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R= —CHs Polypropylene Rope o s i and nomenclature
ructure”
=— —@ Polystyrene Drinking cups Name Where Known
o (o)
R=—Cl Poly(vinyl chloride) “Amel’ﬂ water {O T a8 (”: Il Poly(ethylene Piiime
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X = —CH;,R= —CHs Poly(methyl methacrylate) Plexiglas® {’0 GCHZ H Pafisteatid (0]
X = —CHj3, R = C;Hs Poly(ethyl methacrylate) Adhesives g o ytetrahydrofuran  Polyether Polyesters ‘g o
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CH c‘ Polyacrylonitrile® Orlon® {-(O{CHZ)')N‘ H’ 7
+CH—C; olyacrylonitrile rlon® W H ¥ Polyurethane® Spandex Lycra® Polyamides *E Il
C=N CH, Pt
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R=—Cl Polychloroprene Neoprene E OO—C —©_0 S |
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= —H,R=—F Poly(vinylidene fluoride) Plastic H CH; H H
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4Polyacrylonitrile is technically a number of the acrylic class because it forms acrylic acid on hydrolysis.
# JUPAC recommends (‘: =CH—CH; —CH,;,
R

“
‘Some people see the mer structure in the third row more clearly with

® Also called polyisobutylene. The 2% copolymer with isoprene, after vulcanization, is called butyl rubber. o
“The term: istical, as d in Chapter 2.
4ABS is actually a blend or graft of two random cop: poly(acrylonitril di and poly

(acrylonitrile-stat-styrene).
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“CH,CH, 3, “CH=CHCH,CH, ),
polyethylene polybutadiene”
poly(methylene) poly(1-butenylene)

+(|ZHCH2—);, -(—(|:=CHCH2CH2-);,
CH, CH;
polypropylene polyisoprcneb
poly(1-methylethylene) poly(1-methyl-1-butenylene)
<'3H 3
'('Cﬂz—lc'); -(-CHCH;-)-,,
CH,
polyisobutylene polystyrene
poly(1,1-dimethylethylene) poly(1-phenylethylene)
i (IZHCH 2
CN
polyacrylonitrile
poly(1-cyanoethylene)
+CHCH,, CHCH, 9,
OH OOCCH

poly(vinyl alcohol)

poly(vinyl acetate)
poly(1-hydroxyethylene)

poly(1-acetoxyethylene)

F
1
=€ (I«'HCH 2R € ?CH 29
Cl F
poly(vinyl chloride) poly(vinylidene .iuoride)
poly(1-chloroethylene) poly(1,1-difluoroethylene)

“Polybutadiene is usually written «CH,CH=CHCH,");, that is,
with the double bond in the center. The structure-based name is given.
3

b Polyisoprene is usually written CH 2C=CHCH,> .
n

Polymers
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Table 1.5 The plastics identification code

€ CF,CF, %

poly(tetrafluoroethylene)
poly(difluoromethylene)

'('?HCHz');
COOCH,

poly(methyl acrylate)
poly[ 1-(methoxycarbonyl)ethylene]

< OCH,,

polyformaldehyde
poly(oxymethylene)

€ NH(CH,)NHCO(CH,),CO Y,

polyamide 66°
poly(hexamethylene adipamide)

poly(iminohexamethyleneiminoadipoyl)

POLYMER SYNTHESIS AND STRUCTURE 13
‘OCH,CH,00C —O— co ‘)‘
n

4 CH
0. .0

C,H,
poly(vinyl butyral)
poly[(2-propyl-1,3-dioxane-4,
6-diyl)methylene]

poly(methyl methacrylate)
poly[ 1-(methoxycarbonyl)-
1-methylethylene]

o

poly(phenylene oxide)
poly(oxy-1,4-phenylene)

< OCH,CH,;

poly(ethylene oxide)
poly(oxyethylene)

NHCO(CH,)s;

polyamide 6°
poly(e-caprolactam)

poly[imino(1-oxohexamethylene)]

Code Letter L.D. Polymer Name

& PETE Poly(ethylene terephthalate) ‘

1y HDPE High-density polyethylene poly(ethylcne terep hthala‘e)
() soly(oxyethyleneoxyterephthaloyl)
(3') \% Poly(viny! chloride)

L"?) LDPE Low-density polyethylene

é:') PP Polypropylene ——a

L":) PS Polystyrene

é?) Other Different polymers

Source: From the Plastic Container Code System, The Plastic Bottle Information Bureau, Washington, DC.

The chemicals above cannot form a polyester because they have only one functional
http://www.eng.uc.edu/~gbeaucag/Classes/IntrotoPolySci/PolymerChemicalStructure.html

imon name. Other ways this is named include nylon 6,6, 66-nylon, 6,6-nylon, and nylon



From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"

Polymers
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Bubbles in Polymer Solution

Newtonian Fluid Bubbles

Polymer Rheology
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Polymers

Paul Flory [1] states that "...perhaps the most significant
structural characteristic of a long polymer chain... (is) its capacity
to assume an enormous array of configurations."
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Which are Polymers?

http://www.eng.uc.edu/~beaucag/Classes/IntrotoPolySci/Pictur
esDNA.html

http://www.eng.uc.edu/~beaucag/Classes/IntrotoPolySci/VWhat Does Searching
Configurational Space Mean for Polymers.html

1) Principles of Polymer Chemistry, Flory P}, (1953).

ww.eng.uc.edu/~gbeaucag/Classes/IntrotoPolySci/WhatlsAPolymerPlastic.html
5 http://www.eng.uc.edu/~gbeaucag/Classes/IntrotoPolySci/MacroMolecularMaterials.html
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Random Walk Generator (Manias Penn State)
http://zeus.plmsc.psu.edu/~manias/MatSE443/Study/7.html

DRAW.
RANDOM WALKS
CLEAR

http://e.sci.osaka-cu.ac.jp/yoshino/download/rw/

-Polymers do not have a discrete size, shape or conformation.

-Looking at a single simulation of a polymer chain is of no use.

-We need to consider average features.

-Every feature of a polymer is subject to a statistical description.

-Scattering is a useful technique to quantify a polymer since it describes structure from a statistically averaged perspective.
-Rheology is a major property of interest for processing and properties

-Simulation is useful to observe single chain behavior in a crowded environment etc.

6
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Fig. 1-1 Dependence of melting temperatures, Ty, and boiling temperatures, Ty, of alkanes and
poly(methylene)s, H(CH2)yH, on the number N of methylene groups per molecule [1, 2].



Fig. 5.3 Electron
micrographs of single
crystals of polyethylene
crystallised from dilute
solution in xylene: (a)
diamond-shaped crystals
and (b) truncated crystals.
(Reprinted by permission
of John Wiley & Sons,
Inc.)
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Fig. 5.6 A model of a

lyethy! hain folded . . gepe .
Ueing fout gauche bonds, Fig. 5.7 The ‘solidification
as suggested by Frank.  AN(

Upper, view normal to the hy! model’ of the
,

plane of folding; lower,

view along the plane of crystallisation process,
pormicslon o John showing how a chain can

Wiley & Sons Limited.) be incorporated into a

lamellar structure without
significant change of
overall shape.
(Reproduced by
permission of IUPAC.)

Fig. 5.8 A schematic
diagram of chain folding in
a solution-grown single
crystal of polyethylene.
(Reproduced from The
Vibrational Spectroscopy
of Polymers by D. |. Bower
and W. F. Maddams.

) Cambridge University
Press 1989.)

Fold surface energy ~ 2 e-5 J/cm2
Enthalpy of melting ~ 300 J/cm3
T..~ 414K (141°C)

T~110°C

t=20T../(AH, (T-T)) (Hoffman-Lauritzen)
~ 1.78e-6 cm or 17.8 nm thick crystals
regardless of N
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If polymers are defined by dynamics, why should
we consider first statics?

Statistical Mechanics: Boltzmann (1896)
Statistical Thermodynamics: Maxwell, Gibbs (1902)

We consider the statistical average of a thermally
determined structure, an equilibrated structure

Polymers are a material defined by dynamics and
described by statistical thermodynamics

G' G" Pa

Polymers
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In a polymer melt, the viscous properties of Newtonian liquids combine with
elastic forces. The latter contribute a real part to the dynamic shear compli-
ance, to be identified with JZ:

J(w—0)=J7. (6.102)

Combining Eqgs. (6.99) and (6.102) gives the dynamic shear compliance of
polymeric fluids in the limit of low frequencies

1
L =J% +j—
Jw—0)=J+ l’lnw i (6.103)
As we can see, 19 and J? show up directly and separately, in the limiting
behavior of J' and J”.
The dynamic shear modulus follows as

1 w
6= 0= 55~ dp ¥
2,42 70 T )
- om0
giving

G'(w— 0) = Jon2w? (6.105)

in agreement with Fig. 6.16, and
G"(w—0) =nw . (6.106)

We thus find characteristic power laws also for the storage and the loss mod-
ulus that again include J? and 7o in a well-defined way.

Polymers

10000
Local Molecular
Dynamics
1000 4
Power Law Fluid/Rubbery
Plateau :
Mesh or u’h
Entanglement hn Length
g Size /‘Ié
s
= ra
in 100 - p
© v e ® Oscillstory
v v —— DWS t=37 min
¥ —— DWS t=48 mi
Newtonian Bulk Fl t=48 min
10 4 s | —— DWS t=69 min
o |
..
1 T T T T T T
1e-1 1e+0 1e+1 1e+2 1e+3 1e+d 1e+5

frequency, rad/s

1e+d



Intensity (cm)
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Small Angle Neutron Scattering
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The vector d ~ 27/
q
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Synthetic Polymer Chain Structure
(A Statistical Hierarchy)



Synthetic Polymer Chain Structure
(A Statistical Hierarchy)

Consider that all linear polymer chains can be reduced to a
step length and a free, universal joint

This is the Kuhn Model, and the step length is called the
Kuhn length, I

This is extremely easy to simulate

1)Begin at the origin, (0,0,0)

2)Take a step in a random direction to (i, j, k)
3)Repeat for N steps

On average for a number of these “random walks” we will
find that the final position tends towards (0,0,0) since there
is no preference for direction in a “random” walk

The walk does have a breadth (standard deviation), i.e.
depending on the number of steps, N, and the step length
I, the breadth of the walk will change.

I just changes proportionally the scale of the walk so
<R2>1/2 —~ lK

https://www.doitpoms.ac.uk/tlplib/polymerbasics/HTML5/Kuhn randomwalk2.html



https://www.doitpoms.ac.uk/tlplib/polymerbasics/HTML5/Kuhn_randomwalk2.html

Synthetic Polymer Chain Structure
(A Statistical Hierarchy)

The walk does have a breadth, i.e. depending on the
number of steps, N, and the step length lg, the breadth of
the walk will change.

Ix just changes proportionally the scale of the walk so
<R2>1/2 —~ lK

The chain is composed of a series of steps with no orientational relationship to each other.
So<R>=0
<RZ> has a value:

()= XX ror, = ner+ XX

i j#i
We assume no long-range interactions so that the second term can be 0.

(R*)=Nr?

<R2>1/2 N N1/2 lK

https://www.doitpoms.ac.uk/tlplib/polymerbasics/HTML5/Kuhn randomwalk2.html
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Synthetic Polymer Chain Structure
(A Statistical Hierarchy)

<R2>112 ~ N2 |

This function has the same origin as the function describing the root mean
square distance of a diffusion pathway

<R2>12 ~ {12(2D)12

So, the Kuhn length bears some resemblance to the diffusion coefficient

And the random walk polymer chain bears some resemblance to Brownian
Motion

The random chain is sometimes called a “Brownian Chain”, a drunken
walk, a random walk, a Gaussian Coil or Gaussian Chain among other
names.



<R2>12 = pl2]

Concentration within a coil = n/(n3? I¥) ~ n"1/2 = ¢* overlap concentration

Below c¢* ~ 1 mg/ml dilute conditions (most analytic measurements), Above ¢* “semi-dilute”

Below c*, dilute scattering curve; above c*;
the scattering is screened in the semi-dilute regime;

when screening/mesh size matches the persistence length we reach the concentrated regime or the melt

I(q)/o

I(@)/o
I(@)/o

I(q)/o
v




<R2>12 = yl2 |
Concentration within a coil = n/(n3? I¥) ~ n"1/2 = ¢* overlap concentration

Below ¢* ~ 1 mg/ml dilute conditions (most analytic measurements), Above c¢* “semi-dilute”

Below c*, dilute scattering curve; above c*;
the scattering is screened in the semi-dilute regime;
when screening/mesh size matches the persistence length we reach the concentrated regime or the melt

Rheology view linear below c*, ¢* and entanglement concentration might be similar



Random Walk Generator (Manias Penn State)

http://zeus.plmsc. http://e.sci.osaka-cu.ac.jp/yoshino/download/rw/psu.edu/~manias/MatSE443/Study/7.html

CLEAR
STATISTICS|
EI B
B

DRAW.
RANDOM WALKS

http://e.sci.osaka-cu.ac.jp/yoshino/download/rw/

-Polymers do not have a discrete size, shape or conformation.
-Looking at a single simulation of a polymer chain is of no use.
-We need to consider average features.

-Every feature of a polymer is subject to a statistical description.

-Scattering is a useful technique to quantify a polymer since it
describes structure from a statistically averaged perspective.

https://www.doitpoms.ac.uk/tlplib/polymerbasics/HTML5/Kuhn randomwalk2.html
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The Primary Structure for Synthetic Polymers

Worm-like Chain

Freely Jointed Chain

Freely Rotating Chain

Rotational Isomeric State Model Chain (RISM)
Persistent Chain

Kuhn Chain

These refer to the local state of the polymer chain.

Generally, the chain is composed of chemical bonds
that are directional, that is they are rods connected at their ends.

These chemical steps combine to make an effective
rod-like base unit, the persistence length,
for any synthetic polymer chain (this is larger than the chemical step).

The persistence length can be measured in scattering
or can be inferred from rheology through the Kuhn length

lezlp



Small Angle Neutron Scattering
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The Primary Structure for Synthetic Polymers
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The synthetic polymer is composed of linear bonds, covalent or ionic bonds have a direction.

Coupling these bonds into a chain involves some amount of memory of this direction for each
coupled bond.

Cumulatively this leads to a persistence length that is longer than an individual bond.

Observation of a persistence length requires that the persistence length is much larger than the
diameter of the chain. Persistence can be observed for worm-like micelles, synthetic
polymers, DNA but not for chain aggregates of nanoparticles, strings or fibers where the
diameter is on the order of the persistence length.

https://www.eng.uc.edu/~beaucag/Classes/IntrotoP
olySci/PicturesDNA.html
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The Gaussian Chain
Gaussian chain is based on Brownian walk or Brownian motion that was described mathematically by Einstein in a

1905 paper

For particles (or a particle) subject to thermal, diffusive motion initially at a fixed position, the density of the
particles is a function of time and space. These dependencies can be expressed as Taylor series expansions.
For simplicity consider a one-dimensional space (though this can be worked out in any dimensional space).
Particles have an equal probability of moving to the left or to the right. The motion is symmetric about the
zero point. The dependence with time, in contrast, is in only one direction. (This, it turns out, is the essence
of Brownian motion as compared to ballistic motion where both space and time move in only one direction.)

dp(x)
Ot ro
= p(x, t)j P.(Ax)d(Ax) + Z_zj Ax P;(Ax)d(Ax) +

p(x,t)+1 + -
azp +o0 (Ax)z

ox2)_, 2

P (Ax)d(Ax) + -

P5(Ax) is a normalized, symmetric probability distribution where Ax is the change in x from 0. The
integral of P5(Ax) is 1 since it is normalized. The integral of Ax P; (Ax) is zero since it it symmetric.

2 + o0 Ax 2
Op(xt) _ 0°p(x8) L p= f (Ax) P, (Ax)d(Ax)
ot 0x?2 2T

— 00


http://www.eng.uc.edu/~beaucag/Classes/Properties/Books/Einstein_1905.pdf

The Gaussian Chain

dp(x,t) b %p(x,t)
at x2

For N particles starting at x = 0 and time = 0,

x2

e 4Dt

N
(x,t) =
P VanDt

First moment in space is 0, second moment (variance of Gaussian) is:

(x?) = 2Dt

For polymer chain <R?> = [ (2 N



The Einstein-Stokes Equation/Fluctuation Dissipation Theorem

Consider a particle in a field which sets up a gradient mitigated by thermal diffusion such as sedimentation of particles in
the gravitational field.

The velocity of the particles due to gravity is v, = mg/(6nnRy) following Stokes Law. For particles at x = 0 and x=h
height, the density difference is governed by a Boltzmann probability function,

_mgh
p(h) = poe KT

Fick’s law gives the flux of particles, J = -D dp/dh, and J = pv, so v = -(D/p) dp/dh, and

dp/dh = -pymg/(kT) e ™kT = _omg/(kT). Then, v =Dmg/(kT). At equilibrium this speed equals the gravitational speed,
vy = mg/(6nnRy). Equating the two removes the details of the field, making a universal expression for any particle in any
field, the Stokes-Einstein equation based on the Fluctuation Dissipation Theorem. (This was done in 1-d, the same
applies in 3d.)

The latter expression was used to determine Avagadro’s number from colloidal particles that could be counted. N, was
then applied to molecular species to determine, for the first time, the molecular weight.



The Einstein-Stokes Equation/Fluctuation Dissipation Theorem

For a particle in a field the velocity can be calculated from Fick’s First Law
or from a balance of acceleration and drag forces

ve = mg/6nRyn = -D/p dp/dh = Dmg/kT

This yields the Einstein-Stokes Equation D = k7/6mR,n



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End-to-End Distance R
) , 3 V5 3R)
P,‘(R)-exp( T ] I(R)=(2mr’) cxr{—z(”):v'

By Comparison, The Energy to stretch a Thermally Equilibrated Chain Can be Written

>

3R”

E =kT—
2nl;

31
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The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End-to-End Distance R
) , 3 V5 3(RY
P,,(R)-cxp( T ] I(R)=(2mr’) exy{-z(”):]

By Comparison, The Energy to stretch a Thermally Equilibrated Chain Can be Written

>

E = kT K
2nl;
Force Force
Assumptions:
F = d_E _ 3kT R=Fk R -Gaussian Chain
“dR a2 ™ “Thermally Equilibrated

-Small Perturbation of Structure (so it
is still Gaussian after the deformation)
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The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End-to-End Distance R
—exp| E(R) NG
P,((R)-exp( T ] ! (R)=[2.m7"’J cxr{.—z(”)l'

Use of P(R) to Calculate Moments:
(R")= [ R"P(R)dR
Mean is the 1°st Moment:

(R) = ]o RP(R)dR=0



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End-to-End Distance R
—exp| E(R) o (3 V{3
P, (R) = exP({— T ] P(R)= ( o J cxr{.— o) |

Use of P(R) to Calculate Moments:
(R")= TR”P(R)dR
Mean is the_:st Moment:
(R) = ]o RP(R)dR=0

This is a consequence of symmetry of the
Gaussian function about 0.



35

The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End-to-End Distance R
—exp| E(R) NG
P,((R)-exp( T ] ! (R)=[2.m7"’J cxr{.—z(”)l'

Use of P(R) to Calculate Moments:

(R")= [ R"P(R)dR
Mean Square is the 2’ndMoment:

(R*)= T R°P(R)dR = iiri-rj = Nr’

i=0 j=0
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The Gaussian Chain

Gaussian Probability
For a Chain of End-to-End Distance R

Mean Square is the 2°’nd Moment:

3 V2 3R>

<R2> = J R exp| — . dR

2ro?

There is a problem to solve this integral since we can
solve an integral of the form k exp(kR) dR
R exp(kR?) dR but not R? exp(kR?) dR

There is a trick to solve this integral that is of importance
to polymer science and to other random systems that
follow the Gaussian distribution.



<R2>=:[LR2PG )dR f R exp(k ]dR 5
f P.(R)dR f exp( )

These imcgrals require a trick to solve. First the integral is squared in x and y:
G(a) = f exp(—a\ )d\

-0

(G(a)) fexp(—u.r )d\fexp(—a\ )d\ - fd\fd\ exp(—a(\ + X ))d\

-x

Then Cartesian coordmatcs are rcplaccd w 1th c1rcular coordinates, r and 0,

(G(a)) f)dl fd()exp(—w )—7J'(f)dl exp(—w )

i}

f 2ardr exp(—w )- f[exp(_w )]:' .

2a 0 o
The mtcgral in the numerator can be solved by another trick,

f X exp(—u.\ )d\ = —d(;fl )

y2
and since G(a) = (w/c)'?, then H(«) = 2'7 — 50, with . = 1/k* and x = R,
e

R’
R’ dR
f CXP(A ) H(a) K'x')2

kl

= = - = — 4
( ) Gla)” k" 2 @)

fexp

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/GaussianProbabilityFunctionforEnd.pdf

(&)=
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(#)-

The Gaussian Chain

Gaussian Probability
For a Chain of End-to-End Distance R

Mean Square is the 2°’nd Moment:

3
3 V27 3R’
jR%mp—- 2dRzO'2
- 20

270’

So, the Gaussian function for a polymer coil is:

% 2
A [ 3 . [ 3R
(R >_[2mléj _J;R exp£ 2nlzde

K

2
nly
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The Gaussian Chain

<R2> = nl}

Means that the coil size scales with n'/2

Or

Mass ~ n ~ Size?

Generally, we say that

Mass ~ Sizedf

Where d; is the mass fractal dimension

A Gaussian Chain is a kind of 2-dimensional object like a disk.
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The Gaussian Chain

<R2> =nl

A Gaussian Chain is a kind of 2-dimensional object like a disk.

The difference between a Gaussian Chain and a disk lies
in other dimensions of the two objects.

Consider an electric current flowing through the chain, it
must follow a path of n steps. For a disk the current
follows a path of n'’? steps since it can short circuit across
the disk. If we call this short circuit path p we have
defined a connectivity dimension ¢ such that:

pe~n

And c has a value of 1 for a linear chain and 2 for a disk
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The Gaussian Chain

<R2> = nl,

A Gaussian Chain is a kind of 2-dimensional object like a disk.
A linear Gaussian Chain has a connectivity dimension of 1 while
the disk has a connectivity dimension of 2.

The minimum path p is a fractal object and has a dimension, d,,;, so that,
p —~ Rdmin

For a Gaussian Chain d,,;;, = 2 since p is the path n

For a disk d,;, = 1 since the short circuit is a straight line.

We ﬁnd that df =C dmin

There are other scaling dimensions, but they can all be related to two
independent structural scaling dimensions such as ¢ and d,;,
or d.,;, and d¢



Disk Random Coil

%

d, =2
min2 dmin )
°= c=1

Extended [(-sheet
(misfolded protein) Unfolded Gaussian chain

}-hﬂp:l/cmgm.st ford.edu/biochem201/Slides/
Protein%20Structyre/Pleated%20Beta-sheets.JP G



How Complex Mass Fractal Structures
Can be Decomposed

Tortuosity Connectivity

—d z dr P dmin |S C R/d
S “'min 27 (136 |12 |(1.03 |22 |1.28 |11.2
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Joarnal of Polymer Science: Part B: Polymer Physics, Vol. 36, 3147-3154 (1996)

Fibers follow either Gaussian or Self-avoiding
structure depending on binding of fibers

28 -JUL-S¢8
N

0«09 2 004
¥ 2343 4 ool pm
o A0 0 2

Intensity (cm) ' (x-ray)
s

(8
S« 506 4 00 Wi
2.0 ow'rg for 2.2 gomd)
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o aal i .
w oot ' 10! 1w "' "'
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Figure 2. Log I vs. log ¢ plot for GMF with an inci- & > g

dent beam normal to the sample planc. Scaling regime  Figure 5. Orientation function and SALS data for
at low-g follows good solvent scaling. High-q scaling GMF in section as a fi ion of q. Perpendicul
follows Porod's law. Fit uses the unified equation with parallel with plane of mat
four free parameters and a model based on a polymer- nc s reapect to the .

like structure,

Orientation partly governs separation

Pore size and fractal structure govern wicking

-
) T T
= 10F
£
g 8-
1™
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£
2 |
> A |[~= Calculated From Scattering
2 { 4_-5/3;!.,..'—3.1210'!
E !
» 5 1
S T3 is6 F R 3
1 10 100 1000

Figure 1. Micrographs of GMF sample showing micron-scale silica glass fibers in a )
polymer-like mat. (a) SEM micrograph after gold coating. This size scale corresponds to Pore Size (um, Log Scale)
the persistence regime and the high-q end of the scaling regime. (b) Optical micrograph

at 20X, This size scale would correspond to the scaling regime of Figure 2 below. Figure 6. Cumulative pore volume vs. pore size from

SALS and from capillary porosimetry.
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

The persistence length is created due to interactions between
units of the chain that have similar chain indices

These interactions are termed “short-range interactions” because they
involve short distances along the chain minimum path

Short-range interactions lead to changes in the chain persistence. For example,
restrictions to bond rotation such as by the addition of short branches can lead to increases
in the persistence length in polymers like polyethylene. Short-range interactions can be
more subtle. For instance, short branches in a polyester can disrupt a natural tendency to
form a helix leading to a reduction in the persistence length, that is making the chain more
flexible.

All interactions occur over short spatial distances, short-range interactions occur over
short-distances but the distinguishing feature is that they occur over short differences in

chain index.

Short-range interactions do not have an effect on the chain scaling.
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

Consider the simplest form of short-range interaction
We forbid the chain from the preceding step

Consider a chain as a series of steps 1;
1; is a vector of length r and there are n such vectors in the chain

The mean value for ri;; 1s 0
k=z
<’”i+1> = Zkzlbk =0

by 1s a unit vector in a coordinate system,
6 of these vectors in a cubic system
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

<ri+1> = Z:fbk =0

For exclusion of the previous step this sum
does not equal 0

Y ) _
H'] Random Z b =0= )< i+1/ ShortRangelnteraction

SO

)
< i+1/ ShortRangelnteraction ( 7 — 1)

i



The Primary Structure for Synthetic Polymers
Short-Range Interactions

)
< i+1/ ShortRangelnteraction ( 7 — 1)

For Gaussian Chain

() =2 rery =R+ X Xrer;  yields (R*)=Nr?

i j#i

See slide 68

For SRI Chain the first term 1s not 0.

b2 non oo
()= m (R)=ES ()= S e =,

i=1 j=1 i=] k=—oo Z—

The second to the last equality is the result of the Sum of Geometric Progression Rule,
limn-> of a+ar+ar +... = a/(1-r)
substituting x=1/(z-1) results in 2/(1-x) - 1 = 2(z-1)/(z-2) - | = z/(z-2)

For Cartesian simulation z = 6 and b.g is 1.22 b so about a 25% increase for one step self-

48 5
aVOldance . http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

Short-Range Interactions
Increase the persistence length

Chain scaling is not affected by short-range interactions.

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction

-Bond rotation restriction
-Steric interactions

-Tacticity

-Conjugation

-Main chain aromatics/cyclics
-Charge (poly electrolytes)
-Hydrogen bonds

-Helicity

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

The Primary Structure for Synthetic Polymers

-Bond angle restriction
-Bond rotation restriction

Characteristic Ratio, C,,

Table 2.1 C values for some polymers under
theta conditions

<R2> = Myl K

Polymer C(M=x)

l.. ~b., .
Polyethylene 6.7 Kuhn Effective
Polyethyleneoxide 4.0
Polystyrene, atactic 10.0

Source: Flory (1989)

*See eq. (2.7) ‘

oo

Polymer physics
By UKf W. Gedde

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf

= LI,

uhn = CoonBond

lKuhn

Bond

l2

Bond

= Coo L lBond



The Primary Structure for Synthetic Polymers
Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

30

s
ayl | eotostabennel, 182 22)
o Teofinz it [
20 - .'o' i i i : .:\;‘:; 10 C —_— Kuhl’l
15 —’.' M ..° ) < l
10 b oe::::'." “...::::% 1 Bond
e e, -
S [Tunt xxtn
Xyestreresieett e ..“""00:: o« e . . .
) il N S O S S b The Characteristic Ratio varies with N

0 5 10 15 20 25 30 5 40 4.’,‘ 50

due to chain end effects. There is
10, versus segment number, &, for various semiflexible, linear . . . .
polymers, uaL::h of length 48. The strength uf1 l}\lL' intrinsic generally an mgcrease 1m C Wlth N aIld lt

stiffness is varied between polymers by increasing the strength

of the bending penalty, 2,4 from 0 (bottom)...5, 10 (top). plateaus at hlgh molecular welght.

Figure 7. The persistence length plots, {I_:;“ %, obtained via eq

Macromolecules 2005, 38, 52885299

“Intrinsic” and “Topological” Stiffness in Branched Polymers

Ronan Connolly,' Giovanni B
Yuri A. Kuznetsov,' Stefano Elli, as

ia," Edward G. Timoshenko,*"*
nd Fabio Ganazzoli

53
http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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Molecular weight dependence of persistence length

Size and persistence length of molecular bottle-brushes by Monte Carlo

simulations

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052

LD = Low branch density
HD = High branch density

12
101 . f{‘
! HD .-~
pers 8- /2/ LD )T(‘—'__,_—X
6- /x/ ””x_—
/ ,X,
/ -
44 X linear
k4
X
2 T T T T T
20 40 60 80 100
nb

ng, = backbone length

Interestingly, for the linear chain, [, has a power-law
dependence on ny,

I:_,_.,,=a-n§. (16)
where a=161(8) and £=0.18(1), confirming that it is in-

ior (see Fig. 10). This ratio is larger than unity, indicating an
increased stiffness due to the interarm repulsion, and is well
reproduced by the functional form

o1, = A+ B[ 1—exp(—n, /C)] (17)

for both bottle-brushes. The very existence of a plateau for

This is a 5 parameter model for persistence length!
(used to model 5 or 6 data points!!!)



Molecular weight dependence of persistence length

Size and persistence length of molecular bottle-brushes by Monte Carlo
simulations

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052

—&— Linear
=&~ L ow Density of Branches m = 0.5
—#— High Density of Branches m = 1.0

Interestingly, for the linear chain, [, has a power-law
dependence on ny,

.
P
o
o
.
Iy
.
.t

I;,‘.,s=a-n§. (16)

where a=161(8) and £=0.18(1), confirming that it is in-

Iy

ior (see Fig. 10). This ratio is larger than unity, indicating an
increased stiffness due to the interarm repulsion, and is well
reproduced by the functional form

o1, = A+ B[ 1—exp(—n, /C)] (17)

for both bottle-brushes. The very existence of a plateau for

! o * This is a 5-parameter model for persistence length!
(used to model 5 or 6 data points!!!)

(Also, this model fails to predict an infinite molecular weight
persistence length.)
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Molecular weight dependence of persistence length

Size and persistence length of molecular bottle-brushes by Monte Carlo

simulations
Stefano Elli, Fabio

Citation: J. Chem.

Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Phys. 120, 6257 (2004); doi: 10.1063/1.1651052

12
101 . f{‘
HD .-~
pers 8- /2/ LD )T(‘—"___—X
6- )(/ ,’,»X"
/ ,X,
/ -
44/ % linear
X/
X
2 T T T T T
20 40 60 80 100

LD = Low branch density
HD = High branch density

Proposed End Group Functionality

2K

14F
12

10

—8— Linear
—A— Low Branch Density m = 0.5 = f/n,
High Branch Density m = 1




This works better for Yethiraj’s data.
(Except that the infinite persistence length is not monotonic in branch length)

Proposed End Group Functionality
2K

M

A Monte Carlo simulation study of branched polymers

Arun Yethiraj lP = lp,°° o

Citation: J. Chem. Phys. 125, 204901 (2006); doi: 10.1063/1.2374884
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FIG. 2. Persistence length of the backbone as a function of number of 20 :— —:

backbone beads for various values of the branch length (N,) and the number o '—
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Persistence Length ~ Bending Modulus/(Thermal Energy)
lp = 1K/ 2~ Ebending/ kT
(We will derive this later with respect to the persistent chain Colby/Rubenstein pp. 58)

Motion of the end-groups is proportional to thermal energy and reduces the persistence length

The energy is related to the flexibility of the chain not the stiffness, 1/1;, so we should
consider 1/, as the parameter of interest in terms of an end group effect not 1,
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A Monte Carlo simulation study of branched polymers

Arun Yethiraj

Citation: J. Chem. Phys. 125, 204901 (2006); doi: 10.1063/1.2374884
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FIG. 2. Persistence length of the backbone as a function of number of
backbone beads for various values of the branch length (N,) and the number
of beads between branch points (N,) and for eg=£,=0. The lines are meant
to guide the eye.
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Alternative Functionality
based on increase in chain flexibility

A Monte Carlo simulation study of branched polymers 1 1 N 2K

Arun Yethiraj =

L, .. M
Citation: J. Chem. Phys. 125, 204901 (2006); doi: 10.1063/1.2374884
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Alternative Functionality

based on increase in chain flexibility

) (1),

Size and persistence length of molecular bottle-brushes by Monte Carlo l l + M

simulations

p P,

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052
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LD = Low branch density
HD = High branch density

—£— Elli Connelly Low Branch Density
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= Low Density Branching 1/lp =1/9.92-2.51/n,| _©
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Size and persistence length of molecular bottle-brushes by Monte Carlo l

simulations

Alternative Functionality
based on increase in chain flexibility

1

p

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052

12
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pers 8 /2/ LD )T(‘——____,g
6- )‘/ ,’,»X"
/ ,X,
/ pd
44/ % linear
%,
W”x
2 T v T T T v T
20 40 60 80 100
nb

LD = Low branch density (0.5 branch per chain unit)
HD = High branch density (1 branch per chain unit)

Equation fails at low n, since it predicts 1, => 0 when n, => 0

62
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—£— Elli Connelly Low Branch Density

—— Elli Connelly High Branch Density

= Linear 1/lp =1/4.28 - 3.48/n,

== Low Density Branching 1/Ip = 1/9.92 - 2.51/n,,
= High Density Branching 1/lp =1/15.0 - 1.87/nb‘
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Alternative Functionality
based on increase in chain flexibility

) (1),

Size and persistence length of molecular bottle-brushes by Monte Carlo +
simulations [ P [ oo M

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052
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High Density Branching 1/Ip = 1/15.0 - 1.87/n,,
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FIG. 8. The persistence length [ J:-“;\ obtained through Eq. (5) for the lincar
chain (lower data points) and the LD bottle-brushes with N, =5 beads per
arm {upper data points) as a function of the spring location & within the
chain (k=1 and k=N,—1 arc the terminal spring) for different backbone

e Equation fails at low n, since it predicts 1, => 0 when n, => 0
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Size and persistence length of molecular bottle-brushes by Monte Carlo l l

simulations

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052
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Size and persistence length of molecular bottle-brushes by Monte Carlo

simulations

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052
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Alternative Functionality
based on increase in chain flexibility
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Iy

Alternative Functionality

based on increase in chain flexibility

) (1),

Size and persistence length of molecular bottle-brushes by Monte Carlo l l + M

simulations

Stefano Elli, Fabio Ganazzoli, Edward G. Timoshenko, Yuri A. Kuznetsov, and Ronan Connolly

Citation: J. Chem. Phys. 120, 6257 (2004); doi: 10.1063/1.1651052
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= Linear 1/lp=1/4.28 - 3.48/n,
= Low Density Branching 1/Ip = 1/9.92 - 2.51/n,, _0
= High Density Branching 1/lp = 1/15.0 - 1.87/n,|
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The 2K values imply that end groups become less important for more rigid chains
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction

-Bond rotation restriction
-Steric interactions

-Tacticity

-Conjugation

-Main chain aromatics/cyclics
-Charge (poly electrolytes)
-Hydrogen bonds

-Helicity

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf



The Primary Structure for Synthetic Polymers

Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

Figure 1.1: A simple polymer in the trans conformation.

Figure 1.2: Dihedral angle energy of n-butane.
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http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

What kinds of short-range interactions

-Bond angle restriction
-Bond rotation restriction

Energy (kJ mol'})

o 60 120 180 240 300 360
Torsion angle (degrees)

Figure 2.2 Conformational energy of ethane as a function

of torsion angle.
H
H: $ :H
H H
H

Ethane

Polymer physics
By UK W. Gedde

can we expect

15

-
<

Energy (kJ mol')

o

0 60 120 180 240 300 360
Torsion angle (degrees)
Figure 2.4 Conformational energy of n-butane as a
function of torsion angle of the central carbon—carbon bond.

The outer carbon-carbon bonds are assumed to be in their
minimum energy states (staggered positions).

CH

Hacggt-i

H H
H

Butane

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

The Primary Structure for Synthetic Polymers

-Bond angle restriction
-Bond rotation restriction

Characteristic Ratio, C..

Table 2.1 C values for some polymers under
theta conditions

<R2> = Myl K

Polymer C(M=x)

l.. ~b., .
Polyethylene 6.7 Kuhn Effective
Polyethyleneoxide 4.0
Polystyrene, atactic 10.0

Source: Flory (1989)

“See eq (2.7) ‘

oo

Polymer physics
By UKf W. Gedde

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf

= LI,

uhn = CoonBond

lKuhn

Bond

l2

Bond

= Coo L lBond



The Primary Structure for Synthetic Polymers
Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

C l Kuhn Consider a freely rotating chain that has a bond

o / angle restriction of 109.5 °
Bond The scalar product of the arbitrary segment vectors
r, and r, is:
{rx) = 1*(cos O;) (2.14) ) )
where 0 is the angle between the two bond ISlng Chaln MOdel

vectors. The following relationship is obtained by
combining egs (2.13) and (2.14): m

=t T T (cost)y Colby/Rubenstein,
1 + 1*{cos 0,,) + +++ + *¢cos 0,,,) + pp 59
I*{cos 0, + ? + 4 Pcos 0,,) +
- . +
""" +
1*{cos 0> + I*(cos 0,,> + "+ + 2
(2.15)

Polymer physics Equation (2.15) is still a general formulation and is
By Uf W. Gedde valid for any continuous polymer chain.

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf



The Primary Structure for Synthetic Polymers
Short-Range Interactions

)
< i+1/ ShortRangelnteraction ( 7 — 1)

For Gaussian Chain

() =2 rery =R+ X Xrer;  yields (R*)=Nr?

i j#i

See slide 68

For SRI Chain the first term 1s not 0.

b2 non oo
()= m (R)=ES ()= S e =,

i=1 j=1 i=] k=—oo Z—

The second to the last equality is the result of the Sum of Geometric Progression Rule,
limn-> of a+ar+ar +... = a/(1-r)
substituting x=1/(z-1) results in 2/(1-x) - 1 = 2(z-1)/(z-2) - | = z/(z-2)

For Cartesian simulation z = 6 and b.g is 1.22 b so about a 25% increase for one step self-

72 5
aVOldance . http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf



The Primary Structure for Synthetic Polymers

Short-Range Interactions
Volkenstein on Flory Il

Consider a freely rotating chain that has a bond
angle restriction of 109.5 ° =t

C
(Fifay) = I cos(180 — 1) 109.5° 6
{rix.,) = I* cos’(180 — 1) C——C%-vns
{5,y = P*lcos(180 — 1)} !
. n-1 L
See slide 46 Fy=nf+20Y Y [(cos(180 — )’
im] g=i+l
I + *cos(180 — 1) + = + *[cos(180 — T)]"" " +
I cos(180 — 1)+ ’ + 0+ Fleos(180 — #"~% + Ising Model
. eee “en .- Rl + (2.l7)
+
Plcos(180 — )" ! + I
The summation can be performed over a single aiation (2.13) can be smpeiad &2 followe:

variable (k) by substituting j — i by k: T 2
s Py=nll1+= Y (n—ka*
L n

k=t

Py = nl‘[l +2% - k)aﬂ] 2.18)
LT

=

n—1 zllv—l
=n=[1+2 yo&-=3 kz‘]
k=1 L
I 2a—an 2 (:(1 —a " ):'
=nl| 14+ =——— -

1—a n\(1—a 1—ua

where 2 = cos(180 — 1).

=nl®l 1+ - ;
By Uf W. Gedde L 1—a n(1—a)

73 Polymer physics I 20 2a(1— a)”]


http://uceng.uc.edu/Properties/Volkenstein%20on%20Flory%20II%20Journal%20of%20Polymer%20Science%20Part%20A-2%20%20Polymer%20Physics%20-%20January%201970%20-%20Volkenstein%20-%20Statistical%20mechanics%20of%20chain.pdf

The Primary Structure for Synthetic Polymers
Short-Range Interactions

Consider a freely rotating chain that has a bond
angle restriction of 109.5 ° =1

Equation (2.18) can be simplified as tollows:
2 n-l
(P = nF[x += Y (- k)z*]
LU T

= nF[l +2 ")i‘ ol "f k:‘]

[ L

2(a —a" 2 [a(l —a) na™
14— T
1 —a n\ (1—a) 1—a

"!z[l+ 2 _E‘L‘L’"]

1—a n(1—a)}

=nl?

Table 2.1 C values for some polymers under
theta conditions

Polymer C(M=x)
Moderate Flexibility Polyethylene 67
High Rotational Flexibiliy ~ Polyethyleneoxide
Lower Rot. Flexibility Polystyrene, atactic 10.0

Source: Flory (1989)
*See eq (2.7)

74 Polymer physics
By UK W. Gedde

4.0  Bondangles 109.5° : 104.5°

For infinitely long chains (n = o0):

Py = w[x + -“L]-,.r[‘ h "]
1—a 1—a

}1[1 + cos(180 — r)]
=nl}| ———

(2.19)
1 — cos(180 — 1)

() = 2nl?

bk _ 1 49

lBond
For a Freely Rotating Polyethylene Chain

C =

oo

http://books.google.com/books?id=lem3fC7XdnkC&pg=PA23&Ipg=PA23&dq=coil+expansion+factor
&source=bl&ots=BGjRfhZYaU&sig=I00Pb2VRuf8Dm8qnrmrhyjXyEC8&hl=en&sa=X&ei=fSVOT-
XqMMHWOQH:i I -T_Ag&ved=0CFOQ6AEwBw#v=onepage&q=coil%20expansion%20factor&f=false
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

Consider a freely rotating chain that has a bond
angle restriction of 109.5 ° =1

3

Table 2.1 C values for some polymers under <f‘> = 2"12
theta conditions
Polymer CM= ) l

C — Kuhn
Polyethylene 6.7 o —
Polyethyleneoxide 4.0
Polystyrene, atactic 10.0 Bond

Source: Flory (1989) . . .
YSee eq (27) If we consider restrictions to bond

rotation for first order interactions

C, = tmm 34

lBond

which is lower than the experimentally obtained
(6.7 + 0.1)nf* (Table 2.1). Agreement with experi-
mental data is obtained by also considering
higher-order interactions. Flory showed that an
analysis using second-order interactions brings the
predicted data closer to the experimental data.

http://books.google.com/books?id=lem3fC7XdnkC&pg=PA23&Ipg=PA23&dq=coil+expansion+factor
Pol hysi &source=bl&ots=BGjRfhZYaU&sig=I00Pb2VRuf8Dm8gnrmrhyjXyEC8&hI=en&sa=X&ei=fSVOT-
B°U3|’f""‘v°('; p“ ysics XqMMHWOQHi |-T_Ag&ved=0CFOQ6AEWBw#v=onepage&q=coil%20expansion%20factor&f=false
y Uf W. Gedde
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The Primary Structure for Synthetic Polymers
Short-Range Interactions

Table 2.1 C values for some polymers under
theta conditions

Polymer C(M= o)
Polyethylene 6.7
Polyethyleneoxide 4.0
Polystyrene, atactic 10.0

Source: Flory (1989)
*See eq (2.7).

Polymer physics
By UKW. Gedde

=~

C — Kuhn

Bond

15
&

er physics: from basic concepts to modern developments

and flexible chains

the Kuhn segment length [ to characterise stiffness. The value of I is
than the contour length per monomer unit lo. The ratios I/lo for some
ers are shown below.

poly(ethylene oxide)
poly(propylene)

poly(methyl methacrylate)
poly(vinyl chloride)

poly(styrene)

poly(acrylamide)

cellulose diacetate
poly(para-benzamide)

DNA (in double helix)

poly(benzyl glutamate) (in a-helix)

2 macroscopic viewpoint, a polymer chain can be always represented locally
Slament which is characterised by two microscopic lengths: the Kuhn segment

the filament’s characteristic diameter d. (This describes the thickness of the
) Depending on the ratio between these two lengths, we can now introduce the
<tiff and flexible chains. Stiff chains are those for which [ > d, while for flezible
~ d. Some examples of stiff chains are DNA, helical polypeptides, aromatic
etc. Examples of flexible chains are polyethylene, polystyrene, etc. in fact,
smers having a single-chain carbon backbone.

Alexei Khokhlov in Soft and Fragile Matter (2000)

Contour length per monomer is 2 * bond length
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Fig. 2.23. Neutron scattering experiment on mixtures of PC and d-PC. The contin-
uous curve has been calculated on the basis of the RIS model. Data from Gawrisch
et al. [8]

From Colby/Rubeinstein pp. 66
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The Primary Structure for Synthetic Polymers

Consider a Brownian path with an index or continuous postion variable "s". For the simulated walks "s" is the time. For
a polymer chain "s" is the chain index. Next consider an arbitrary origin of a coordinate system (0,0,0) and vectors to
positions of the walk r(s). The unit tangent vector to the walk, t(s), is defined by,

©9,0)
Figure 1. Brownian Path.

The end-to-end distance for the Brownian path is given by,

L
k-]
0

~

(s)ds
(2)



Linear absorption

dl = -1 o dx change is linear in intensity
di/l = - o dx integrate

In(1/ly) = - ax or

| = Iy exp(-oux)
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Persistence/Persistence.h

tml

The auto-correlation function for the tangent vector can be written,

<t(s) . t(0)> et 5

if a linear decay in correlation can be assumed. That is,

The persistence length is then similar to the linear absorption coefficient for radiation.

(2) and (3) can be used to calculate the mean square end-to-end distance 32,

(R*)=(R*R)= ]i(s)ds-[fi(s')ds' =f dsf (i(s)*1(s"))d

0
[ -L7
=2l L)1~ _l,f(l -e’ ”) =21 L

We also can consider that for a freely jointed chain composed of ng Kuhn steps of length Ik,
2 2
(R*)=mn by =, L=2LL

Showing that the freely jointed Kuhn length is just twice the persistence length.

jfa’sfexp
0

R s

=51,

r

NI

2)
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The Primary Structure for Synthetic Polymers

Short-Range Interactions

Persistence Length, Ip

(Arun Yethiraj J. Chem. Phys. 125, 204901 (2006))

Several Definitions

definitions are in terms of the projection of the end-to-end
vector, R, on a bond vector, averaged over all conformations,
ie.,

L={(R-uy), (2)

where u, is“l_hc (normalized) bond vector between sites k and
k+1. Flory™ defined the persistence length as the average
projection of R on an interior bond vector u;, far from any
chain ends, while Yamakawa®” defined the persistence length
as 1, i.e., the projection of R on the first bond. One can also
define the persistence length in terms of the bond angle cor-
relation function, (cos &(s)), where # is the angle between
bond vectors separated by s segments along the backbone.
For an ideal semiflexible chain (cos &s))~exp(-s/\¢),
where A\ is a persistence length.

For the purposes of comparing the stiffness of molecules
with different length and spacing of branches, we define the
pmislggcc length, lp, in terms of the wormlike chain. In this
model,” the mean-square end-to-end distance, (R?), is given
by
= L,(l —e ),

®)=3-55 ®
where L is the contour length and A is a parameter that char-
acterizes the stiffness. We define the persistence length as
twice the value of /; for this model, i.c.,

IR i(] —e), @)

“pJ. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience,
New York, 1969).

ZH. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row,
New York, 1971).

0. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).

-Appendix of Flory’s book, lin.
-Yamakawa’s book is online, I1.

-Bond Angle Correlation, AC.
-Kratky-Porod Worm-like Chain Model, Ip.



From Strobl p. 57

The evaluation of the integral is straightforward and yields
(R?) = 2Upalcs — 203, (1 — exp— l’—') : (2.125)
ps

We have two limiting cases: First, for [, > [, we obtain

(R?) = 2pulee . (2.126)

2.4 The Persistent Chain 57

Since [y o N, we find here, as expected, the scaling law of an ideal chain.
The Kuhn segment length ak of an ideal chain was introduced in Eqs. (2.29)
and (2.30), (Eq. (2.31))

(Rz) =akla (2.127)

if we identify [ with the length R,,.. of the straight, fully extended chain.
A comparison gives the relation

2y = ak (2.128)

between the persistence length and the length of the Kuhn segment. The other
limit, that of a stiff rod, is found for [, < [,,. A power law expansion of the
exponential function in Eq. (2.125) yields

(R =12 . (2.129)

Equation (2.125) thus describes the transition from rod-like properties to a coil
structure. Here the equation refers to chains with varying length [, but, when
replacing [« by Al and (R?) by (r},), it can also be applied to one given chain
to express the changing inner structure.



The Primary Structure for Synthetic Polymers

Scattering Observation of the Persistence Length

100 Ty

S e I(9)=Bq
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Figure 2. Kratky/Porod graphical analysis in a log-log plot of corrected SANS data from a
5% by volume d-PHB sample in h-PHB. The lower power -2 line is the best visual estimate;
the upper line is shifted to match a global unified fit. Key: left, g* corresponds to best visual
estimate; right, plot to match global unified fit. The statistical error in the data is shown [3].

A power-law decay of -1 slope has only one structural interpretation.



The Primary Structure for Synthetic Polymers

Scattering Observation of the Persistence Length
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A power-law decay of -1 slope has only one structural interpretation.



Electric Double Layers

SOLVENT MOLECULES % @
§ COUNTER IONS @g :§

HOP CO IONS
Surface Potential Helmholtz Outer Plane

Helmholtz (100+ years ago) proposed that surface charge
1s balanced by a layer of oppositely charged 1ons.

All colloids should flocculate.

Dale Schaefer Slides 2010



Zeta (0) Potential (Electric potential at the slipping (shear) plane)

Gouy/Chapman diffuse double layer + layer of adsorbed charge.

X

churface >

Shear Plane Bulk Solution
Stern Plane (5)

Dile Schacfer Sides 2010 @ = electrostatic potential (Volt = J/coulomb)
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Surface charge (negative)

: ’ Slipping plane =)

‘ e
@®
S e
® ®
o ; ; Surface potential
. ° e N Stern potential
0 A — C potential
e e e ...........................................

Distance from particle surface



Debye-Huckel approximation for ®O(x)

Gouy-Chapman Model

Ze?f’ <<1 Debye—Hiickel Approximation

Potential is stronger than kT
D(x)=Djexp(—kx)

o2y 2 1/2
=| 28 1% K= Debye screening length
&.E,kT

Counter ions (n,) screen the charge

Exponential
function

Dale Schaefer Slides 2010
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Persistence/Persistence.h
tml

Polyelectrolytes (proteins, charged polymers (sulfonated polystyrene), polyacrylic acid, polyethylene

oxide, polypropylene oxide, poly nucleic acids, etc.)

\5:\%

Strongly charged polyelectrolytes = each monomer unit is charged e
Weakly charged polyelectrolytes = some monomers are charged SO, Na'
This can depend on the counter ion concentration SCPE WCPE

For SCPE the electrostatic persistence length dominates, for WCPE there is a competition
between Coulombic and non-electrostatic persistence.

Debye-Hiickel Potential (U(r)) between two charges (e) separated by a distance r,

U(’”)=iexp(_L] rD=( ekT )%

Er I, 4rne’

1p 1s the Debye screening length, n is the counter ion (salt) concentration, rp determines how
quickly the electrostatic potential decays

Soft and Fragile Matter, M. E. Cates, M.R. Evans Chapter 3 Alexi Khokhlov (2000); Chines review of polyelectrolytes from web



file:////Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/PolyelectrolyteChainPersistence%20China.pdf

Distances where a mean field is felt. Potential is similar to kT

Consider two isolated charges subject to thermal motion at kT

The energy associated with the charge attraction/repulsion
is equal to the thermal energy, kT, at the Bjerrum length, I5.

2 2
e —_ k T ; 1 e Thermal diffusion/Brownian motion
B ‘B

a7 = takes over
4rel, drek, T

https://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-systems-
spring-2014/study-materials/MIT10_626514 S11lec28.pdf

In water at room temperature Iy ~ 7 A

Below the Bjerrum length charges will feel specific interactions and will form ordered structures. Above I,
charges feel a ’mean field” and do not form ordered structures but can still feel repulsive and attractive forces.

You hear the report of a gun but can’t tell its location, so you take cover, you are beyond its Bjerrum length.
You hear the report of the gun and run in the opposite direction; you are within its Bjerrum length.



Distances where a mean field is felt. Potential is similar to kT

Consider two isolated charges subject to thermal motion at kT

The energy associated with the charge attraction/repulsion
is equal to the thermal energy, kT, at the Bjerrum length, I5.

Debye Screeening Length 1923 ez 2

Bjerrum len gt h 1926 — k T 1 € Thermal diffusion/Brownian motion
B = g

S = takes over
drel, drek, T

https://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-systems-
spring-2014/study-materials/MIT10_626514 S11lec28.pdf

In water at room temperature Iy ~ 7 A

Below the Bjerrum length charges will feel specific interactions and will form ordered structures. Above I,
charges feel a ’mean field” and do not form ordered structures but can still feel repulsive and attractive forces.

You hear the report of a gun but can’t tell its location, so you take cover, you are beyond its Bjerrum length.
You hear the report of the gun and run in the opposite direction; you are within its Bjerrum length.



€ is the ability to
store charge per
unit length, C/(Vm)
or F/m

Energy is kT or CV so a
length naturally
emerges

Distances where a mean field is felt. Potential is similar to kT

Consider two isolated charges subject to thermal motion at kT

The energy associated with the charge attraction/repulsion
is equal to the thermal energy, kT, at the Bjerrum length, I5.

2 2
e —_ k T ; 1 e Thermal diffusion/Brownian motion
B ‘B

a7 = takes over
4rel, drek, T

https://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-systems-
spring-2014/study-materials/MIT10_626514 S11lec28.pdf

In water at room temperature Iy ~ 7 A

Below the Bjerrum length charges will feel specific interactions and will form ordered structures. Above I,
charges feel a ’mean field” and do not form ordered structures but can still feel repulsive and attractive forces.

You hear the report of a gun but can’t tell its location, so you take cover, you are beyond its Bjerrum length.
You hear the report of the gun and run in the opposite direction; you are within its Bjerrum length.
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Image by MIT OpenCourseWare.

FIG. 1 Typical g(r) for a liquid. The first neighbor distance is r4, the second is r, etc.

https://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-systems-
spring-2014/study-materials/MIT10_626514 S11lec28.pdf

0.4
0.3
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0.1

Image by MIT OpenCourseWare.

FIG. 2 Total correlation functions for a monovalent binary electrolyte with diameter of the ion = 5A. g,,(r) is the pair
correlation function for a central atom and a neighboring co-ion and shows repulsion. g,.(r) is the counter-ion pair
correlation function and shows attraction. The solid lines result from asymptotic analysis of the double layer and the
dashed lines result from setting the mean force potential equal to the sum of the core and electrostatic asymptotes.



Distances where charges are not felt at all.

For Charges separated by distance r in the presence of n = number/volume counter
ions or other charges

U(r)=e_2exp[_Lj . j/

Er Ty 4rne’

Debye length is the distance where kT random motion balances the U(r) potential
in the presence of n counter ion density

T‘Z _ Vper chargekT
D =
4an(r)with rp=00

Below the Debye screening length charges will feel interactions, either specific if r < Iz and or mean field if r >
Iz . Above lp, charges do not feel interactions at all, they act as uncharged species.

You hear the report of a gun but can’t tell its location so you take cover, you are beyond its Bjerrum length
but within its Debye screening length. You can’t hear the gun due to too many other guns firing closer to
you, you are beyond its Debye screening length.



3.2 Main complications in the theory of polyelectrolytes

Compared with the theory of neutral polymers, polyelectrolytes pose complications:

1. There are additional parameters (linear charge density of the chain, salt concentra-

tion, pH etc.) which essentially influence the polyelectrolyte behaviour.

. Coulomb interactions are generally not weak (so that Debye-Hiickel approximation
may be not valid). This is usually a problem for strongly charged polyelectrolytes.
The most important new effect emerging as a result of this fact is the phenomenon
of counterion condensation (see below).

. In addition to screening of Coulomb interactions due to point-like ions there is also
screening by extended polymer chains themselves. This complicates the character
of electrostatic interactions in polyelectrolyte systems.

. Interplay of Coulomb and Van-der-Waals interactions for weakly charged polyelec-
trolytes can lead to the formation of regular nanostructures with different morphol-
ogy (spherical micelles, cylinders, lamellae, etc.) controlled by slight modulation of
external parameters (salt concentration, pH, temperature, etc.).

These complications can be addressed using several basic concepts. Among these, the
most important are: counterion condensation, the electrostatic persistence length, and
translational entropy of counterions. These concepts will be considered in the following
sections.

Charge spacing, a
Counterion
concentration, »

Counterion
condensation

Polymeric
contribution
to screening

Micelles, liquid-
crystalline phases



Increase in persistence length due to charges on chain

A new size scale is

Alexei Khokiilov

introduced:
@\ e > Charge spacing “a”
/ a which contributes an
Figure 15. sstration of the henomenon ofcouterion condensaton electrostatic persistence
length, 1,

-Electrostatic Persistence Length
Persistence 1s increased by electrostatic charge. L, =1, + L
For a <<l,,<<rp

Interaction between charges separated by distance less than rp, short range repulsion increases
persistence length (short-range interactions)

Interaction between charges separated by a distance > 1, effect chain scaling (long-range
interactions)



Increase in persistence length due to charges on chain

* Ratio of Bjerrum length to the spacing of charges on the
chain (a or here b)

* If £ =1 then the charges are at the point where kT = e?/¢ and

Manning length, &

lb 62 thermal energy equals charge energy
—_ = * If £ > 1 we have specific interactions and the persistence can
b 47‘7880ka increase This is called a strongly charged polyelectrolyte

* If £ <1 we have mean-field interactions and the persistence
doesn’t change but the chain still has charge interactions,
that is if a < Ap This is called a weakly charged
polyelectrolyte

 For water |, is 7.1 A



Increase in persistence length due to charges on chain

Odijk-Skolnick-Fixman (OSF) Model

e =2 (L)
PL "~ 4 \xb

b (or a) is the charge spacing on the chain

ol i)

2

The Manning parameter is the mean-field cutoff to charge spacing (>1 for SCP)
and Ap/b is the charge cutoff to spacing (>>1) so |, . depends on the Debye
screening length by a factor near 1 and inverse to the counter ion concentration



Increase in persistence length due to charges on chain

Odijk-Skolnick-Fixman (OSF) Model

Fig. 17. Schematic representation of the conformation of a
polyelectrolyte chain for calculation of the OSF electrostatic

persistence length.

Andrey V. Dobrynin®*, Michael Rubinstein®*
Prog. Polym. Sci. 30 (2005) 1049-1118

r(n) = 2R, sin(n6/2)

_ bsin(nbi2) _

_ . 2n2
sn@2) oz ML Tms (2.73)

The difference between the electrostatic energy per
monomer in the circular and rod-like conformations is

AUelectr(a)
ks T
.~ (exp(—«r(n)) _exp(—kbn)\ Iz
=l ; ( r(n) bn xb<1 8K2b3 i

(2.74)

The expression (2.74) was obtained [22] by substitut-
ing expression for r(n) (Eq. (2.73)) into the right-hand
side of Eq. (2.74) and expanding it into the power
series over . A chain in the circular configuration
makes a complete turn after nj, o 6! steps leading to
the persistence length b0~ ".

In the OSF derivation of the electrostatic persist-
ence length [77,78] , it was assumed that such bending
of a chain can be induced by thermal fluctuations if
the change in the electrostatic energy per persistence
length n,AUec(f)is on the order of the thermal
energy kgT. This leads to the typical values of the
bending angle 005F=K2b3/lB and the OSF electro-
static persistence length equal to

b Igr3
SF _ 1))
B o~ 275
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Figure 13. [llustration of the phenomenon of counterion condensation.

-Counterion Condensation
A counter ion has translational entropy that drives it away from a chain of charged monomers

Ideal gas o .
dU = -pdV (for dQ = 0) V, and V; are the initial and final cylinders

dU = -RT(dV/V)
U = -RTIn(V,/V))

A counter ion has an enthalpy that attracts it to a chain of charged monomers (a = distance of charge

separation on chain) D-H Potential p= €
dU = -e?/ga dr/r a
U = -ep/e (In(r,/1)))
U = -ep/2e (In(V,/V)))

2
e

eakT

Balancing these two we have the parameter u, U=

u < 1 entropy is favored, and counter ions move out (disperse into solution),
u > 1 enthalpy favored and counter ions move in (condense on chain)

Counter ions condense until the chain charge is neutralized, when

_ Pee _1 Perr 18 the final chain charge and condensed counter ion charge

eff —
o EkT Soft and Fragile Matter, M. E. Cates, M.R. Evans Chapter 3 Alexi Khokhlov (2000); Chines review of polyelectrolytes from web
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Condensing counterions to neutralize charge on the chain

Pey® kgT
= =1 * EKB
Upgy ekT p b---- p"‘ —

b -

Figure 14. The dependence of the effective charge on the line as a function of its initial
charge.

This removes counterions from the solution so that there is
less Debye screening



Figure 15. Persistence length renormalisation in a polyelectrolyte chain.

That the Coulomb interaction leads to an effective renormalisation of the persis-
tence length can be illustrating using Figure 15, in which a chain is shown for the case
a € rp < . (This corresponds to a strongly charged polyelectrolyte, with a moderate
concentration of a low-molecular-weight salt in the solution.) In this case two types of
Coulomb interaction are possible:

1. Interaction between the charges separated by a distance < rp along the chain. (This
is a short range repulsion, tending to increase the persistence length.)

2. Interaction between the charges separated by a distance > [ along the chain. (Such
charges approach one another closer than the distance rp as a result of random
bending of the chain; their interaction should naturally be classified with the volume
interaction.)



http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Persistence/Persistence.h
tml

Polyelectrolytes (proteins, charged polymers, polyethylene oxide, polypropylene oxide,
poly nucleic acids, etc.)

Alexei Khokiilov

Figure 13. lllustration of the phenomenon of counterion condensation.

-Electrostatic Persistence Length
Persistence is increased by electrostatic charge. 1., =1, + 1
For a <<l,o<<r1p

Interaction between charges separated by distance less than rp, short range repulsion increases
persistence length

Interaction between charges separated by a distance > 1, effect chain scaling

Pse : : .
When  u, = —_ =1 charge condensation stops since all charge on the chain is

neutralized ekt ekT

and a maximum effective linear charge density is reached  Peymax =
|

0

Soft and Fragile Matter, M. E. Cates, M.R. Evans Chapter 3 Alexi Khokhlov (2000); Chines review of polyelectrolytes from web
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Alexei Khokilov

O

Figure 13. lllustration of the phenomenon of counterion condensation.

Summary of Polyelectrolyte Persistence Length

3 size scales are important,
“a” spacing of charge groups on the chain
p or k! Debye Screening length
1,0 bare persistence length with no charge
(Ig Bjerrum length for mean field)

“a” must be smaller than rp, for there to be a change in persistence, this is so that
neighboring charges can interact
rp must be smaller than 1,y for there to be a change in persistence

The parameter “u” enthalpy of attraction divided by T*entropy of dispersion of
charge governs u>1 charge condense; u<l charges disperse



and as a consequence the persistence length is increased, too. The expression for the
electrostatic persistence length [, has the form (Odijk 1977)

_ { ur}/(4a), at u <1 (nocondensation) (30)

rp/(4ua), at u>1 (condensation takes place).

Taking into account that for typical cases u ~ 1 and rp >» a (if the salt concentration is
not very high), we reach the conclusion that [, » rp, so that the stiffening of the polymer
chain because of electrostatic interactions occurs on length scales much larger than the
Debye radius rp (despite the fact that this interaction only acts over a radius rp). In
many cases, provided that the corresponding uncharged chains are not too stiff, we obtain
l. > lp so that the electrostatic contribution to the persistence length prevails.

Note that in the regime of counterion condensation, the quantity [, is independent of
the linear charge density p = e/a of the polymer chain, as it should be, because the charge
density in excess of e/a is compensated by the counterions condensing onto the chain.
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The concept of the electrostatic persistence length was
introduced by Odijk! and by Skolnick and Fixman?
(OSF), who considered a weak perturbation in confor-
mations of a stiff polyelectrolyte chain near a rodlike
conformation. They have showed that the persistence
length of a polyelectrolyte chain with the fraction of
charged monomers f in a salt solution in which the
charged monomers on polymer backbone interact with
each other through the screened Debye—Huckel poten-
tial with the Debye screening length ! can be written
as a sum of the bare persistence length /y and the
electrostatic persistence length ISS}

If*?
4(xb)?

L~ly+ 105 ~ 1, +

where b is the bond length and /3 is the Bjerrum length
(Ig = e?*/ekpT is the distance at which the Coulomb
interaction between two elementary charges e in a
dielectric medium with the dielectric constant ¢ is equal
to the thermal energy kpT). This equation shows that
chain flexibility could be adjusted by varying the salt
concentration.

Dobrynin AV Macro. 38 9304 (2005)
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Other measures of Local Structure

Kuhn Length, Persistence Length: Static measure of step size
Tube Diameter: Dynamic measure of chain lateral size

Packing Length: Combination of static and dynamic measure of local structure



Packing Length and Tube Diameter

Chain dynamics in the melt can be described by a small set of “physically motivated,
material-specific parameters”

Tube Diameter dr
Kuhn Length /k
Packing Length p

-
- . -
. - A
et »
-
2 d
. > o
4 - \
A7 27 e Y
s > - Uy
fat “~
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Parameters A=34g T0¢, {

Larson Review of Tube Model for Rheology
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Larson Review of Tube Model for Rheology
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816

LARSON ETAL.

TABLE I. Summary of the alternative definitions of tube parameters.

G definitions
(Fetters et al.)
Based on Eq. (17)

for M, and Eq. (19)

F definitions
(Ferry)
Based on Eq. (22) for

MM definitions
(Milner-McLeish)
Based on Eq. (22)

for M, and Eq. (14)

for 7, M, and Eq. (19) for 7, for 7,
M, ¢ 4pRT pRT pRT
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Strobel Chapter 8 /
1/2 1/2
v () = ()

u reflects Rouse behavior. In plots versus u,
deviations from ideal Rouse Behavior indicate

tube constraints.

6.3 Entanglement Effects 2729
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Fig. 6.8. Results of & quasielastic neutron scattering experiment on a melt of
poly(ethylenc- co-propylene) at 199°C (L% protonated chains dissolved in a deuter-
dled matrix: M = 56 10'): [ntermedinte seattering laws messured at the indi-
cated scaltering vectors (top); data repres ton using the di jonkess variahle

=g {126Tad/Cn)' * (bottam). Prom Richter ot al 167

6.3 Entangioment Effects w3

A

Pig. 6.10. Modelling the lateral constraints on tho chain motion imposed by the
entanglements by & ‘tuba’. The average over the rapid wriggling motion within the
tube defines the ‘primitive path’ (continuons dark ling)

Quasi-elastic neutron scattering data demonstrating
the existence of the tube

Unconstrained motion => S(q) goes to 0 at very long times

Each curve is for a different q = 1/size

At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times
a size for the tube can be obtained

dr



Julia Higgins Review Article (2016)
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400 500 600

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time = Tube relaxation or Tube Renewal

A model called Tube Dilation also exists to describe deviations between the
tube model and experiment

Without tube renewal the Reptation model predicts that viscosity follows N3
(observed is N34)
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284 Chapter . Micrescopic Dynamical Models

Fig. 6.11. Reptation moedel: Decompesition of the tube resulting from a replative
motion of the primitive chain. The parts which are loft empty disappeat

Without tube renewal the Reptation model predicts that viscosity follows N* (observed is N34)



786 Chapter 6. Microscopic Dynamical Models

0.02
Fick’s Second Law
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Fig. 6.12. Determination of diffusion eoeffickents of deuterated PE's in a PE malsix
by infrared absorption messurements in a micrescope. Concentration profiles 4(x)
obined in the separated state at the begin of o diffusion run and at & laler stage
of diffusive mixing (the deshat lnes wore caleulated for monodisperse components;
the deviations are due to polydispersity) (Laft). Diffusion coefficients at 7' = 176°C,
derived from messurement= on a series of &PE's of different molecular weight {7008,
[he contémicous dine corresponds to a power law D ~ M?, Work of Klein [68)

Reptation predicts that the diffusion coefficient will follow N-? (Experimentally it follows N-2)

Reptation has some experimental verification
Where it is not verified, we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ 1/N)

114
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Reptation of DNA in a concentrated solution

G4 Hydrodynamic Interaction in Solutions 9RT
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& : ' e o 4

A A o v ot A -
'l.‘!)nl American Assocation for the .',ll\“.,,, ment of Sciencs



1é

Simulation of the tube

Fig. 3. Result of the primitive-path

analysis of a melt of 200 chains of
N + 1 = 350 beads. We show the
primitive path of one chain (red)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines.
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Fig. 3. A representative amorphous polymer sample and the correspond-
ing network of primitive paths.

Simulation of the tube



Packing Length

Origin of the Packing Length:

Contemporary Topics in Polym. Sci. Vol. 6 Multiphase Macromolecular Systems, Culbertson BM Ed.
Theory of Stress Distribution in Block Copolymer Microdomains, Witten TA, Milner ST, Wang Z-G p. 656

Consider a di-block copolymer domain interface
(and blends with homopolymers as a compatibilizer)

@ r\A_’\fB\/
N C G L }G‘ c s
A
(b) 8 (c)
60+ = 60
ER) 4 Z 4
208 20 |-
Disordered
Disordered
0 1 1 L L 0 " i
0 0.2 O.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
A A

e http://pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs351 1 5¢
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(c)

fa
Fig. 3 Schematic illustration of the possible polymer chain arrangements in different
morphologies of AB diblocks changing from sphere (a) to cylinder (b) and to lamella (c), as
the volume fraction (f3) of the A block (black) increases to ~0.5. The dash curve in each

morphology represents a part of the interface between A and B domains. The concept of this
figure originates from ref. 24. This reference contributes to BCP self-assembly in solution,
and is cited accordingly in Section 3.1.

http://pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs35115¢



Free Energy Contributions:
Interfacial Energy Proportional to the Total Surface Area
(makes domains larger to reduce surface area; y is the average energy per kT per mer unit in a mixture of A and B)
One Chain Interfacial Energy = ykT(Ad,)/V. (©
d; is the thickness of the interfacial layer where the A-B junction is located
A is the cross-sectional area of a polymer chain
V. is the occupied volume of a unit segment of a polymer chain
The total occupied volume of a block copolymer chain 1S Voeeupied = Nag Ve;
This occupied volume is also given by Voceupied = das A wWhere dap 1s the length of the block copolymer chain assuming it
forms a cylindrical shaped object and the block copolymer domain spacing. So, dag = NagV./A.

Energy of Elongation of Polymer Chains, Elastic Energy
(makes domains smaller, 3kTR?/(2nl?))
Assumes that one end is at the interface and the other end must fill the space.
Chain Energy of Elongation = -3kT dap%/(2<R?>) = -3KT NapV.%/(21x2A?)
Using dag = Nap V./A from above and <R*> = N,lx?

The free energy will be minimized in A to obtain the optimum phase size dag. So, it is the packing of the chains at the
interface that governs the phase behavior of BCP’s.

AG/KT = yAd/V, - 3 NaVH(2(IkA) 2)

d(AG/KT)/dA = xd/V. + 3 NagV 2/(1g2A3) =0

A= {3 NABVC3/(1K2X,dt)}1/3

das = Nap V/A = Nap?3/(31x*xd;) I3 This is verified by experiment (Hashimoto papers)

120
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Three terms arise from the consideration of microphase separation

A is the cross-sectional area of a polymer chain
V. is the occupied volume of a unit segment of a polymer chain
Voceupied = Nag Ve The total occupied volume of a block copolymer chain

Witten defines the term “a” that he calls the intrinsic elasticity of a polymer chain
Elastic Energy/ (3kT) =a <R*>/ (2V0ccupied) where a :Voccupied/ <R02> = Voccupied/ mK IKZ)
(Previously we had the spring constant k,/kT = 3/<R¢?>> = 3a/Vyccupied; @ = Kepr Voceupied/3)

“a” has units of length and is termed by Witten the “packing length” since it relates to the
packing or occupied volume for a chain unit, Vieeupicd- “@” 15 a ratio between the packing
volume and the molar mass as measured by <Ry>>.

Since Voceupied = Nk Ve, and <R¢>> = N Ix?, then a = V,/I?, so the packing length relates to
the lateral occupied size of a Kuhn unit, the lateral distance to the next chain. This is a kind
of “mesh size” for the polymer melt. The cross-sectional area, A, is defined by “a”, A = na?,
and V. = a Ig?, so the BCP phase size problem can be solved using only the parameter “a”.

Contemporary Topics in Polym. Sci. Vol. 6 Multiphase Macromolecular Systems, Culbertson BM Ed.
Theory of Stress Distribution in Block Copolymer Microdomains, Witten TA, Milner ST,Wang Z-G p. 656
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Other uses for the packing length

The packing length is a fundamental parameter for calculation of dynamics for a polymer
melt or concentrated solution.

Plateau modulus of a polymer melt G, ~ 0.39 kT/a?

Structural Control of “a”

a=my/(p Ik lo)

Vary mass per chain length, mg/l

Contemporary Topics in Polym. Sci. Vol. 6 Multiphase Macromolecular Systems, Culbertson BM Ed.
Theory of Stress Distribution in Block Copolymer Microdomains, Witten TA, Milner ST,Wang Z-G p. 656

Lin,Y-H Macro. 20 3080 (1987)

Lohse DT J. Macromol. Sci. Part C Polym. Rev. 45 298 (2005).
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log J

terminal flow,fegion

Fig. 5.12. General shape of the complete creep curve of PS, as suggested by the

log t

appearance of the different parts shown in Fig. 5.11

G' [Nm?2]

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9-10° to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et

al.[54]
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Strobl, Physics of Polymers

Jw—0)=JO - inoLw (5.103)

As we see, 79 and J? show up directly and separately, in the limiting behavior
of J' and J”.
The dynamic shear modulus follows as

1 now
G* 0 — =
=0, = e meR o
_ mpwtJe +imow (5.104)
(0w J)? +1 )
giving
G'(w — 0) = Jon3w? (5.105)
in agreement with Fig. 5.15, and
G"(w — 0) = now (5.106)

We thus find characteristic power laws also for the storage and the loss mod-
ulus which again include J? and 79 in a well-defined way.

One may wonder if 79 and J? can also be deduced from the time dependent
response functions, as for example from G(t). Indeed, direct relationships

exist, expressed by the two equations

Low Frequency G’ ~ @?
From definition of viscoelastic

High Frequency G’ ~ ©!?
From Rouse Theory for T,

Plateau follows rubber elasticity
G’ ~ 3KT/(Nk . 1?)
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Plateau Modulus

Not Dependent on N, Depends on T and concentration

10°
10%
o
§ 10*
)
L 10°
W
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v 10° 1 1 1 1 1
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wls’)

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9-10* to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54]
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Fig. 2. Dimensionless
plateau moduli Gl 3/k,T
as a function of the di-
mensionless ratio /,/p
of Kuhn length [, and
packing length p. The
figure contains (i) ex-
perimentally measured
plateau moduli for
polymer melts (25) (+;
colors mark different
groups of polymers as
indicated) and semidi-
lute solutions (26-28)
(X); (ii) plateau moduli
inferred from the nor-
mal tensions measured
in computer simulation
of bead-spring melts
(35,36) (Drand a semi-
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atomistic polycarbonate melt (37) () under an elongational strain; and (iii) predictions of the tube
model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (m), bead-spring
semidilute solutions (@), and the semi-atomistic polycarbonate melt (4 ). The line indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

this implies that dr ~ p
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Kuhn Length- conformations of chains <R*> = IkLL

Packing Length- length where polymers interpenetrate p = 1/(pchain <R?>)
where pchain 1 the number density of monomers
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral
polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010)

neutral polymers in
good solvent

8-solvent N
— (X AN

Fig. 1 Conformations of polymers in dilute solution. Neutral
polymers in poor solvent collapse into dense coils with size
~bN'/3 (purple). Neutral polymers in 6-solvent are random walks
with ideal end-to-end distance Ry = bN'/2 (black). Neutral poly-
mers in good solvent are self-avoiding walks with Flory end-to-
end distance Rp = bN?388 (red). Polyelectrolytes with no salt
adopt the highly extended directed random walk conformation
(blue) with length L proportional to N
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