 can serve only to prediot
intensities for certain models,
To proceed further it would probably be necessary to introduce thermo-
dynamic considerations, defining a potential energy of interparticle forces
not as & function ®(r) but rather as O(r, ¢), where at least one angular

- yariable is necessary, and then relating the functions P(r) and b(r, h) to

this potential.  This problem has not yet been undertaken.

Remarks
T eatablishing equation 88 we hsve allowed only the structum factom to uinlergo
rintions, so that s simple iterprotation can be given to this eqoation by applying

it b ow sty of erystinds sl pegleeting thermnl effects,
The thind term of squation 88 represents the intensity seattensd by the ssnple

amder fimpection, (0t s sappossd thit all the seattoring eontors am ilentionl, with

aenttoring Tnctors Fih), The fiest term varies only slowly with &, while the seemind
torm enn present antensity mnxima et will probabily be less shaep thin those
Cproated by the thind term, From this we eanosee the essentind role of the funetion
Br, B, n Tunetion thst is analogons to the Parterson shstedmtion fanetion fue vrywinl
structure aunlyses, 1L we weanwe that ench ol the three intensity ters eno be
:ﬁ'pll‘l!«l. all the information obitainable from expermmnts will be contuined in the
function bir, h).

Tin the wtady of eryatals (6 s often sesimed that the stracture fietors of differont
atonin ll follow thes e b, Fh), the msgnitudes Wepmanlingg o s costreiont sqgual
to the atomie nutiber 2 of the wtom considersd, 10 we assinw this to boe true, sl
tho formulan we have doveloped ean be conmiderably stmplitied, for 4he functions
Py ik py can be tronted ma being functions uniquely of the 2,
The function b(r, h) bocomes

bie.b) = bir, A) = F’{*i:&}‘zmdznllh(zal = plZy 2 1),

= Fih)e(r)
Tho final roault in then (Fournet [48])

TH) = LS Py 27 — B —J:;trimtl-ﬂl
+ I.tlli"(h}’»'l.‘.!j‘.m (h+ (R, ~ R} (89)
The function e(r) can always be caleulated from any given model. We have

ployed thia technique in the recaleulation of the scattering by a linear model of
alloy with partial short-range order, & model first studiod by Guinier and Griffoul
{1048).  We quickly obtained the sune resulta as those given by these authors.

~ Equation 88 can bo eanily used to obtain the intensitica soattered by more compli-

oated lels, This equation, s particular case of which has beon given by



GENERAL THEORY -

the

hmﬂwtlmk_ﬂh_wﬂlwﬂf “m
ohhinndhyml.::.{lﬂl_}m . g . : tu':“:
tati hict ¢ 2 A 1 :
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becomes identically zero. The > | -
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% amveel 2
the Laue equation is obtai
Pa Fie 7 e paFat + 9P = (pala + palal®
= papalFy — Fa*

TYPES OF
2.3. SCATTERING BY GROUPS COMPOSED OF SEV'ERAI-
PARTICLES : .
This problem is quite complicated, and th? few :lq‘:au:im: that can
derived have not yet been employed in experiment

2.3.1. GENERAL THEORY .
Simple caleulations, in every \l'ny.lnllngo.ul t‘.[o ‘m::l::;l .
developed in §2.2.1.4, give the fullowing relation for

(Fournet [48]):
1Ay = LMY {;" Pl

—_— = Ar
OO [ =1 "."l-m-dr} (90)
+ ;.}:hl‘:hl“’aul ;' 3 A [Pytr) | e
i rpe k;
where F,(A) designates the structure factor of the l‘“h:" of :;w p: 8 “‘p;
\bability that one of the N particles is of the l.\']t;' : L P
the pro |m-n:tl to each particle, regardiess of its types a‘nfl wlr l ¥
w',‘;:ll‘:il:w fune tion analogous to the function H-r] ‘::‘:-i;:m: :’ 2l
l:?tich lpl‘ili«l to & pair of particles of type & and j, 3
Pu(r) == P”'ll') .
i iated by comparing it wit
meral expression can best be appreciated by . )
::ti:nﬁ‘ 5‘; Th:::'pmiml applicable toan ensemble of identical particles.
ulzum the first terms wo obtain

m - "‘mi‘m
v
while from the sccond terma =
FA)' = I3pp, PN F,N)
]

g Fh)'P(r) = g;».p.ﬁ?ﬁr'.?ﬁr.m

L1} SMALL-ANGLE SCATTERING OF X.RAYS
By a simple substitution we now find

%Zmni‘_.b\_)ﬁﬁa? (r)

.f.jipm!':(_ﬁ'ﬂ‘;(hl

Py =

which demonstrates that in the general case a function equivalent to
P(r) but dependent on the single variable r does not exist.

It is equally impossible to obtain information by means of a Fourier
transformation. Equation 90 can be written in the form
I(h) i _— ] J’" sin Ar
=—3p P A) = SSpp, Fu W F (A — Pyr) —1] — 4nrdr
LN il (A) 502, LR o do (Petr)—1) =

The right side of the equation depends on the variable A oot only in the

term sin hr/hr but also in )‘,(_M anul F_,(_A} and this prevents 1he effective

application of & Fourier transformation, Resulta ean be obtained by thin

technique only if the assumption is made that Fi(h) = a f(h), that is,
that the functions #,(h) differ only by a constant factor, On making
this assumption, we find

) x e 'J."—-— sin Ar
— — YRS et — RS £ pix ’
TRy TN Zpa® = Y 133 e, o Jo PO = 1) = dmr dr
(1)
S ;;..‘ Pepaa, Py r)
‘with P(r) = = -
) (r) .:_.}p,p‘a.n’ (02)

—_—

from which the function P(r) can casily be obtained by means of a Fourier
transformation,

With the exception of this case, which itself would be hard to interpret,
it i difficult to use equation 90 without supplying some model,

202 WIDELY SEPARATED PARTICLES

~ When the concentration of seattering matter bocomes small equation 50
reduces to the following form:
1) = LN Sp 0 (93)

 which describes the total intensity as being given simply by the addition
of the intensitics scattered by each of the different types of particles, each
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each F,X(R) by the
weigh its reapoctive pmbabili.ty. On eq:n;-ing
sppm?:n:; law of Guinier (equation 38), equation 93 becomes

i AR,? ]
= LN ?"*"*'[" &
a SpmRat Pl (84)
- r.m‘\"[?t_p.n.‘l [‘ =3 e

total curve can still la- nmted by an
mxpomn“mi:n f\:.:t:nt::'.:h‘eh:luinivr approximation is valid for all of the
fndivi . icles, particularly those lhn.tmlhv.hm;t'.l Sl
oy PM" iots are rarcly satistied in practice, s, it
e o ler the ta‘iln of the scattering curves, The pri ..k‘
e ot m at large values of h for s hum;.:\wm:m p:l:tn“
pans “r.t il 5&1 surface S is given by the fuuﬂ.nm (2mpy S .‘jii“
“f ‘l““‘j“.\' & m“!l:l‘:'“::lm terms acting as dampeal lm-?“&l.““;‘i :::lm "
i?:“::l:‘:‘i(::? ;wa ARy, and sin ARy, u"lu}u; ': l.:.::;;‘h:‘ ;:::\;:‘::;I:Lttivlm o
“"‘ ey "‘“ﬁ‘:h‘. \:\-h::;n|lv‘:il.t::::\r:;:'r.‘ it i ‘\r\.-lu\l.tk* that flf s.mu "{‘i::.
d‘m‘““!‘ ‘l‘““‘“"'““f;:' sero. Iu faet, such oscillations have nev :I: i
et "rms::ttwin;z ﬂ:m‘e unless the particles o.f 1&-;:::1.;’ S
O‘ﬁ:::vu:u‘ifuml in size (Fig. 16). The asymplotic a
::mr\'ul. curve is then

- Lo (15)
W) = :,m-\'l;p.p.‘-\.! »

i aalidity of
) qthin the domain of validit)
t, for a given mg‘k: wil ' ! surface of
Thiltl'l(l':“o“; “:;a scaltered intensity is pfﬂwlwh:"f‘:r m eh.{lmnic
:;lcu;flnp OI.di.ﬂ'mcﬁnl particles if &l particles
S + separated
tl‘.ﬂml{\l\"s diseussion we have assumed that “-w tﬂ“:::w:“ §'-l':-3 we
In b :t|\' s that there were no interparticle inte ‘:‘am‘l\d e oy
.:m:; ::: that equation 83 is als valiel for the case ol
aha 3

o TICLES
233, INFLUENCE OF THE CLOSER PACKING oﬁ-’?m‘iulinn of
idently one can try to effect the came sort ¥ .[:!' the scattering
E‘: l.:‘{ﬂ)l as was done with equation o, ll;‘:' Hl;tm mi: % esealise {80
oAt ies of particle. The first step sy
i : iea of particle. Scuing
sspivs t;-) B;:nn:g::lp?(;m“ (Fournet [51), and Rushbrooke awd
thﬂ]l,'" w

- particles.  Short-dashed  curves corres
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(1851)) s0 as to allow the consideration of this

case. The general
- expression can be obtained in placing

= Qufr)
Pyir)=e e

Next the functions g(h) and f(A) are defined as
\

l L]
hay (k) = ﬁ J: -rf,,{r) sin hr dr

Ay th) = V_!.)_. J:: rle™ ®uRT _ 1) gin Ae de

These two functions are connected by the set of relations

oy ) = Spdont®) + aBrB)e B h)

where the ¢, designates a mean value of (falr) 4 1) near the origin,
r=20.

With the introduction of these functions, equation 90 becomes
o PR D)2 e——
Ih) = LN [ SPFA) + {—:}— 332 ENE Bgh) + 'u'u(ll]]
]

(98)
The scattered intensity then depends only on the functions F,(A) and
Py (h), since the g, (h) are expressible in terms of the Bialh). We have
given the complete expression for the intensity scattered by ensemblea of
two types of spherically symmetrio particles in another article (Fournet
[48]).  This complicated equation was applied to mixtures of homogeneous
apheres of the same matter but of radii R and 2R; the curves representing
the variation of scattered intensity as a function of angle are given in
Fig. 20. Two parameters were included in the calculation: k, the ratio
of the volume occupied by the particles to the total volume offered them;

and x, the ratio of the mass of smaller particles to the total mass of the

pond to k= 0.5, long-dashed
curves to k = 0125, and full-line curves to the case of infinitely separated
particles.

For each concentration, = per cent, the curves have been normalized
80 that the ordinate at k — 0 s equal to unity. The essential feature of
the curves is that for constant k, the intensity curves are more sharply
varying, the more homogeneous the mixture.

We believe that this statement is generally true; it is difficult to

conceive of & not too compact heterogeneous mixture manifesting a
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~ ressonable degree of order. In our model, the curve for k = 0.5 possessea
~ a maximum only if the mass of smaller particles represents more than 85
~ per cent or less than 25 per cent of the total mass,
. We must remark that this model was based on spherical particles, and

that consequently there wasa favorable opportunity for observing intensity
 maxima. In generalizing the conclusion drawn from a study of this
~ example, it thus would be a temptation to state: in @ mizture of non.
identical particles of arbitrary forms and with random distribution {no
Jong-range order) it is improbable that the packing of particles will lead to
Jarge changes in the scatlrring curces and that thus the laws for widely
geparated particles can furnish the orders of magnitude of the scatlering
Iiku(mtruﬂ.

" This idea is in agreement with the caleulations of Hosemaun [81],
(841, who showed that, for arbitrary particles and conveniently chosen
functions £,(r), the packing of the particles caused little change in the
distribution of scattered intensity.  We refer the reader to these works
for the details of the caleulations and results,
 Conelusions contrary to these have been given by Kratky and Porod
E!Oﬂl. {137), in considering the influence of packing on an ensemble of
heterogencous particles.  However, they considered uniquely a linear.
- model composeid of a series of parallel plates of different thicknesses
ituated at variahle distances from one another.  In the limiting case the
space is completely oveupied by the plates, causing the cent ral scattering
at observable angles to disappear entirely,  The packing of particles thus
ereates notable changes in the distribution of scattered intensity. We
believe that this is & vesult which depends on the linear character of

~ There are often substances which give rise to strong small-angle scatter-
that cannot be described as a group of well-defined particles arranged
a more or less close-packed fashion, This is true, for example, of
r which displuys submicroscopic porosity, such as activated carbon.
- physical characteristic that can accurately define these substances is
electronie density p(x) found at the point defined by the vector x.
intensity scattered by such a substance is then given by the general

2
1) = 1,0h) Ur plx)e-hex urx] 1)

¥ being the volume irradiated by the X-rays. It is well known that it is
10t possible to determine p(x) from tlu': experimental data. Indeed,
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low-angle scattering experiments made with different nnpleauhen &om
a given material give the same experimental curve. Thus it is obvious
that the central scattering depends on some statistical property of plx)
that defines the state of heterogeneity or porosity of the substance. .lt‘ is
particularly interesting to try to determine the general eh?nctmntlm
that are necessary for the production of an observable seattering at small
angles. When considered in this general form, the problem preseuts
special difficulties; we shall first discuss these difficultics a.ntl then present
the results of the attempts that have been made in this ficld.

24.1. LIMITING VALUE OF THE SCATTERED INTENSITY AT VERY
SMALL ANGLES

The property we shall try to caleulate is the “experimental” Iitnit of

the scattered intensity as the scattering angle tends to zero, that is, the

Iih) Ith) T(h)

T T L — L !

O R h % h
(a) s (c)
Fig. 21. (a) Sch t ion of a roal scattored intensity

intri s hasrvable intensity and its extrupolated value
:&uhn-.:“ l;.im(cl (:‘po“::h result for » mleglud intensity distribution.

intensity that can be obtained by extrapolation of the results of measure-
ments which, as will be seen later, cannot be extended to angles .smnller
than several minutes of aro, even with the most perfect experimental
')’ﬂ;::n us pecall some results of our discussion of an ensemble nl'.par(id.«.
The curve of the scattered intensity shows a very important singularity
in the neighborhood of A = 0, since for extremely nn:mll values of A the
amplitudes of the waves scattered by all the electrons in the scatterer add
together and the scattered intensity approachrs the value,

1(0) = 1,(0)n*N? (98)
. - f Fig.

The width of this central peak, defined by the parameter hq (see
21a), depends on the dimensions of the vol V explored by X-rays and

is smaller by several orders of magnitude than the minimum observable
angle.
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A correct calculation of the desired “limiting intensity™ should give a
formula which reproduces the real curves down to a value of A equal to Ay,
the experimental limit, and then, eliminating the central peak, remaina

practically independent of & (Fig. 21b) in the range between Ayand 0. This,

for example, is the result obtained in the calculations of §2.2.3.3, which
pertained to the particular case of an ensemble of particles contained in a
yolume Vg large with respect to the volume V of the scatterer explored
by the X.rays, The result of this caleulation gave

Ith > 0) = LOWYNE — NY) (72)

Frequently it can happen that, in trying to climinate the central peak,
a term will be discarded in the course of the ealeulation which wili bring
about a marked change in the curve, such as that depicted in Fig. 2le,
Such a formula does not give correctly the limiting value of the intensity
when & is made equal to zero. It can be quite correct for b > Ay, but it
will not be useful, since the intensity cannot be easily caloulated if A is
non-zero.

In the case of an ensemble of particles, the intensity I{0) for A =0 is
of the order of N3, while the limiting value should be of the order of
Nt — N? that is, of the order of N. (This limit is exact for the case of
ideally separated particles, viz,, equation 55.) Thus we see that in the
region of very small angles the limiting intensity, which will be expressed
a8 the difference between the exact expression for the intensity and another
term which must be made more definite, is of the order of 1/N times the

‘actual intensity. This order of magnitude indicates immediately the

rigor and exactness that must be maintained in all phases of the calculationa,
As an illustration of the effects of a slight inexactness, let us reconsider

the reasoning that we have developed in §2.2.1.3 and §2.2.1.4. We have

assumed that the volume Vg is lurge with respect to the volume ¥, If
we vary Vg (and thus Ny, the total number of particlea), keeping Voand
v, constant, equation 72 prediets a limiting intensity of zero when Vg = V3
this is then a good example of the type of curve represented in Fig. 2le.

In order to obtain a relation which will more accurately describe this

case, the manner in which the function P(r) was introduced must be

reviewed, noting specifically that the probability p,, dv, dv, is defined

by the relatien

N Ny—1
Pyy doy dvy = ITH dv, F.—_dv,, P(ry,) dv,
" L

The infinitesimal volume element, dv,, is always negligible as compared
“with Vg, but this cannot always be said for the comparison of unity with
respect to N, particularly when V and V4 are approrimately equal (and,
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thus, N and No). mmﬂumammmmmm
relation
o d -‘;."‘.ﬂ&..__lﬂru,
B oH = ne N
woudnumupwbnformmueimondty(ﬁ.aquﬁm&)
— = f== IN,—1[" sin hr "l 99

In the limit as A — 0, we then find

— N
L T
o0 N _‘\ No=13 (100)
v Ne—1 v

which givea as an expression for the limiting value of the observable

intensity (Fournet [48])
— N
I(h— 0) = L(O)n? [uv- -N)+ T

== .
= I,(0)a® [N' -N'4LN T"J (101)

NEi— N f N, so that, when V[V, is small
mfwtm(ﬂ'—-hlhol'thetmlrro G hen .
with respect to unity, equation 101 istoa first approximation equivalent
to our earlier result, equation 79. The advantage of equation 101 is that
& reasonable result is permitted in the case for which ¥V =V,

Iy oy (A 0) = LOWN

We can see by this example how appmsimltinnul which ;t l:ntl n:zl:lt
are quite logical ean completely upset the results of this type r:r eul uﬂ “;.
We have defined the limiting intensity by an oxqux:htmn ;wu hf. b
the ourve of Fig. 21b, but we have not yet determined \\k lhrt .
quantity has any physical meaning. We know, for examp h;t a k
actual curve has a shape which depends on the form of t saur:l:L .'l
whereas the limiting intensity should depend oul‘y on the .::mh ”
properties of the distribution of scattering r.:entors in th.e nn:};: .l Lo
not obvious that the operation of extrapolation as described shou "t i
to such a result. Inany event, we have not yet clearly defined a er:u e\: -
for the determination of the extrapolated part of the curve (part ' ;-hm
Fig. 215). Questions such as these form the ohstacles encountened e
an attempt is made to resolve the p:_ublelin of low-angle scattering
y the electronic density function. y -u N
l‘ll‘l\:lﬂ:“"::: ”:pptull'll, let us offer without real proot & qualitative
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treatment; then we shall present the solution given by Debye and Bueche
[322] and that of Porod [137] for a more particular case.

We want to calculate the scattered intensity for a value Ay near the

- minimum observable angle (for example, 20 = 1'). Let us divide the

irradiated volume ¥ into a series of M equal volumes, o, vy, * -0,

9\ 3
where each volume is of the onler of (;—") . (In the example chosen,
2

v, & lp? for Cu Kz radistion; this is still small with respect to the
volume V' which is of the order of | mm?, in ordinary experiments.)
The amplitude of the radiation seattered by the volume element v, is then
Ah). We shall assume that there will be negligible interference effects
among the waves scattered by the different volume elements when
h > hg: this hypothesis iy reasonable for the phase difference between
waves will always be much larger than 2z sinee the centers of the volumes
are separated by distances greater than 2mfh,.  Consequently a very
probable value for the total intensity is simply the sum of the elementary
intensities, J = S| A, |% In other words, the observed intensity is

L]
effectively M times the average intensity, scattered by an elemental
volume. This result is analogous to that wor the problem of a variable
number of particles, N, in a volume 1 (§2.230.3), except that the observed
intensity is determined by an average ov s spiee insted of an average
over time as N fluctuates in a constant volime F.

Thus by analogy we are led to the followvimg deseription of the limiting
observed seattered intensity. It is propoctional to the mean square
fluctuation in the number of electrons in the volume v, and will be zero
if the number of electrons in the different volumes v, is fixed.  1f p, is
the eleetronic density of the volume v, and 5 is the average density as
determined by all the volume elements, the observed seattered intensity
will be proportional to

y?
M1t — = Velp, — & (102)

The volumese, = V/M do not really intervene as such, since the mean
square fluctuation is inversely proportional to the volume v, but their
consideration is essential in determining the magnitude of the volume to
be used in the calculation of p,. ‘

Equation 102 shows that the limiting low-angle scatlering is a consequence
of the heterogeneities in the scattering medium, but it also allows for the
stipulation that this heterogeneity must exist on a scale of several tens
to several thousand angstroms if the scattesing is to be observable. Let
us give several examples of the application of this simple rule. The fact
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Mmmhfwmddmmimﬂo(bﬁngmmhmtsm
of low-angle scattering since the corresponding density fluctuations are
averaged out in & volume of the order of 1u®. A lattice with periodic
perturbations of density (for example, & period of the order of 50 A) is
heterogeneous, but it produces no small-angle scattering since the volume
v, contains a large number of periods, and hence the average density in
this volume is approximately constant.

A typieal case in offered by the Al-Ag alloy that will be studied furthe
in §6.4.3.1. The silver atoms assemble themselves into spherical clusters
while remaining on the sites of the solicd solution lattice.  Around these
clusters is loft a spherical shell lacking in silver. The shell diameter
ix of the order of 50 A, and a large pumber of these clusters are randomly
distributed throughout the solid solution.

his alloy gives & pattern of cont ral seattering containing a diffuse ring
whose radius corresponds to & Bragg distance of the order of 23 A, but
the scattered intensity decreases toward the center, and careful measurements
ghow that it approaches zero. 1f the small silver clusters exist in the
average solid solution without being accompanied by the shell-like
regions lacking in silver, only a normal central seattering is observed.
Jquation 102 furnishes the explanation of these facts.  In the first case
the cluster containg & number of excess atoms which is just the number of
atoms lacking in the shell-dike region. The volumes ¢, in which the
densities p; should be examined are large with respect to the cluster
dimensions; thus they contain the same number of silver atoms as they
would if the solition were homogeneous. Ou this scale there are no
clectronic density Huctuations and the intensity scattered at the cencer
should be zero.  If there is no spherical shell around these clusters, these
clusters will play the role of particles with an electronic density different
from that of the surrounding medium; if the clusters are distributed at
random in the solid solution and are not too closely packed, they give
rise to & contral seattering which is characteristic of their size.

242. CALCULATION OF THE SCATTERED INTENSITY AS A FUNCTION
OF pl(x) )
e shall now briefly present the solution of Debye and Bueche [322].
These authors define a function y(x) by means of the relation
plx) = po + (X
where p, designates the average density of the substance. We can then
write

favas
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By means of equation 97 we can immediately write the expression for the
; .
scattered intensity as (of. §2.1.1) o o
e

I(h) = 1,(h) L L [po + (X)) [po + nix,)le~M%=2) gy, dx,

Recogaizing the difficulties discussed i accoun

g tl previously, we shall take

of more rlf-tlmls in our calculation than was rlorwalr:y the original lutlmr:
We will divide the intensity expression into the four terms mrmpomliug‘

respectively to terms in p3, py,
R et b of Poli(Z). pon(X,), and y(x,)y(x,) and consider

First term:

by = 10pt [ [ e i,

We have already studied anale

¥ e yous terms (p. 34) and have seen
they mrfrnlum’tl to intensitics that are practically zero for all tllmr\" 'I‘Tt
angles, sinee 17 s the order of 1 mm3, ’ T

Second and third terma:  Since th i rims oom
: : 8 o secord and third te
conjugates, we can write - = o

I(h) + I4(h) = 2Re {I,mp. ‘: ylx,) rll,.‘. o= ln -w) ;fg'}
- V

I,b) + Iy(h) = 27,(A ncU - -
r fl 3 (A) ) n(xy)e =W dx, E por™ Y d:,l
Ihﬂf ure

It + Iym) < 20,00 | A,*(h) | -If e W* dx |
v
The first factor | 4,*(h) | ix the modulus of the amplitude from which

I(h) l!n derived,  As we shall see below, the second factor is just the
modulus of A h), the amplitude corvesponding to the fourth term.

Therefore I, and I, as well as I; are negligible as compared with 7,

Fourth term:
I,(h) = Phectic Lol
=10 [ , nmanceeavies=s an, ax,
Let us place x, = x, + 1. The above equation then transforms to
I(h) = Lk JLJ‘ %(Xy)1(X, - £)e™ " dx, dr
rdv
Let us considder first the integral with respect to x,,

J.vq(l}v)(x + r)dx
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'I‘Itlllnlqnldapandlu_niqmlyonr. For r =0, the value of the
integrdhpropoﬂimﬁlto?.thnmnulmdt}wmmohhdmﬁly
fluctuationa, since

L (@) n(x) dx =_L i) dx = gtV

Conforming to the notation of Debye and Bueche, let us define a
function y(r) by the relation

L E(E + 1) dx = EVy() (103)
The equation for I,(h) then takes the form
Ib) = l,mﬁ?l"'. ple)e™* de
L

This integral can undergu two mod fications:
1. For large £ there is no relation between the Huctuations of y(x) and

yix 4 1) the function p(r) thus temels to gero aa ¢ increases, The
integration over the domain ¥ can then be replaced by an integration over

an infinite region.
2. It van often be assumad that, in the region of vectora ¢ of amall

maguitude, the only domain in which p(r) is different from rero, the
properties of 3(r) depend ouly on the magnitwle r.
The final expression for the intensity is then

IRy = I (0 = L I'J.:-;-(r) '_“%?-' et dr (104)

This is the expression developed by Debye and Bueche to describe the
intensity scattered by the matter wndder examination.
Let us consider the limiting value of I(A) as A —0:

10) = I.(“)II_ L n(E)(E,) 4, 0,

=10 wm ax [ e i (104a)

The integral fn(x) dx is zero in a larg* volume on the average, but the
irregularity of the distribution of matter in the volume V irradiated by
X-rays gives it a value which fluctuates around zero. The two integrals
of equation 104a are taken over the same volume; the two factors are
thus not independent, and the average of the product is not the product
of the average of each factor. Therefore, although the average value of
each integral is zerv, the average value of 1(0) is nof zero, A caleulation
shows that the limiting value for the intensity scattered at zero-angle is

given by equation 102,
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243 MATTER OF UNIFORM
i . DENSITY AND RANDOM
Porod [137] studied a more i ; made
\ particular system, that sample

_:{p: ;:f alﬁulo]m distribution of matter of etmsum den:;r; The densit

() in the volume V of the sample can take only two v : A
¢ is the fucfinn of the volume occupied b_\-!;n‘:;t}e:.“t;; :?:ag: lndm& .
the sample is pe. In the parts occupied by matter 3 = p(1 tY?f
the empty regions 5 = —pe.  Therefore - ¢ TR

Wt = ple(l —¢)
Porod defines the distribution of i
: ; matter by a function, -2 3
' wms tlu: probability that a point in the volume at & tlinlm(lrl‘ “l!m’*l
& point nrw!md by matter is itsell also occupied. It is mumod?h:t “;Im
probability is a function only of the distance r (an isotropic sample) :n:

i tm there is no long-ran
hat t ge order, so that Z ¥
infinity. We can therefore put i e

Z(ry=¢+ (1 —¢)

(r) 108
‘where the function y(r), called the cha ati e
. ; v racterist 1
has the value unity when r is zero and appnm‘:mf::l:': :" l:l::m:n:‘?:}:

arge.  This is identical t i
i cal to the function Debye and Bueche introduced

Iq(thtt + 1) dx = Fy(r) (103)

In order to show this, let us fi i

_. A rst point out that Z'(r) = (1 —

.‘,mnita the probability that a point in the volum: lt a E‘Ilinu::e-t l':-t}::

_- n empty space (unoccupied) is itself also in

; B 3 empty space

\:;;\ Ye wr:l?(-.d easily by equating the two relations each n’;t;:'h:ch dmn‘ 1?.:

‘the probability of one point being occupied and the other unoccupied

; el — Z(r)) = (1 — ¢) (1 — Z'(r) '

Now in onder to caleulate the inte i i

: sgral in equation 103

up a table of probabilities for the different situation sz i

. s at points X and

Naturo of Points Value of
xandx ¢ ¢ yixiylx + )

Probability of Occurrence

pied Occupied pH1 — ) | eZ(r) = €% + (1 — c)p(r)

. tied  Empty =p'e(l —e) | el = Z(r)) = el —¢) (1 — p(r))
pty Occupiod =ple(l —¢) [ (L =c)(l = Z%(r)) = el — e}l = p{r))
¥ Empty plet (1 —e)Z'(r) = (1 —e)* + (1 — cppir)
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Now by earrying out the integration
%Iq{!}q{l-—!]dt = p¥%(l — e)yir)

whaoeqmtionmﬁhuhmnnd.itmnhmthuquﬁwlm:nd
106 define the sams function,
Thus the scattered intensity can be determined immediately from

equation 104,
10 = Lyt = [y S e (0D

This expression can be linked to the equation relative to a single particle,
equation 21. Let ua cousider & very dilute systenf of ilentical particles
of arbitrary orientations. The probability Z(r) is then approximately
equal to the function we have called the characteristic function of a
particle, yo(r) (see P 12), since by virtue of the dilution of the system
there is only a negligible chance of finding an vceupivd point outside of
the particular particle in which the origin point is chosen.  Then since
1—casl and ¢ is v Jigible, equation 106 gives p(r) = pylr). In
addition Ve is the total volume of particles, Nvg. Thercfore wquation
107 is equivalent to equations 21 and 53.

Mathematically, 7(A) is determined entirely by a knowledge of y(r).
Howcver, the caleulstion of p(r), very complex for an isulated particle,
is rarely possible for systems of particles of & given arrangement.  Con-
versely, the characteristic function of the sample can be determined from
the exprrimeutal measurement of I(h). This function yir) contains all
the information that can be obtained from the smallangle seattering
experiments, but unfortunately this function does not wive a direet image
of the structure and is quite far from defining it.  The effects of both the
form of the particles and their mutual arrangement are intermixed in
the single function y(r). Theories are discussed in §2.2.3 which have as
their object the separation of these two effects.

Nevertheless, several parameters having simple and precise inter-
pretations can be obtained from p(r), as was done fur the function of &
single particle.

y(r) is equal to unity when r is zero and tends asymptotically to zero
as r becomes large. It can take on negative values, greater than —¢/(1 —<)
while the function for an isolated particle is always positive.

1. The slope of the curve at the origin is

(:—:),_. =.1 I_ 3 (%)... -

80 BMALL.ANGLE BCATTERING OF X.-RAYS
The slope of Z(r) at r = 0 can be calculated for the ‘
complex system in
‘u::;uyn!'orthah::ludputiola. IfSinthumhhur!‘nmwof:::
matter contained in the volume V, the real vol being
- Ve, then from equation 24 T yid

(az 18
r),.g 4 Ve

(d_y) i 1 S 1
@)oo (1 -e)F'_aeu—c)a"

~where S, the specific surface, is the surface area per unit volume of the
‘sample. 'From this, following the reasoning leading to equation 26, the
_asymptotic behavior of the intensity curve is found as

2wptS
I ~ L) = (108)

The absolute value of the scattered intensit curve
y in the tail of the
dnpanda onlly on the total surface area of the matter in the sample. If
the object is made up of n identical particles of volume v and surface s,
the total free surface § is always approximately equal to na, whatever
| :::‘ :legreefof sggrw:,-lga:‘iun of the particles, provided that these are of some
i rary form and that they will not beco istorted i
il y nol me dis! . The intenaity

I(h) = I(hnp¥2ns/h)

It is equal to n times the average intensity scattered by one particle
shows t!ut at large angles interparticle interferences are negligible.
for particles of uniform size. It is therefore valid to apply equnioc:
o dense systems, This does not mean that the intensity curve at
.mglea will not be modified considerably by the action of particles
ng closer together, Let us point out also that the above argument
| not be valid for particles in the form of broad platelets parallel to
m!ht'r.. sinee the packing together of such particles can make the
it rflm disappear, decrensing the total surface and thus the acattered
n::_ryhl:_ty aflargu an}aunl. We have already mentioned (p. 70) that the
erferences for one-di i Y i
ety mensional systems is much larger than for

j 2. The t:'ea of the curve L y(r)dr can be calculated either from the
integ J: hlh) dh (see equation 29) or from the total energy E scattered
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30). Equation 107 gives
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section of length L, because by imposing the condition that the section L
starts from a point occupied by matter the chancas of finding an occupied
section are increased. This excess length is simply (1 —¢) {1./2)-

3. In the general case there is & normalization relation analogous to
equation 28,

‘['wm b = 23 (W)p*Ve(l — €) )
(]

4. The roles played by ¢ and (1 — ¢) in equation 107 are symmetric.
In addition the characteristic function y(r) is the same for an object and
for its complementary object (Fjg. 66, p. 192). Therefore the same
scattered intensity is found for two complemen:ary objects in the angular
region in which equation 107 is valid (§2.2.2.2).




3. EXPERIMENTAL EQUIPMENT

3.1, GENERAL CONSIDERATIONS

The object of an X-ray scattering experimenit, whether in the small.
angle region or in the usual domain of investigation, is the determination
of the variation of the intensity seattered by & sample as a function of the
weattering direetion, this diveetion in general being defined by two para-
meters, In the important particular case in which the seattering is
circularly symmetric about an axin coincident with the incident beam,
only one parameter, the meattering angle, is involved, and the object
of the experiment is simply the determination of the relative value of
I(h), with b — (47 sin 0)/a.

Experiments can also furnish & second guantity, lesa frequently
employed, which ix the sbsolute value of the seattering cocflivient, a.
Thix is defined by means of the relation, I = Tqo dm d8d, where T in the
power seattered by the particie of mass dm in the solidd angle d wid Iy
is the intensity of the incident beam striking the sample,  The samp e ia
assumed to be small enough to be non-absorbing.

3.1.1. OPERATIONAL PRINCIPLES

The method employed to realize the objectives discussed above is not
different in prineiple from that used in all experiments in Xoray crystal.
lography. Special difficultics are encountered, however, in investigating
the seattering at very small angles,

1. Geometrical Definition cf the I ncident Beam. Following the notation
of Fig. 22, let AT be the portion of the sample which is irradiated. Fach
point of the sample will receive & beam of rays whose divergencs depends
on the constitution of the incident beam. Rays will converge at the puoint
of observation P which have been scattered by each of the points of the
sample through angles varying in an interval 2d0 about & mean value,
20. Theinterval d0 is practically incependent of 0, so that good definition
of the scattering angle in relative value is more difficult to obtain, the
closer a scattering angle of zero is approached,

Furthermore, there will always be an angular region inaceessible to
experiment; this is the rogion between N and N7 of Fig. 22, in which
the scattered radiation received at any point is completely overshadowed
by the much greater intensity of the direct beam at this point, Thus, to
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ipvuﬁgtl_amtteﬁngumdlmglu.ithwtomhﬂlh
eross section and the divergence of the primary beam, the restriction being
grenh‘r.-.'.he smaller the limiting angle of observation that is desired. As
& result, lhehhew employed are much less intenso than those used in
ordinary techniques, so that a determination of the best geometrical
‘conditions is essential, -4

P
D__
v
N“‘T b
a
s s '
(.}
0, o4

1

plane
Fig. 22, Blit system for a small.angle scattering apparatus.

9. Parasilic Scattering. The measurement of the intensity received at
the point of observation is a correct measure of the intensity scattered by
the sample only if there is no parasitio scattering. The term parasitio
seattering refers to the radiation reccived at the point of observation
when the sample is withdrawn from the beam. If a Geiger counter or
jonization chamber is employed as a detector, the parasitic scattering
can easily be subtracted from the observed scattering to give the corrected
value, but this procedure is acceptable only if the correction is amall. If
photographic detection is employed, it is very difficult t> make the
I‘e;urmct ion by the above procedure,  The reduction of the parasitic scatlering
:f_-l thus the second important requirement, and here again the suppression
is more difficult, the smaller the angles at which scattering ia to be
observed,

Thus we can say that the quality of a small-angle scattering apparatus

s characterized by the power of the beam for a given fineness of dimensions

and by the angle beyond which all parasitic scattering is eliminated.
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l.h: primary radiation, We shall consider successively equipment v‘ilhont
and with monochromatization, showing the different domains of
application of each.

3.1.2. INFLUENCE OF THE MONOCHROMATIZATION OF THE
PRIMARY RADIATION "

Use may be made of cither filtered or erystal mof\ochmmlted radiation,
depending on the nature of the sample to be studied. e G

1. The total radistion from the anode, with the uuu.al lilt:mng to -
the K, may be used in a study of low-angle crystalline M:clmn e letai“
that arc analogous to the usual high-angle phenomena, differing ot:n Lin
that the effective lattice spacings are very large. These patterns co

linies, spots, or rings at well-detined angles, aud the corresponding intens

sitica aro considerably larger than those .t. il.lll.'l'lut‘di&le :“m:‘:ru::q :::
patterns,  Thus, as with ordinary diffraction patterns, the i : :
effects due to the characteristic ratl'mli(lm emerge from the wnlfnuz:‘
background of diffraction and scattering caused by ‘t‘!w u;':t:::.im
spectrum.  Often the primary objective of um:h a study is tn' e s
the position of the lines or spote. and litn ti:;:;e circumstances even a

iti tering may be tolerated.
m;.“fi‘hp::;:::i::a;m "‘:the{tudy of continu?uu mltering of t:"en:.’:;:
that has been described in the first part .ol' this book. Th:con :M‘i“
seattering is often extremely weak and is l;uperpoued run h: @ sca‘h‘ uhg
of various other origing, such as the inactive .pnrlfn of t . u?m]m Ko
golvent, for example, when the smltg-riu;.g of part l.t'll't.l in s\.)lut ion urs ‘.[,]‘.n;
Given the actual state of the lhv:r_\'i‘ it ::.tm‘;;;l}al in this type of pro

i y ion of the function .

" ll:.‘i?e:ul;'“‘:t:l‘:‘:tll::t;::‘:-:‘:t:in cases the influence of tlte' continuous
spectrum may be considerable, since, in addit im.| to the intnsity [ (:tlr(:uw
to the principal radiation of wavelength 4, one will also observe a scattering

of the form J" (5_; ") ks

ia the distribution function of the energy in the continuous
:;;::ﬂ:] The effect of all the eonlin.no.u.u npe.d.r.um can thus b;t:":;
with respect to that of the characteristic rl.dutmn E‘l:,ﬁ;:ie P
several authors have proved that an inveuhga.tm.unnotr ;
from all objection without the use of nmmwhnllm‘atm.ﬂl r:‘t ::::1'..&“0“’
When Geiger-counter detection is used, the Ellfl}lllltmrl::ck t s
spectrum by the double filter method of Ross (Kirkpatrick (1939)
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sufficient, but this method is not easily applied with photographie
techniques. The most practical and the most general method of pro-
ducing monochromatio radiation involves the use of & erystal mono-
chromator. Since the use of a monochromator profoundly modifies the
geometry of the equipment, wo shall study separately the system with
collimation, designed for studies of erystalline diffeaction, and the nystem

with monochromatization, espeeinlly adapted to the study of the continuous
seattering,

32. SYSTEMS EQUIPPED WITH COLLIMATORS

The heam (sce Fig, 22) is defined by two apertures, 0, and 0y, separated
by a distance v, which are placed before o souree of radiation Inrge enough
to illuminnte the entive apening.  As the ediges of Oy are touched by the
direct beam, they are sources of seattered nnd diffenoted radintion. Thus
it is necessary to proteet the plane of olservation by inteacducing n thind
aperture, Oy, at a distanco e from Oy, whose edyes elosely approach but do
nol touch the incident beam.  Apertures Oy and Oy then define the region
DD’ which is not exempt from parasitic seattering, The sample is placed
after 0y, as close to it as the supports will permit.  The sample nud the
opening 0, are thus at approximately the same distance from the plane
of olservation; this distance is denoted by s,

We want to determine the form and dimensions to give to the various
apertures in order to obtain the “best results" for our measurements.
We must first specify the known quantities of the problem and the eriterion

+of quality to be required. This cannot be done until the nature of the
pattern given by the sample has been specified.

3.2.1. COLLIMATOR FORMED BY TWO SLITS

Let us consider the simple problem of the study of the equatorial line
of a crystalline “fiber pattern.” OQur attention is thus devoted to
diffraction effects in only one dimension. The collimator openings can
then be infinitely long slits parallel to the “fiber axis” (perpendicular to
the plane of Fig. 22), and the diffraction spots will appear as lines. We
shall impose the following conditions:

L. Let us define the angular uncertainty of the pattern as the variation
in scattering angle of the rays arriving at a point Pin the plane of observa-
tion. Such raysscattered from an incicent ray M 1 R are scattered through
an angle equal as a first approximation to PR/s, whatever the position
of the diffracting point M, on the sample. Thus the maximum variation
of the scattering angle, 240, for the group of ruys converging at P (the
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angular uncertainty of the pattern), is measured by the quantity,
A = af#, where @ is the width of the primary beam in the plane of ohmr\"a.
tion, and a is the sample-to-film distance. The largest lattice spacing
which can give rise to & line distinet from the direct beam will then be

A = 1!-4

2, The scattering angle inside of which parasitiv radiation is fnu{u! in
BJ2 = bj2s, whero b is the width of the part DY of the film receiving
seattoied radiation in the absence of a sample.  The upper limit of the
lattice spacings which will register outside of all parasitic wattvriu‘g !.n
then d'max = 24/B. Obviously B is larger than A, and usually it is
larger than 24, so that d'yax << dax-

3. Bither Geiger-Milllor counters or - photographic plates may be
employed s detectors, but the conditions that apply to ml-l.\ are lll.ﬂ.t'n'llt.

(i) 16w Geiger-Miiller counter is wsd, it must be cquippel m‘Ih an
entrance slit so that the divergence of the rays seattered by a point on
the sample that enter the counter is fixed and clearly less t.lum ENEN
for example), If this condition is satisfied, it is possible. at lf-aat
theoretically, to correct the observed pattern for the effect of the width
of the direet beam (see §3.4). ) .

Yor a given angular uncertainty, 4, the counter alit width is proportional
to s, Sinve, for constant A, & can be arbitrarily chosen without affecting
the mensured power, it is then advantageous to employ a e value of
so that the counter slit can be more casily constructed.  The ouly
restriction is that s must be less than a limiting value, &, determined by
the mechanical conditions and obstructions. .

(i) The limitations of the photographic method arise from ih‘e.gnu\
gize of the film, which is always rather large for emulsions sensitive to
X.rays. X-ray patterns cannot be usefully enlarged by a factor of 10,
The 'mmh'ing power of these films is of the order of a hundredth of a
millimeter; thus the exploring slit of the microphotometer sl I Iulwe
a width of this order of magnitude, e Consequently the sample-to-tilm
distance & has & lower limit, s,. such that efx, is clearly smaller than A
(for example, /10, as suggested in the preceding case). )

4. The study of very small angles necessitates the use of beams which
are very narrow and, consequently, of low power. It is essential for the
success of the experiment that the system be found which allows the most

powerful beam, while satisfying the geometrical eonditions previously
enumerated. Specifically, it is necessary to try to maximize the I}llﬂll‘ﬂ‘r
of photons received by a counter placed at the center of a diffraction line
or to maximize the blackening of this line on a film. The maost desirable
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form for a sample is that of a small plate intercepting the entire beam,
the thicknesa being chosen in accordance with ita absorption coefficient.
(It is well known that the optimum thickness is that for which the ratio
of the transm tted to incident intensity is the factor, 1/e as 1/3.) Now,
for simplicity let us assume that the point of observation is in a region of
the pattern in which the varintion of intensity with angle is very small,
as, for example, in the conter of a rather wide diffenction line,  Then, for
s given slit width, the intensity of the radistion entering the counter will
be proportionsl to the total power of the primary beam incident on the
gample per unit collimator slit height, 7. When photographio detection
iz employed, the blackening at the same point will be proportional to
L[ (we are consi lering one-dimensional difiraction effects, so the factor

Ha vanther than 1/s? intervenes).  These are the factors that must be maxi
wmized respectively in the consteuction of the collimator when the detector
i n Gieiger counter or aphotographic film,

Bolduan and Bear [205], in an analogous caleulation, chose a eriterion
“which seems to us to be on a less general level; they maximized not the
~total poncer of the incident heam but rather the intensity of the radiation
atriking the plane of observation at the eenter of the direet beam.  Their
~ eonclusions are clearly different from those we shall draw. This shows
~ that, if in a given experimental problem some of our assumptions are not
watinfied, it will be necessary to discard our conclusions and to make an
“analogous ealeulation with appropriately moditied factors,

8. The source of Xorays is assumed to be an Xeray tube with a
rectangular foeal spot of large length and of width 1, s0 oriented that the
g dimensions of the foeal spot and the slits are parallel.  The emerging
ays make an angle, ¢, with the plane of the target.  If the power per unit
area delivered to the target by the incident electrons is &2, the intensity
the emitted Xorays will be proportional to Pfa, if « is larger than a
iting value, ag, of the order of 17 or 27 (Bolduan and Bear [205]), We
hall fix o at this optimum value, &y, and we shall place the fiest slit of the
ollimator close to the foeal spot; the width, p, of the slit 0, i then
stermined as the projection of the focal spot, lag.

Let r be the width of the sceond slit, 0, which is placed at a distance
from 0y, The power of the beam defined by the collimator 0,0, will
be proportional to

P r P

oy v L

The third slit, Oy, of width g, is placed at a distance w from 0,. Let
U8 recall that the ratio afs has been denoted by A and the ratio bfs by B.
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SUBJECT INDEX

Absolute measurements, 121
Adsorption methoda, 161
199

Albumin, 105, 169
Alloys, Al-Ag, 75, 168, 108, 203, 208

Al-Cu, 211
Alumina, 193
Angular unvertainty, Ltd
Approximation for tail of low-angle scat-

tering curve, 67, 80, ns

Argon, 48, 58, 50

Rabinet’s theorem, 38
Beam stops, 141, 124

for ahsolute measurements, 121
Drags's Inw, use of, 148

Carbon black, 103, 188
Catalysts, 192
Collulose, 177, 179, 180, 181, 183
Characteristic function, isolated particle,
12
system of particles, .78
Charcosl, activated, 191
Chrysotile, 105, 184
Coiled chain molecules, 177
Cold-worked metals, 193
Collagen, 184
Colliwntors, 86
optimum, 89
with circular apertures, 91
with rectangular apertures, 11
with slits of infinite height, 86
Colloidal solutions, 194
Complementary cbjects, 38, 81
Compressibili'y, 47,213
Compton scattering, 5
Correction, beam height, beam of finite
height, 118
beam of infinite height, 114, 118
beam width, 112
Counter, Geiger-Maller, 85,87,80,93, 1121
proportionsl, 96

Crystals, 52
Cylhdﬂ.wﬂ.ﬂ

Debye-Scherrer lines, 163, 198
Debye's model (see Spheres, hard)
Dise, homogeneous, 21, 23
Distance of heterogencity, 81, 158

Fgg yolk, 103, 176

Flectron microsoupe, 161

Ellipsoid, homogeneous, 19, 26, 169
Elligeoids, distribution of sizes, 154
Fquation of state, 42, 46

Exponential approximation, 25, 7, 0,
114, 128

Fibers, 177, 185

Filters, balanced (Iloss), 85, 95

Flocculation, 144

Fluisks (sre Particles)

Fluids, theories of, 41, 45

Form factor, 3

Fourier transiormations, &, 18, 18, 57,
206

Globulin, 169
Gold, colloidal, 162
Guinier's law (se Exponential approxi-

mation)

Helium, liquid, 214

Hemocyanine, 105, 174

Hemoglobin, 104, 105, 130, 137, 144, 170,
171, 173, 178

Heterogeneous matter, 70

High polymers, 176

Hypotheses Hh and Hy, 30, 60

Inertial distance, 30
Inhomogencity, range of, 158
Jonization chamber, 13

A-point, 214

Latex, 131, 162
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Laue scattering, 65

Wi value, sero-angle intensity, 48,
1

Macromolecules, solutions of, 167
Maximum in diffraction patterns of fiuids,
50, 140, 147, IT1
Metals, cold-worked, 195
Microeavitics in metals, 196, 213
Molecules, 167
coiled chain, 177
Monochromatie source, Al Ka, ™
Monochromatization by total refleption,
15, 108 |
Monochromators, 0
bent erystal, 100
plane erystal, 06
Fankuchen cut, 97
point focusing, 104
two crystal, bent, 102
plane, 109
Multiple scattering, 5

Naphthalene black, 150
Nickel, catalytic, 102
Nylon, 183

Paracrystal, 143
Parasitic scattering, 84, 87
Particle, centrosymmetric, 6, 8
fixed, 5, 28
moving, T, 24
spherical, 10, 28
Particles, identical and densely packed,
experiment, 135
theory, 33, 40
identical and widely separated, exper-
iment, 126
theory, 35
in a homogeneous medium, 40
mixtures of several types, 65, 149
oriented, experiment, 134
theory, 24, 60

Photographic detectioq
Polyamides, 185 .o

Polyethylens, 183
Polymers, high, 176
Potential energy, interparticls, 41
Probability function P(r), 40, 148
Proteins, 167

Radius of gyration, 24, 26, 1
167, 169, 189 6,127, 130, 148,
Rayon, 183
Reciprieity principle, 38
Red ev le, 105 .
Rod, hotiogrncoun, 20, 23

Seattering, Thomson, 6

Secondary maxima, 54, 130

Bilk, 186

Silver, colloidal, 162

Slits, construction, 120
seattering fron., 120

Soap, 175

Solid solutions, equilibrium, 197
upersaturated, 199

Specific purface, 150, 188, 194

Sphere, homogencous, 19, 20

Spheres, distribution of sizes, 134

hard, 43, 54, 58, 50, 137
mixtures of different sizes, 68

Stacking faults, 202, 210

Statistiosl distribution of particles, 151

Superposition prineiple, 42, 45

Surface area, internal, 80

particle, 13, 67

Total reflection, 95, 108
Total resttered energy, 18, 81, 110, 158

Vacuum chambers, 123
Virus molecules, 170, 172, 175, 184
Viscose, 170, 182

Zones, Guinier-Preston, 201, 204, m



