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Scott [58] and Tompa [59] were the first to apply the Flory [60, 617
Huggins [62, 63] theory of polymer solutions to mixtures of polymers, with
or without added solvent. Scott [58] obtained essentially the following
expression for the;ﬁ:’lb}bs i'rfe nergy of mixing a total volume V of two
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where V; is a reference volume mﬁiijicrﬂ}'is taken as close to the molar volume
of the smallest polymer repeat unit as possible, ¢, and ¢ are the volume
fractions of polymers A and B, respectively, x, and xg are the degrees of
polymerization of polymer A and polymer B in terms of the reference
volume V,, respectively, and 7,z is related to the enthalpy of imeraclion_{:\_f
the polymer repeat units, each of molar volume V., (see Eq. 12).

Scott found the critical conditions in such a system; these can be found
from Eq. (1) by letting [3] (at constant Tand p)
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The critical conditions are_—
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Scott noted, using these equations, that (Xan)er would be very small for two
polymers having appreciable degrees of polymerization, and that polymers
of infinite molecular weight would be incompatible if there were any positive
heat of mixing at all.

The equation for the spinodal (at constant T'and p) is calculated from_

T P8Gus8,r =0 | .
(2aB)p = %[”xa{ﬁba}sp + 1/x5(hp)sp] (3)

Fig. 4 Phase diagrams for Polymer I Polymer 11 solvent mixtures. (a) Polvmers are in-
compatible in bulk but each is miscible with the solvent. such as polystyrene-polvpropylene
toluene [55]. (b) Components are miscible in all proportions when taken two at a time but
phase separation occurs at some compositions when all three components are mived. such
as benzene-butyl rubber- EPDM rubber or diphenyl ether atactic polypropylene polveths lene
[52]. (c) Phase diagram that may be observed when polymers are incompatible in bulk and
only one of the polymers is miscible with solvent in all proportions [56].
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Theequations for the binodal are calculated by setting the chemical potentjal
of both polymer A and polymer B equal in the two coexisting phases.

Using primes to designate one phase, and double primes the other phase,
the binodal equations for a mixture of two polymers are

In ¢," + (1 —x,/xp) g’ + X4 1as(Ps')’

= In ¢} + (1 —x,/xp) Py + X, 1ap(Pp)’ (6a)

In ¢pp" + (1= xp/x,) PA" + Xg 1aB(PA)°
= In ¢ + (1 — xp/x,) P4 + Xp 1ap(P2)’ (6b)
All equations for binodals contain a mix of logarithmic and nonlogarithmic
rms and th ' . solved simultaneously equals the
number of components times the number of coexisting.phases minus_one.

{THE maximum number of coexisting ﬁﬁasas that are not vapor or crystalline
expected at any temperature and pressure equals the number of components
in the mixture.) For this reason, equations for binodals are very difficult
to solve even with a computer, and very few such equations are given in
this chapter.

Scott [58] also discussed mixtures of two polymers in the presence of a
solvent—a three-component mixture. He obtained equations that led to a
Gibbs free energy of mixing

AG.i. = RTV/Vs[ s In ¢g +(Pa/xa) In b, +(dy/xy) In @,
+ A Pa P+ LasPa bs + 1ps Py Ps) (7)

where Vg, the reference volume, is equal to the molar volume of the solvent,

and x,, 7ams Xas» and ygs must be considered in terms of reference volume

Vsi Zas and ygs are the interaction parameters between polymers A and B,
respectively, and the solvent. The equation for the spinodal in a three-
component system is [3] i
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leading to a complex equation that has been discussed by Tompa [3].

Scott [ 58] calculated some binodals for special cases: one example is that
in which y,s = yps and x = x, = xg, that is, the case in which polymers of
comparable degree of polymerization are dissolved in a solvent that has the
same Interaction parameter with each of the two polymers. Scott called this
the “symmetrical” case. He found an equation for the binodal:

In0)" + xzap(i = ¢9)(05)° = InOp" + xzap(1—5)(04)* ~  (9)

where 0, = ¢,/(Pr + ¢p) and Oy = ¢y/(Pa + Pp). Equation (9) looks exactly
like Egs. (6a) and (6¢c) when both polymers have the same degree of
polymerization, x = x, = xp, that is,

Ind" + xyap(Pn) = Indy' + xyap(P4") (10)
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except that in Eq. (9) zap(1— ¢s) takes the place of 7,5 in Eq. (10): 0,
and 0y refer to relative volume fractions of polymers A and B in the polymer
portion of the three-component mixture, and are therefore exactly anal-
ogous to ¢, and ¢y in the binary mixture.

Scott noted that the binodal Eq. (9) in the symmetrical case, did not
depend on .5 or ygs and that the presence of solvent served only to
diminish the effective interaction parameter between the polymers, that is,
Zas(l — @s) can be considered the effective interaction parameter between
the polymers in this case. When there is a great deal of solvent present,
that is, when ¢g >~ 1, the effective interaction parameter between the two
polymers approaches zero, and the whole system will form a single phase.
These conclusions can be restated as follows: No matter how incompatible

two _polymers may be, it is a!ways possible to ﬁikﬁ_ﬁ_mggdilum_iMF
containin ’ s lon a_solvent that dissolves both _polymers

it AL

exists. For this reason it is possible to obtain light-scattering data on very
dilute solutions of polymer mixtures, even for polymers that are very in-
compatible in the absence of solvent.

Scott used the exact result he calculated for the symmetrical case to reach
some approximate general conclusions for all polymer—polymer—solvent
systems. He calculated an approximate plait point, which is analogous to
the critical point in binary mixtures of polymers: GuERCRREIes
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() = x2/(x)2 + x1/?) (11b)
{ﬂﬂ}pl = xp'*/(xy/* + 11;-:] (11¢)

These equations are exactly like Eqgs. (3a){3c) if we remember that (/, and
Uy are volume fractions of polymer A and B in the polymer portion of the
mixture, and if we use y,5(1—¢s) as the effective interaction parameter
between the polymers in the presence of solvent. Equations (11a}<(11¢) allow
calculation of the minimum volume fraction of solvent necessary to “com-
patibilize™ the two polymers, that is, the minimum volume fraction Necessary
to form a single-phase solution; this minimum volume fraction of solvent
will depend on the degree of polymerization of each polymer and on the
interaction parameter between the polymers. Equations (11a)<(11c¢) indicate
that the same minimum volume fraction of any solvent that dissolves each
polymer separately will give a single phase in the three-component system.
This prediction is not strictly true, as we shall see below. but it serves as 2
reasonably accurate rule for most systems.

Since the advent of high-speed computers, it is no longer necessary to
consider only the symmetrical case 7,5 = 7, and several workers have
taken advantage of this. Zeman and Patterson [64] calculated spinodals for
systems where 7,5 # ygs and actually predicted phase diagrams like Fig. 4b.
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