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Fig. 5.9. Temperature dependent measurements of the loss tangent of the y-process
of PCHMA for several fixed frequencies w/2m (After Heijboer [49])

What is applied here is known in the literature as the ‘time-temperature
superposition principle’. The result of the synthesis is called a ‘master-curve’.
For a thermally activated Debye-process, the basis of the principle is easily
seen. According to Eq. (5.65), the dynamic compliance and the dynamic mod-
ulus here are functions of the product wr, or equivalently, of logwr . If we
also use Eq. (5.93), we may then represent the compliance as a function of a
sum of terms

J*(logwr) = J* ( logw + log 10 + —RA? log e) (5.94)

The expression tells us that there are two ways of achieving a change in J*,
namely either by a shift in logw, or by a shift in 7-1. The effects of frequency
and temperature thus appear as ‘superposed’, and Eq. (5.94) informs us about
the correspondencies.

As a prerequisite for the construction of a master-curve, the shape of the
loss curve must remain constant under temperature variations. For the system
under discussion, this is obviously fulfilled. Measured curves coincide after
appropriate shifts along the logw-axis, as is shown in Fig. 5.10 for the real
and imaginary part of the dynamic shear modulus. The example represents
an ideal case, and here there is also no need for a synthesis of the curves from
parts. In many other cases, however, construction of the master-curve is the
only means to explore a group of relaxation processes in total. Even if one is
not sure if curve shapes are really temperature independent, construction of
a master-curve remains useful as it can always provide a rough overall view,
good for qualitative purposes.

1

5.3 Specific Relaxation Processes and Flow Behavior 217
410°
e
E
Z
®
10°
TRy
B
10° - & ;" \\ 4:\0
T
(E‘ a ’J‘ ‘\ -0
=3 R \
& P ; ‘\ 2
L) ? / \ -
1? ;I \\ 2
v %o ¥¥ / \
/ \ &
107 | 1 | 1 1 | |
i [on T | R [ B (- ARO[~ - K B R (R
wl2z [s7]

Fig. 5.10. Real and imaginary part of the dynamic shear modulus in the range
of the -process of PCHMA, synthesized as a master-curve using measurements at
various temperatures. Curves represent the viscoelastic behavior at —80°C. The
dashed curve indicates a perfect Debye-process. Data from Heijboer [50]

Figure 5.10 shows also a comparison with the Debye-process. We notice
that the ~-process of the cyclohexyl groups does not agree with a single-
time relaxation process, but exhibits some broadening. This may be caused
by a coupling between adjacent side-groups, as a conformational change in
one side-group may well affect the neighbors. More specifically, the jump rate
could depend on the conformations of the neighbors, which then would lead
to a distribution of relaxation times, as is indicated by the broadened loss
spectrum.

5.3.2 Glass-Rubber Transition and Melt Flow

Figure 5.11 presents creep curves, registered for a sample of polystyrene un-
der shear-stress at various temperatures between —268°C and 296.5°C. We
observe a creep compliance which encompasses the enormously broad range of
nine orders of magnitude. At the lowest temperatures, the mechanical prop-
erties are those of a glass. At the other limit, the high temperature end, the
behavior is dominated by viscous flow as indicated by the characteristic linear
increase of J with time. The transition from the solid-like to the liquid-like
behavior occurs continuously, and most importantly, obviously in a system-
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Fig. 5.11. Creep compliance of PS (M,, = 3.85-10%), as measured at the indicated
temperatures. Data from Schwarzl [51]

atic manner. Indeed, the way curves change with temperature indicates that
again time-temperature superposition is obeyed. Temperature variations re-
sult in shifts of the creep compliance along the log t-axis, apparently without
essential modifications in shape. The consequence is the same as for the just
discussed local processes: On varying the temperature, different parts of J(t)
show up in the time-window of the experiment, and they can be reassembled
to form a master-curve. Applying this procedure yields the overall creep curve
and it evidently has a shape as is indicated schematically in Fig. 5.12. We can
estimate the encompassed total time range by roughly summing up the time
ranges of the sections included and we find an enormous extension of about
20 orders of magnitude.
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Fig. 5.12. General shape of the complete creep curve of PS, as suggested by the
appearance of the different parts shown in Fig. 5.11

J(t) has a characteristic shape composed of several parts. Subsequent to
the glassy range with a solid-like compliance in the order of 109 N it
an additional anelastic deformation emerges and eventually leads to a shear
compliance in the order of 10~ N='m2. The latter value is typical for a
rubber. For a certain time a plateau is maintained but then there finally
follows a steady linear increase of J, as is indicative for viscous flow. The
displayed creep curve of polystyrene is really not a peculiar one and may
be regarded as representative for all amorphous, i.e. noncrystalline polymers.
One always finds these four parts

a glassy region

the glass-rubber transition, often also called the ‘a-process’
a rubber-elastic plateau

the terminal flow range.

These are the basic ingredients determining the mechanical properties of
amorphous polymers and we discuss them now in a brief overview.

A most important conclusion can be drawn immediately and it concerns
the nature of the main part, the glass-rubber transition. As we find a system-
atic shift of the time range of the transition with temperature, it is obvious
that we are dealing here with a purely kinetical phenomenon rather than with
a structural transition like the melting process or a solid-solid phase change.
Curves demonstrate that whether a sample reacts like a glass or a rubber is
Just a question of time. Temperature enters only indirectly, in that it deter-
mines the characteristic time which separates glassy from rubbery behavior.

In chapter 7, we will discuss the properties of rubbers. These are net-
works, composed of chemically cross-linked macromolecules. Owing to the
weak restoring forces, application of stress here induces a deformation which
is very large compared to solids. The observation of a plateau in the creep
compliance at a height comparable to the compliance of rubbers indicates

.
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that a polymer melt actually resembles a temporary network. This behavior
expresses a major property specific for polymeric liquids: These include chain
entanglements, i.e. constraints for the motion arising from the chain connec-
tivity, which act like cross-links. Different from true cross-links of chemical
nature, entanglements are only effective for a limited time during which they
are able to suppress flow. This time becomes apparent in the creep-curve as
the end of the plateau region.

Subsequent to the plateau, flow sets in. As is intuitively clear, the time
needed for the chain disentangling increases with the molecular weight and this
shows up in a corresponding broadening of the plateau. Results of dynamic-
mechanical experiments on polystyrene, presented below in Fig. 5.15, exem-
plify the behavior. The data indicate also a lower limit: When decreasing the
molecular weight one reaches a point, where the plateau. vanishes. Then the
glass-rubber transition and the terminal flow region merge together. Absence
of the plateau means the absence of an entanglement network. The observa-
tion tells us that entanglement effects only exist above a certain minimum
molecular weight. For each polymer one finds a characteristic value, known
as the ‘critical molecular weight at the entanglement limit’, usually denoted
M..

The measurements at high temperatures in Fig. 5.11 indicate a viscous
flow with a constant creep rate, determined by a viscosity 1o

ol A (5.95)

dt g
As the flow velocity relates to the disentangling time, this also holds for the
melt viscosity. Indeed, 7 and the disentangling time for entangled melts show
the same dependence on the molecular weight. Figure 5.13 collects the results
of viscosity measurements for various polymers. As should be noted, a power
law behavior

no ~ MY (5.96)

is generally observed. One finds two regions, with different values of the expo-
nent v and a cross-over at the entanglement limit M. For molecular weights
below M, one has v = 1, above M, one observes v = 3.2 — 3.6.

Importantly, as is also shown by Fig. 5.15, the two parts of the mechani-
cal response separated by the rubber-elastic plateau differ in their molecular

weight dependence. In contrast to the terminal flow region, the glass-rubber
transition remﬁm\hl@a}!‘%@;&wwght. The findings
teach us that chain equilibration in reaction to an applied field takes place as
a two-step process with a finite delay time in between. In the first step equi-
libration by relaxatory modes only includes chain sequences up to a certain
length which is determined by the distance between the entanglements. As
this distance is independent of M, this holds likewise for the characteristic
time of this first step. Further relaxation is postponed until a chain extricates

itself from the ‘tube’ formed by the other surrounding molecules and this
process is of course strongly affected by the molecular weight.
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Fig. 5.18. Molecular weight dependence of the viscosity as observed for the indi-
cated polymers. For better comparison curves are suitably shifted in horizontal and
vertical direction. Data from Berry and Fox [52]

As explained in the first part of this chapter, the viscoelastic properties
of polymers may also be studied by stress relaxation experiments or dynamic
mechanical measurements. Since all response functions are interrelated, the
mentioned ingredients of the mechanical behavior of amorphous polymers
must show up in the other experiments as well. To give an example, Fig. 5.14
displays the time dependent tensile modulus registered for polyisobutylene
(PIB). Measurements were again conducted for a series of temperatures.
As expected, data show the glass-rubber transition (for temperatures in the
range 190 — 220 K), followed by a plateau (around 230 K) and finally the
onset of flow. The right-hand side presents the composite master-curve, set
up by shifting the partial curves as indicated by the arrows. The amounts
of shift along the log t-axis are displayed in the insert. In the construction of
the master-curve the time dependent modulus obtained at 298 K was kept
fixed, while all other curves were displaced. The shift factor, denoted log ar,
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Fig. 5.14. Time dependent tensile modulus of PIB. Measurements at the indicated
temperatures (left) and master-curve, constructed for a reference temperature T' =
298 K (right). The insert displays the applied shifts. Data from Castiff and Tobolsky

[53]

is zero at this reference temperature. The result represents the complete time
dependent shear modulus at the reference temperature. Comparable to the
creep compliance in Fig. 5.12, this tensile modulus again encompasses a huge
range of about 20 orders of magnitude in time.

Regarding the large number of conformational changes which must take
place if a rubber is to be extended, the glass-rubber transition cannot equal
a single-time relaxation process and this is shown by the curve shapes. To
describe E(t), empirical equations exist which often provide good data fits. A
first one is concerned with the beginning of the transition range. It is known
as the ‘Kohlrausch-Williams-Watts (KWW)' function and has the form of a
‘stretched exponential’

E(t) ~ exp —(%)3 (5.97)

The KWW function employs two parameters: 7 sets the time scale and f
determines the extension in time of the decay process. For values § < 1
a broadening results, as is always observed for the glass-rubber transition.
Typical values are in the order 8 ~ 0.5. The KWW function holds only
at the beginning, i.e. in the short-time range of the glass-rubber transition.
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Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9 -10° to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54]

Subsequently, there often follows a power law
E(t) ~t~" (5.98)

Experimentally it is indicated by a linear range in the center, when using a
log-log plot. Typical values of the exponent are v ~ 0.5.

Figure 5.15 presents, as a third example, results of dynamic-mechanical
measurements. They were obtained for a series of monodisperse polystyrenes,
Le. fractions with sharp molecular weights. The curves depict the frequency
dependence of the storage shear modulus, G'(w). As we note, the order of
appearance of the viscous flow and the a-process is reversed when compared
to the time dependent measurements. The flow-dominated long-time behavior
emerges first at low frequencies, whereas an investigation of the rubber-glass
transition requires measurements at the high frequency end. The plateau ap-

pears in between. Its width varies systematically with the molecular weight, ;ﬁ

as already mentioned and discussed. There is no plateau at all for the sample
with the lowest molar mass (M = 8.9 - 103), but after its first appearance, it
widens progressively with further increasing molecular weight.

Low Frequency Properties of Polymer Melts ’

Also of interest, in Fig. 5.15, is the finding that the shapes of curves in the
terminal region remain similar to each other for all molecular weights. More
specifically, within the limit of low frequencies, a constant slope emerges,

Y
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indicating a power law G'(w) ~ w?. It is possible to explain this asymptotic
behavior and to relate it to the properties of flowing polymer melts.

For a Newtonian low molar mass liquid, knowledge of the viscosity is fully
sufficient for the calculation of flow patterns. Is this also true for polymeric
liquids? The answer is no under all possible circumstances. Simple situations
are encountered for example in dynamical tests within the limit of low fre-
quencies or for slow steady state shears and even in these cases, one has to
include one more material parameter in the description. This is the ‘recov-
erable shear compliance’, usually denoted J?, and it specifies the amount of
recoil observed in a creep recovery experiment subsequent to the unloading.
J? relates to the elastic and anelastic parts in the deformation and has to be
accounted for in all calculations. Experiments show that, at first, for M < M.,
JY increases linearly with the molecular weight and then reaches a constant
value which essentially agrees with the plateau value of the shear compliance.

At higher strain rates even more complications arise. There the viscosity
is no longer constant and shows a decrease with increasing rate, commonly
called ‘shear-thinning’. We will discuss this effect and related phenomena in
chapter 7, when dealing with non-linear behavior. In this section, the focus is
on the limiting properties at low shear rates, as expressed by the ‘zero shear
rate viscosity’, 1o, and the recoverable shear compliance at zero shear rate,
g

Our concern is to find out how the characteristic material parameters g
and J? are included in the various response functions. To begin with, consider
a perfectly viscous system in a dynamic-mechanical experiment. Here the
dynamic shear compliance is given by

= —ii (5.99)
Tow
This is seen when introducing the time dependencies

O.s = 0o, expiwt
Ban e J"'ngexpiwt

into the basic equation for Newtonion liquids

de.,
= 5.100
T2z Mo dt ( )
which results in
00, expiwt = noiwJ* a2, expiwt (5.101)

In a polymer melt, the viscous properties of Newtonian liquids combine with
elastic forces. The latter ones contribute a real part to the dynamic shear
compliance, to be identified with J?

J(w —0):=J2 (5.102)
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Combining Egs. (5.99) and (5.102) gives the dynamic shear compliance of
polymeric fluids in the limit of low frequencies

. gl
J(w—0)=J0 - = (5.103)

As we see, 19 and J? show up directly and separately, in the limiting behavior
of J' and J”.

The dynamic shear modulus follows as

1 Tow
G (w—10 -
@ ) JH(w—0) nwd?—i
Ui e 1Tjow (5 104)
(mowJ9)? +1 ’
giving
G'(w — 0) = J2ndw? (5.105)
in agreement with Fig. 5.15, and
G"(w — 0) = nw (5.106)

We thus find characteristic power laws also for the storage and the loss mod-
ulus which again include J? and 7 in a well-defined way.

One may wonder if 19 and J? can also be deduced from the time dependent
response functions, as for example from G(t). Indeed, direct relationships
exist, expressed by the two equations

no = | G(t)dt (5.107)
/
and - y 228
Jon2 = f T /1 - (5.108)
]

The first relation follows immediately from Boltzmann’s superposition prin-

ciple in the form of Eq. (5.38) when applied to the case of a deformation with
constant shear rate ¢... We have

(dz=)de.r = é-,dt (5.109)

and thus \

(U’«’i) T2z = ézz / G(t — t,)df, = éz:: / G(t”}'dt” (5.]_10)

t'=—00 =0

<

-
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Since per definition
Ozg i = n{léz:c

we find =
no = /G(t)dt
t=0

To derive the second equation, we consider a dynamic-mechanical experi-
ment and treat it again on the basis of Boltzmann’s superposition principle,

writing
t

Sl / Glt — t')éss ()t (5.111)
t'=—00
Introducing
e.2(t) = 2, expiwt (5.112)
and
o5z(t) =G"ezx(t) (5.113)
we obtain i
i / G(t")iw exp —iwt"dt" (5.114)
t'=0

setting t” := t — t'. In the limit w — 0 we can use a series expansion

oo

G*(w— 0) = f G(t")(iw + wt" + ...)dt" (5.115)
=0
giving
G'(w— 0) =w? / G(t)tdt (5.116)

t=0 —
Comparison with Eq. (5.105) ¥ields Eq. (5.108): > (/ (w "0\ Je
Combination of Egs. (5.107) and (5.108) can be used for estimating the
average time of stress decay subsequent to a sudden shear deformation of a
melt. We may introduce this time, denoted 7, as

(s o]
[ G(t)tdt
=0 (5.117)
J G(t)dt
=0
and then obtain simply
7=JIno (5.118)

WG]
1
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Equation (5.118) for the mean viscoelastic relaxation time may be applied
for both non-entangled and entangled melts and yields different results for
the two cases. For non-entangled melts, i.e. M < M., we have J? ~ M and
Mo ~ M, hence

7o~ M? (5.119)

For molecular weights above the entanglement limit, i.e. M > M, one finds
JO=const and ng ~ M3, therefore

7~ M3, (5.120)

Vogel-Fulcher Law and WLF Equation

We turn now to another important point and consider the temperature de-
pendence. Recall that the data indicate the validity of time-temperature or
frequency-temperature superposition. This has an important implication: The
findings show that the processes comprising the terminal flow region and the
glass-rubber transition change with temperature in the same manner. Par-
ticularly suited for the description of this common temperature dependence
is the shift parameter log ap. We introduced it in connection with the con-
struction of the master-curves but it has also a well-defined physical meaning.
This becomes revealed when we look at the equations valid in the terminal
range, Egs. (5.105) and (5.106). It should be noted that w and 1 enter into
the expressions for the dynamic modulus and the dynamic compliance not
separately, but only as a product. As temperature affects just 7y, we conclude
that ap and 7y must be proportional quantities. The exact relationship fol-
lows when taking into account that shift parameters always relate to a certain
reference temperature. Let this reference temperature be Tj. Then ar is given

by
T
e 1o(T)
10(To)
With the aid of a; we can express response functions at any temperature in

terms of the respective response function at 7j. Explicitly, for the dynamical
shear modulus, the following relation holds

(5.121)

G*(T,w) = G* (T, ayw) (5.122)
or for a logarithmic frequency scale
G*(T,logw) = G*(Tp,logw + log ar) (5.123)

In correspondence to this, we write for the time dependent shear modulus

.\

G(T,t) = G(Th, é) (5.124)

or
G(T,logt) = G(Ty,logt — log ar) (5.125)



