Chapter 3

The Zimm model

3.1 Hydrodynamic interactions in a Gaussian chain

In the previous chapter we have focused on the Rouse chaiohglves a good
description of the dynamics of unentangleahcentratedoolymer solutions and
melts. We will now add hydrodynamic interactions betweenlibads of a Gaus-
sian chain. This so-called Zimm chain, gives a good desoripif the dynamics
of unentanglediilute polymer solutions.

The equations describing hydrodynamic interactions betwleeads, up to
lowest order in the bead separations, are given by

N
i j; j J
_ R L
b= ema W= gme, (RIRI). (3.2)

Herev; is the velocity of bead, Fj the force exerted by the fluid on beads the
solvent viscositya the radius of a bead, arﬁij = Rij/Rij, whereRj; = Rj — R
is the vector from the position of begdo the position of bead A derivation can
be found in Appendix A of this chapter.

In Eq. (3.1), the mobility tensorg relate the bead velocities to the hydro-
dynamic forces acting on the beads. Of course there are ats®vative forces
—[0Ok® acting on the beads because they are connected by sprindgise Smolu-
chowski time scale, we assume that the conservative fore&s the beads move
with constant velocitiesy. This amounts to saying that the force&l® are ex-
actly balanced by the hydrodynamic forces acting on the kadn Appendix
B we describe the Smoluchowski equation for the beads in arZaiain. The

35



3. THE ZIMM MODEL

Langevin equations corresponding to this Smoluchowskagqn are

<fj (t)> =0 (3.4)
(fiOfk(t)) = 2keTHyS(t—t). (3.5)

The reader can easily check that these reduce to the egsiationotion of the
Rouse chain when hydrodynamic interactions are neglected.

The particular form of the mobility tensor Eq. (3.2) (the @s¢ensor) has the
fortunate property

Zﬂk “Hjx =0, (3.6)

which greatly simplifies Eq. (3.3).

3.2 Normal modes and Zimm relaxation times

If we introduce the mobility tensors Eq. (3.2) into the Lavigeequations (3.3)
- (3.5), we are left with a completely intractable set of dgues. One way out
of this is by noting that in equilibrium, on average, the niibpitensor will be

proportional to the unit tensor. A simple calculation yeeld

_ 1 1 — A A
<l1jk>eq = 8ms<R—ﬂ<>eq<l+<Rijjk>eq)

- el
6MMs \ Rk / ¢q

1
1 6 2 _
= . | 3.7
6rmsb <T[|J—k|> G-

The next step is to write down the equations of motion of thad®amodes, using
Egs. (2.35) and (2.37):

dX N 3kgT , . qrt
e o
(Fpt)) = O (3.9)
(Fp(t)Fq(t")) = kBTN”—_‘fll_é(t—t’), (3.10)
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3. THE ZIMM MODEL

where

2 NN 4 6 \? pt 1 gt . 1
Mpq——NJrlj;kZOE;me (Tt\j—k\) cos{—Nle(JJré)} cos{N+1(k+ é)}.

(3.11)

Eq. (3.8) is still not tractable. It turns out however (segApdix C for a proof)
that for largeN approximately

N+1

1
21
Hpg = <F3p) nj){%oq- (3.12)

Introducing this result in Eg. (3.8), we see that the Rousdenpjust like with
the Rouse chain, constitute a set of decoupled coordinfthe @imm chain:

P _ _T_lpxp+pp (3.13)
(Fo(t)) = 0 (3.149)
(Fp(t)Fg(t)) = kBTNu—_Til_épqé(t—t'), (3.15)

where the first term on the right hand side of Eq. (3.13) eqzetls whenp = 0,
and otherwise, fop < N,

3
3msb® /N+1)\2
Tp~ T <3T[p) : (3.16)

Egs. (3.13) - (3.15) lead to the same exponential decay aidh@al mode auto-
correlations as in the case of the Rouse chain,

(Xp(t)-Xp(0)) = (X3) exp(—t/Tp), (3.17)

but with a different distribution of relaxation timeas. Notably, the relaxation

time of the slowest modgy = 1, scales adl? instead ofN2. The amplitudes of
the normal modes, however, are the same as in the case of tise Rloain,

o (N+1)b? 1
This is because both the Rouse and Zimm chains are based @artte static
model (the Gaussian chain), and only differ in the detailtheffriction, i.e. they
only differ in their kinetics.
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3. THE ZIMM MODEL

3.3 Dynamic properties of a Zimm chain

The diffusion coefficient of (the centre-of-mass of) a Zimhaim can easily be
calculated from Eqgs. (3.13) - (3.15). The result is

keT Hoo kT

De = = N+1_6T|T]sb\/7 N+1)2 Z)koh
61 My 1 8kT /6
Gnnsb\/;Nz/ dJ/O dk|j_k|%_§6msb - G119

The diffusion coefficient now scales witti-/2, in agreement with experiments
on dilute polymer solutions.

The similarities between the Zimm chain and the Rouse chaable us to
quickly calculate various other dynamic properties. Fargle, the time corre-
lation function of the end-to-end vector is given by Eq. 8,%ut now with the
relaxation timegp given by Eq. (3.16). Similarly, the segmental motion can be
found from Eq. (2.55), and the shear relaxation modulusl{eikeg the solvent
contribution) from Eqg. (2.79). Hence, for dilute polymedgmns, the Zimm
model predicts an intrinsic viscosity given by

N—nNs  NaksT N Tp  Nay [
= = P A on
=" ~ Mns 2 W

(N-l—l)bzf N 1

=, (3.20)
2w | 2l

wherep is the polymer concentration amd is the mol mass of the polymer. The
intrinsic viscosity scales witlhN1/2 (remember thaM O N), again in agreement
with experiments on dilute polymer solutions.

Problems

3-1. Proof the last step in Eq. (3.7) [Hint: the Zimm chain is a Gaaus chain].
3-2. Check Eq. (3.18) explicitly from Egs. (3.12) and (3.16) agcbting that

0= % (Xp(t) - Xp(t)) = —T—Zp (Xp(t) - Xp(t)) +2(Fp(t) - Xp(t))

in equilibrium, where the last term is equal to
t 0
2 / dr e /T (Fo(t) - Fp(1)) = / dr e T/ (Fp(t) - F (1))
0 —o00

3-3. Proof the first step in Eq. (3.19). [Hint: remember that theteeof-mass is
given byXg].
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3. THE ZIMM MODEL

Appendix A: Derivation of hydrodynamic interactions
in a suspension of spheres

In Appendix A of chapter 2 we calculated the flow field in thevgoit around a
singleslowly moving sphere. When more than one sphere is presém system,
this flow field will be felt by the other spheres. As a resulsiiepheres experience
a force which is said to result from hydrodynamic interacsiovith the original
sphere.

We will assume that at each time the fluid flow field can be tabatea steady
state flow field. This is true for very slow flows, where chanigegositions and
velocities of the spheres take place over much larger tirmkesdhan the time it
takes for the fluid flow field to react to such changes. The hyglmtamic problem
then is to find a flow field satisfying the stationary Stokesagiquns,

ns?v = 0OP (A1)

O.v = 0, (A.Z)
together with the boundary conditions

V(Ri+a)=v; i, (A.3)

whereR; is the position vector and is the velocity vector of théth sphere, and
ais any vector of lengtla. If the spheres are very far apart we may approximately
consider any one of them to be alone in the fluid. The flow fieldhén just the
sum of all flow fields emanating from the different spheres

v(r) =3 v —Ry), (A.4)
where, according to Eq. (A.13),
Hr-R(-R)w s 1 . #9)

We shall now calculate the correction to this flow field, whislof lowest order
in the sphere separation.

We shall first discuss the situation for only two spheres mfthid. In the
neighbourhood of sphere one the velocity field may be writen

3a |iv 4+ (r - RZ) (r - RZ) v :| , (AG)

VO R .
v(r) =i (r =R+ =g r—Ra| T =Rs| 2
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3. THE ZIMM MODEL

where we have approximateéo)(r —R») to terms of orden/ |[r —R2|. On the
surface of sphere one we approximate this further by

V(R1—|— a) = V:(LO)( ) + % (Vz + R21R21 V2) (A.7)
whereR21 = (R2 — R1)/|R2—Ry|. Becausa/(lo)(a) = V1, we notice that this
result is not consistent with the boundary conditigiR; + a) = v1. In order to
satisfy this boundary condition we subtract from our resati far, a solution of
Egs. (A.1) and (A.2) which goes to zero at infinity, and whightbe surface
of sphere one corrects for the second term in Eq. (A.7). The field in the
neighbourhood of sphere one then reads

3a a?
corr
= 1
O = e [ —R1>2]
COr a2
+(r—R1)((r —Ry) [1— 7}
(r=Ro((r=Ry) r>4|r—R1| (r—Ry)?
3a
R0 (V2+R21R21- V) (A-8)
3a
Vil = vi— ARot (V2+R21R21-V2) . (A.9)

The flow field in the neighbourhood of sphere two is treatedlanty.

We notice that the correction that we have applied to the fleld fn order to
satisfy the boundary conditions at the surface of spherdésookordera/Ry;. Its
strength in the neighbourhood of sphere two is then of ofdéR,1)?, and need
therefore not be taken into account when the flow field is aathfut the boundary
conditions at sphere two.

The flow field around sphere one is now given by Egs. (A.8) an8)(AThe
last term in Eq. (A.8) does not contribute to the stress teftbe gradient of a
constant field is zero). The force exerted by the fluid on splee then equals
—6rmsavi®". A similar result holds for sphere two. In full we have

3a
F1 = —6msavi+ Gmsa (| + R21R21) (A.10)

3
F, = —6T[I']saV2+6T[ﬂsa4R (| + R21R21) V1, (A.11)
21

wherel is the three-dimensional unit tensor. Inverting these egus, retaining
only terms up to ordea/Ry;, we get

1 1 — A A
=— Fi1— | +R21R21) - F A.12
Vi 6mea 1 8MRa ( +R21 21) 2 ( )
1 1 — A A
Vo = — Fo— <| + R21R21) -F1 (A.13)

6rmsa 8mMsR21
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3. THE ZIMM MODEL

When more than two spheres are present in the fluid, correctiesulting
from n-body interactionsr( > 3) are of ordera/R;j)? or higher and need not be
taken into account. The above treatment therefore genesaio

N _
Fi = —) &V (A.14)
! j; ij- vl

N

vio = =) Wj-Fj, (A.15)
! j; [

where
2 = > 3a — ~ =
{i = 6msal, Zij=—6msa4—R”(|+Rinij) (A.16)
A A — (I +RijRi)) (A.17)
Wi = 6msa ’ u”_BT[ﬂsRij e '

Ej is generally called the mobility tensor. The specific form E417) is known
as the Oseen tensor.

Appendix B: Smoluchowski equation for the Zimm
chain

For sake of completeness, we will describe the Smoluchoeglation for the
beads in a Zimm chain. The equation is similar to, but a géimechversion of,
the Smoluchowski equation for a single bead treated in Agpe® of chapter 2.
Let W(Ry,...,Rn;t) be the probability density of finding beads Q,N near
Ro,...,Rn at timet. The equation of particle conservation can be written as

oW N

—=-5 03, (B.1)

x = 2,
wherelJ; is the flux of beadg. This flux may be written as

J; Z—Zﬁjk'ukw_Zﬁjk'(Dkq))w- (B.2)
The firstterm in Eq. (B.2) is the flux due to the random disptaeets of all beads,
which results in a flux along the negative gradient of the plolity density. The
second term results from the force€l® felt by all the beads. On the Smolu-
chowski time scale, these forces make the beads move witartrvelocitiesy,

i.e., the forces-Oy® are exactly balanced by the hydrodynamic forces acting on

41



3. THE ZIMM MODEL

the bead%. Introducing these forces into Eq. (A.15), we find the systeopart
of the velocity of bead:

vj = _Zﬁjk'(ukq))- (B.3)

Multiplying this by W, we obtain the systematic part of the flux of partigle

At equilibrium, each fluxJ; must be zero and the distribution must be equal to
the Boltzmann distributioeq = Cexp[—B®]. Using this in Eq. (B.2) it follows
that

Bjk = kBTl_ljk' (B.4)

which is a generalization of the Einstein equation.
Combining Egs. (B.1), (B.2), and (B.4) we find the Smoluchkivegjuation
for the beads in a Zimm chain:

6‘P
= ZDJ u]k (OkP+keTOkINW) W (B.5)

Using techniques similar to those used in Appendix B of okiadtit can be shown
that the Langevin Egs. (3.3) - (3.5) are equivalent to theval®moluchowski
equation.

Appendix C: Derivation of Eq. (3.12)

In order to derive Eqg. (3.12) we write
_ ii\/ENCOS ﬂ(+}) X
Hpg = N+ 16msb T[-i N-i—lJ 2
J 17 1
coe Tk 3] L
2 [N+1 2') /I
B 2 6 prt . 1 qu . 1
- N+16msb\/;j;C°S[N+1“+2)} COS{NH(HA X
()
Z coS| —— | ——
k=]—N N+1 |k|
2 10 . gt .. 1
N+16T[nsb\/72) [N-l—l 2)}S'n[N+1(J+2)}X

L/ gk 1
Z sm(N—H) m (C.1)

k=]—N
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3. THE ZIMM MODEL

Figure 3.1: Contour for integration in

the complex plane, Eq. (C.4). Part | is
a line along the real axis from= 0 to

x =R, part Il is a semicircle = Re?, I Il
where@ € ]0,1/4], and part Ill is the
diagonal linez = (1+i)x, wherex

J0,R/V2].

4
¥

We now approximate
j ®
grk ) 1 / ( grk ) 1
CoS| —— | — =~ dk cos| —— | ——
k_JZ_N <N+1 . /|k| o N+1/ /K|

% 2
qrx 2(N+1)
_ 4/ d - C.2
5 xcos<N+1) J (C.2)

j o
3 sin< q"k)i ~ / dksin( q"k)i:o. (C.3)
=N N+1 ‘k‘ —o N+1 ‘k‘

The result of Eq. (C.3) is obvious because the integrand mdainfunction ofk.
The last equality in Eq. (C.2) can be found by consideringcivaplex function
f(2) = exp(iaZ) for any positive real numbex on the contour given in Fig. 3.1.
Becausef (z) is analytic (without singularities) on all points on and it the
contour, the contour integral df(z) must be zero. We now write

0 = ?{dzeiazzz/ dzeiazz-i-/ dzeiazz-i-/ dz 3%
0) (i) ()

R /4 0 o

_ / dx 62 4 / dpiRdPHARE? L [ gy (1 4 j)galHi?
0 0 R/v2

R/V2

dx e—2ax2

(C.4)

R . /4 . .
_ / dxeuax2+/ d¢iRé¢+laRZCOSZP—aRZS|HZP_(1+i>/
0 0 0

Taking the limitR — oo the second term vanishes, after which the real part of the
equation yields

/ dx cogax’) :/ dxe 2 — [T (C.5)
0 0 8a

Introducing Egs. (C.2) and (C.3) into Eq. (C.1) one finds E3}1%). As a
technical detail we note that in principle diagonal termgn (3.11) should have

43



3. THE ZIMM MODEL

been treated separately, which is clear from Eqg. (A.17)cé&the contribution of
all other terms is proportional t41/2, however, we omit the diagonal terms.
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Chapter 4

The tube model

4.1 Entanglements in dense polymer systems

In the Rouse model we have assumed that interactions bet#erent chains
can be treated through some effective friction coefficigxg.we have seen, this
model applies well to melts of short polymer chains. In the&i model we have
assumed that interactions between different chains cagroeed altogether, and
only intrachain hydrodynamic interactions need to be taken into agcotihis
model applies well to dilute polymer systems.

We will now treat the case of long polymer chains at high cotregion or
in the melt state. Studies of the mechanical properties cf systems reveal a
nontrivial molecular weight dependence of the viscosity ambber-like elastic
behavior on time scales which increase with chain lengtle. diserved behavior
is rather universal, independent of temperature or modesylecies (as long as the
polymer is linear and flexible), which indicates that the pdraena are governed
by the general nature of polymers. This general nature igoafse, the fact
that the chains are intertwined and can not penetrate threagh other: they
are “entangled” (see Fig. 4.1). These topological intévastseriously affect the
dynamical properties since they impose constraints on titeomof the polymers.

Figure 4.1: A simplified picture of
polymer chains at high density. The
chains are intertwined and cannot
penetrate through each other.
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4. THE TUBE MODEL

Figure 4.2: Representation of a poly-
mer in a tube. The tube is due to sur-
rounding chains, i.e. entanglements,
so that the polymer can only reptate
along the tube.

4.2 The tube model

In the tube model, introduced by De Gennes and further retayeldoi and Ed-
wards, the complicated topological interactions are difieglto an effective tube
surrounding each polymer chain. In order to move over largi&udces, the chain
has to leave the tube by means of longitudinal motions. Thept of a tube
clearly has only a statistical (mean field) meaning. The wdechange by two
mechanisms. First by means of the motion of the central citsaff, by which
the chain leaves parts of its original tube, and generatesaets. Secondly, the
tube will fluctuate because of motions of the chains whicthdoup the tube. Itis
generally believed that tube fluctuations of the second &reduinimportant for ex-
tremely long chains. For the case of medium long chains,expEnt corrections
can be made to account for fluctuating tubes.

Let us now look at the mechanisms which allow the polymerrchaimove
along the tube axis, which is also called the primitive chain

The chain of interest fluctuates around the primitive ch&n.some fluctua-
tion it may store some excess mass in part of the chain, seé RigThis mass
may diffuse along the primitive chain and finally leave thkeeiu The chain thus
creates a new piece of tube and at the same time destroysf et tmbe at the
other side. This kind of motion is callegptation Whether the tube picture is
indeed correct for concentrated polymer solutions or netiisremains a matter
for debate, but many experimental and simulation resuljgsst that reptation is
the dominant mechanism for the dynamics of a chain in thelhgtitangled state.

It is clear from the above picture that the reptative motiokh @etermine the
long time motion of the chain. The main concept of the modehésprimitive
chain. The details of the polymer itself are to a high exteriévant. We may
therefore choose a convenient polymer as we wish. Our palyvileagain be
a Gaussian chain. Its motion will be governed by the Langegumations at the
Smoluchowski time scale. Our basic chain therefore is a &chain.
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4. THE TUBE MODEL

4.3 Definition of the model

The tube model consists of two parts. First we have the basimcand secondly
we have the tube and its motion. So:

e Basic chain
Rouse chain with parametdxs b and(.

e Primitive chain

1. The primitive chain has contour length which is assumed to be
constant. The position along the primitive chain will beigaded by
the continuous variablee [0,L]. The configurations of the primitive
chain are assumed to be Gaussian; by this we mean that

<(R(s)—R(s’))2> —d|s—s], (4.1)

whered is a new parameter having the dimensions of length. It is the
step length of the primitive chain, or the tube diameter.

2. The primitive chain can move back and forth only alonglfitagth
diffusion coefficient
ks T
D=+, 4.2
© TN+ “2
i.e., with the Rouse diffusion coefficient, because the ambf the
primitive chain corresponds to the overall translation lué Rouse
chain along the tube.

The Gaussian character of the distribution of primitiveigltmnformations is
consistent with the reptation picture, in which the chaintowously creates new
pieces of tube, which may be chosen in random directions stép lengthd.

Apparently we have introduced two new parameters, the comgogthL and
the step lengtld. Only one of them is independent, however, because they are
related by the end-to-end distance of the chéRf,) = Nb? = dL, where the first
equality stems from the fact that we are dealing with a Robhaé¢and the second
equality follows from Eq. (4.1).

4.4 Segmental motion

We shall now demonstrate that according to our model the myeadratic dis-
placement of a typical monomer behaves like in Fig. (4.3).isBehaviour has

47



4. THE TUBE MODEL

Alng_ (1

seg

Figure 4.3: Logarithmic plot of the seg-
mental mean square displacement, in
case of the reptation model (solid line)
and the Rouse model (dashed line).

Te TR Td
<« chain— « tube »e—3-d—

been qualitatively verified by computer simulations. Of rseuthe final regime
should be simple diffusive motion. The important predicti® the dependence of
the diffusion constant oN.

In Fig. (4.3),Tr is the Rouse time which is equal t@ in Eq. (2.46). The
meaning ofte andty will become clear in the remaining part of this section. We
shall now treat the different regimes in Fig. (4.3) one afteother.

Dt <Te

At short times a Rouse bead does not know about any tube aonstrAccording
to Eq. (2.57) then

Nl

1Z<Tb2)7 . 4.3)

Goet) = ( y

Once the segment has moved a distance equal to the tube diaimietwill feel
the constraints of the tube, and a new regime will set in. Tine &t which this
happens is given by the entanglement time

T

_ 4
= TR (4.4)

Te

Notice that this is independent bif

) Te<t<1Rr

On the time and distance scale we are looking now, the beddrper random
motions, still constrained by the fact that the monomer iara@f a chain because
t < tr. Orthogonally to the primitive chain these motions do nadi¢o any
displacement, because of the constraints implied by the.tubnly along the
primitive chain the bead may diffuse free of any other canstrthan the one
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4. THE TUBE MODEL

implied by the fact that it belongs to a chain. The diffusibarefore is given by
the 1-dimensional analog of Eq. (2.57) or Eq. (4.3),

(s -%(0)%) =5 (

NI

, (4.5)
1174
wheres,(t) is the position of bead along the primitive chain at time It is
assumed here that for times< Tr the chain as a whole does not move, i.e. that
the primitive chain does not change. Using Eq. (4.1) then

12<Tb2)%t

Bl

4kBTb2) Y (4.6)

aredt) = (o
where we have assumefd(t) — sn(0)|) & {(sn(t) — s(0))?)2.

i) trR<t <14

The bead still moves along the tube diameter. Now howeyerg, which means
that we should use the 1-dimensional analog of Eq. (2.56):

((sn(t) —n(0))?) = 2Dgt. (4.7)

Again assuming that the tube does not change appreciallygdimet, we get

N

t

2ksT } 2 48)

(N+1)C

From our treatment it is clear thag is the time it takes for the chain to create
a tube which is uncorrelated to the old one, or the time itsdke the chain to
get disentangled from its old surroundings. We will calteikhe disentanglement
time tq in the next paragraph.

Osedt) =d {

V) Tg <t

This is the regime in which reptation dominates. On this tand space scale we
may attribute to every bead a definite valuesofVe then want to calculate

¢(st) = {(R(s.t) =R(s,0))%), (4.9)

whereR(s,t) is the position of bead at timet. In order to calculaté(s,t) it is
useful to introduce

0(s,9;t) = ((R(s,t) —R(5,0))?), (4.10)
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chain at time ¢

N

chain at time +A¢

Figure 4.4: Motion of the
primitive chain along its
R(s:0) )/ p(s.0+A0) contour.

i.e. the mean square distance between Isegtimet and beads’ at time zero.
According to Fig. (4.4), for als, excepts= 0 ands= L, we have

0(s,S;t+At) = (d(s+AE,S;t)), (4.11)

where A¢ according to the definition of the primitive chain in sectiér3 is a
stochastic variable. The average on the right hand sidedhas taken over the
distribution ofA¢. Expanding the right hand side of Eq. (4.11) we get

(O(s+DE,55)) ~ ¢<s,g;t>+<Az>3¢<sgt )45 {(08) 2>62¢ss’;t)

= 0(sS]; t)+DGAta 2d)(s,s’;t). (4.12)

Introducing this into Eq. (4.11) and taking the limit t&t going to zero, we get

gcl)(s g;it)=D a—zq)(s ;t) (4.13)
A A '

In order to complete our description of reptation we havertd the boundary
conditions going with this diffusion equation. We will densirate that these are
given by

d(s,S;t)fi—o = d|s—5]| (4.14)
0 . _
a—s¢(375/,t)|ﬁL = d (4.15)
0 . _
a—s¢(575'yt)|s=o = —d. (4.16)
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The first of these is obvious. The second follows from

§s¢<s,g;t>|s_L:2<"’R(§S”|s_ (RILY-RE.0))

= 2<6R(§z,t)|s_L( R(s,1)) >
+z<"’Ra<j”\H (R.0) — <d,0>>
_ z<aR§:’t>|ﬂ<R<L,t>—R(d,t>>>

= 2 (RN -RED?) st = o5t (4.17)

Condition Eq. (4.16) follows from a similar reasoning.
We now solve Egs. (4.13)—(4.16), obtaining

b(ssit) = \s—s’|d+2DG%t

Ld > 1 P2/t prS prs’
= Z (1—e )cos(T>cos - ) (4.18)

where

Le_1v
T[2DG N T® d2 kBT
We shall not derive this here. The reader may check that Eb8)4ndeed is the
solution to Eq. (4.13) satisfying (4.14)-(4.16).

Notice thatty becomes much larger thap for largeN, see Eq. (2.46). If the
number of steps in the primitive chain is definedzy: Nb?/d? = L/d, then the
ratio betweerty andtgr is 3Z.

Taking the limits — s’ in Eq. (4.18) we get
d

Ld & p1iS o P/
= lecosz <T) (1- d) . (4.20)

Tq= NS, (4.19)

{(R(s,t) —R(s,0))?) = 2Dg

Fort > 14 we get diffusive behaviour with diffusion constant

1. d 1d?ksT 1

D=-Dg— = -—B ~
SL ™ 302 ¢ N2

3 (4.21)

Notice that this is proportional thl~2, whereas the diffusion coefficient of the
Rouse model was proportional 1. The reptation resultN—2, is confirmed
by experiments which measured the diffusion coefficientgsaymer melts as a
function of their molecular weight.

51



4. THE TUBE MODEL

In G(t)
Tg T4 (N,) T4 (Ny)
¢ g Figure 4.5: Schematic logaritmic
" plot of the time behaviour of the
shear relaxation modulus(t) as
measured in a concentated poly-
— mer solution or meltiN; < No.

4.5 Viscoelastic behaviour

Experimentally the shear relaxation modua& ) of a concentrated polymer so-
lution or melt turns out to be like in Fig. 4.5. We distinguis¥o regimes.

Dt <Te

At short times the chain behaves like a 3-dimensional RolamcUsing Eq. (2.79)
we find

Gt) = (—2t/1p)

i
+
i

Q

p exp(—2p*t/1R)

2
1), o
_ \/7 (4.22)

which decays as 3. Att = Te this possibility to relax ends. The only way for the
chain to relax any further is by breaking out of the tube.

i) t > Te

The stress that remains in the system is caused by the fdacthihahains are
trapped in twisted tubes. By means of reptation the chainbcaak out of its
tube. The newly generated tube contains no stress. So, ldusiple to assume
that the stress at any tinh@s proportional to the fraction of the original tube that
is still part of the tube at time We’ll call this fraction¥ (t). So,

G(t) =GW(t). (4.23)

On the reptation time scale, is practically zero, so we can $€f(1e) = W (0) = 1.
To make a smooth transition from the Rouse regime to the tiepteegime, we
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4. THE TUBE MODEL

match Eq. (4.22) with Eq. (4.23) &= 1, yielding

G0 ckgT E_ckBTb_2
NTN+1V 8t ond?

Notice that the plateau vallﬁﬁ, is independent of the chain lendth The numer-
ical prefactor of ¥v/2min Eq. (4.24) is not rigorous because in reptation theory
the timete, at which the Rouse-like modulus is supposed to be instantesly
replaced by the reptation-like modulus, is not defined ingarmus manner. A
more precise calculation based on stress relaxation aféegea step strain gives a
numerical prefactor of 4/5, i.e.

4ckgTH?  4ckeT
5 d2 5 Ne '

In the last equation we have defined the entanglement légtin most exper-
iments the entanglement length (or more precisely the gtearent molecular
weight) is estimated from the value of the plateau modulss\giEq. (4.25).

We will now calculate¥ (t). Take a look at

(u(<,t)-u(s.0) = <‘3Ra(§’t) ."Réz’o>>.

The vectoru (s,t) is the tangent to the primitive chain, at segmsrt timet.
Because the primitive chain has been parametrized withdhear length, we
have from Eq. (4.1Ju-u) = (AR-AR) / (As)> = d/As ; the non-existence of the
limit of Asgoing to zero is a peculiarity of a Gaussian process. Usirsy @ql0)
and (4.18) we calculate

(4.24)

G\ = (4.25)

(4.26)

(u(<.1)-u(s o)>—_10—2 (¢,st)
’ " 20508 o
_ 2d o —tp?/1 prsy . [ prs
= dd(s - le e d) sm( C )sm(T
_ _tp2 pTiS prs
— L Ze If’/rdsm< i )sm( 3 ) (4.27)
where we have used
22 . /pTs (pns’)
— Y sin sin =d(s-9). (4.28)
L 2, sn(T)sin(T) =a(s=9)
Using this last equation, we also find
(u(,0)-u(s,0)) =d5(s—¢). (4.29)
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0.01

W(s.t)
¥

1 Figure 4.6: Development dP(s;t)
0 L2 L intime.

S
This equation states that there is no correlation betwetatigents to the primi-
tive chain at a segmestand at another segmest If we consideru (s,t) - u(s,0))
as a function of, at timet, we see that the original delta function has broadened
and lowered. However, the tangants’,t) can only be correlated to(s,0) by
means of diffusion of segmesdt during the time interval0, t], to the place where
swas at timet = 0, and still lies in the original tube. S@,(u(s’,t)~u(s,0)> is
the probability density that, at timte segmens’ lies within the original tube at
the place wherewas initially. Integrating oves' gives us the probabiliti¥ (s,t)
that at timet anysegment lies within the original tube at the place where sggm
swas initially. In other words, the chance that the origindlé segment is still
up-to-date, is

W(st) — %/oLds’ (u(s,t)-u(s.0))

_ 4 '}sin(p%[s>etpz/rd, (4.30)

0

where the prime at the summation sign indicates that ontggevith oddp should
occur in the sum. We have plotted this in Fig. 4.6. The fractb the original
tube that is still intact at timg is therefore given by

1 rL
W) = [ dswisy
0
8 00/ 1 7tp2/-[
= oy et/ 4.31
22 (4.31)

This formula shows whyy is the time needed by the chain to reptate out if its
tube; fort > tg4, W(t) is falling to zero quickly.

In conclusion we have found results that are in good agreemiémFig. 4.5.
We see an initial drop proportional to/2; after that a plateau vaIU.EQI indepen-
dent ofN; and finally a maximum relaxation ting proportional toN3.
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4. THE TUBE MODEL

Finally, we are able to calculate the viscosity of a con@rtt polymer solu-
tion or melt of reptating chains. Using Eq. 2.70 we find

0 8 </ 1 [® >
= dt G(1) = Gl = —/ dr e TP/
n = [ @G ‘e 2 s

8 o</1
0 _ '+ ~0
SinceG,Q, is independent oN, the viscosity, likety, is proportional taN3. This
is close to the experimentally observed scaling N34. The small discrepancy
may be removed by introducing other relaxation modes inube model, which
is beyond the scope of these lecture notes.

Problems

4-1.In Eqg. (4.22) we have shown that, at short times, the sheaxatbn modulus
G(t) decays as2. We know, however, thab(t) must be finite at = 0. Explain
how the stress relaxes at extremely short times. Draw tHsgn4.5.

4-2. In the tube model we have assumed that the primitive chainahieed
contour lengthL. In reality, the contour length of a primitive chain can fluate
in time. Calculations of a Rouse chain constrained in agiitdube of length.
show that the average contour length fluctuation is given by

1

— a3 (NP2
AL = (AL?) N< ! ) .
Show that theelativefluctuation of the contour length decreases with increasing
chain length, i.e. that the fixed contour length assumpsiqustified for extremely
long chains.
4-3. Can you guess what the effect of contour length fluctuatioitisbe on
the disentanglement times of entangled, but not extrenoely,|polymer chains?
[Hint: See the first equality in Eq. (4.19)]. What will be thensequence for the
viscosity of such polymer chains compared to the tube moeeligtion?
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