Dilute Solution Chain
Dynamics of the chain

For Viscous Motion (a relaxatory system)

m (dV/dt) = -6mn.a V F=ma=_V

V = Veexp(-6mna (t, - t,)/m) = Viexp(-(t, - t,)/ 7))  Integrate

Position is the integral of velocity dt

x(t) = ]dr’exp(—kspr(r—t')/é)g(t’)

The exponential term is the
“response function”

response to a pulse perturbation
g(t) is random = pulses due to kT
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Fig. 5.4. Primary response function of a damped harmonic oscillator (a), a perfectly
viscous body (b), a Hookean solid (c), a simple relaxatory system (d)



Dilute Solution Chain 2

Dynamics of the chain
For Brownian motion 2 w2
of a harmonic bead in a solvent § -
this response function can be usedto £

Simple exponential relaxor  calculate the. _ ™
time correlation function <x(t)x(0)> i
t . _

for DLS for instance 08 o e

X(t): Jdt'exp(—kspr (l‘—l',)/g)g(t,) Time

o (e()2()) = [d, [ty exp[ ke, (—1,~1,)/2](e(1)2(5,)

Kl\ R <g(t1)g(t2)>=2kTT8(tl—t2)
| | (x(1)x(0)) = L exp(~1/7)
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Fig. 6.4. Tima dependen ce

of the amplitude Z,, of a Rouse mede (schematic) v



Draining vs Non-Draining
Rouse vs Zimm

Consider Diffusion of a Chain

D = KT/

For Non-Draining
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Oscillatory shear data for solutions of
poly(2-vinyl pynidine) in 0.0023 M HCI
in water. Open symbols are the storage
modulus G’ and filled symbols are the
loss modulus G”. Squares have
c=0.5g L™, triangles have
c=1.0gL"", and circles have
c¢=2.0gL". The curves are the
predictions of the Rouse model [Eqs
(8.49) and (8.50)). Data from D. F.
Hodgson and E. J. Amis, J. Chem. Phys.
94, 4581 (1991).



Dilute Solution Chain
Dynamics of the chain

Rouse Motion
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Lo Beads 0 and N are special
E="2%Y(R-R_)
2 ,._1( ~ k1) For Beads | to N-1I
. =k
drR, —(dE/dR,) AR (R 4R -2R)+g1)
= +g,() dt &
dt E

For Bead 0 use R-1 = Ro and for bead N Rn+1 = Rn

E=6mn,,,.,4 This is called a closure relationship



Dilute Solution Chain
Dynamics of the chain

Rouse Motion
l'.
dey AN,

Parametees 4=34g7) A e
drR, —k,,
d_tl = TP(RM +R_, - 2Ri) +8;(1)
The Rouse unit size is arbitrary so we can make it very small and:
dR _kspr dZR . .
= -+ &,(1) With dR/dt =0ati=0and N
dt E di
d°R

— Reflects the curvature of R in i,
di” it describes modes of vibration like on a guitar string



Dilute Solution Chain

Dynamics of the chain

g 2
" f‘%%% \ _5?"‘%; Rouse Motion

s

d’R
——— Describes modes of vibration like on a guitar string

di’

For the “p’ th” mode (0’ th mode is the whole chain (string))

2p°nk, 2
kspr,p — p - P 671:]bsz pz gp = 2N€ 50 = Né

S, 2N°b’E
Tp = = )
k 3n“p kT

spr,p



X, ¥, z decouple (are equivalent) so you can just deal with z

dz
Cr d_tl =bp(z,, —2)+bp(z,,— 7))

For a chain of infinite molecular weight there are wave
solutions to this series of differential equations

Z, ~exp —% exp(ild)
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204 Chapter 6. Micrascopie Dynamical Madels

Cyclic Boundary Conditions:

b 4
7' =£(2-2co0sd) =
Co
2= Zng
N0 =m2rm
Nk values of phase shift
2
S =m m=- Ne 1],
N, 2

R

R

sin’



he lc
e especially indicated, by

Free End Boundary Conditions: 2 =2 =2y, ~ 2,2 =0

dz dz
—(1=0)=—(I=N,-1)=0
dl( ) dl( w 1)

(Ne—1)6 =mr

Nk values of phase shift

Nz Rouse Modes of order “m” 0, = mm; n= 0’1’2""’(NR - 1)
R



Lowest order relaxation time dominates the response

Cr
oo )
Bag? kr °

This assumes that (%j

ag

is constant, friction coefficient is proportional to number of monomer units in a Rouse segment

This is the basic assumption of the Rouse model,

N
é/RNaIZQN_:nR
R



Lowest order relaxation time dominates the response

4
1\ ak R

T,=—
Bag? kr °

Since R, =a.N



The amplitude of the Rouse modes is given by:

2
(22)= 372r2 %

The amplitude is independent of temperature because the free energy of a
mode is proportional to kT and the modes are distributed by Boltzmann

z.)-o0( -2

90% of the total mean-square end to end distance of the chain originates from
the lowest order Rouse-modes so the chain can be often represented as an
elastic dumbbell



6.2 The Rouse-Moxcte) 2150
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Flig. 6.4. Timo dependence of the amplitude Z,, of & Rouse moede (schematic

Rouse dynamics (like a dumbell response)

Dumbbell Rouse
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6.2 The Rouse-Mode)
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Fig. 6.4. Timo dependence of the amplitude Z,, of a Rouse mede {schematic

Rouse dynamics (like a dumbell response)

<g(tl) g(t, )> =2D6(t) wheret=t,—t, and §( ) is the delta function whose integral is 1

kT
Also, D=—-

¢

kT exp| —— ¢ T
<x(t)x(0)>: ( T) T:k_ For t => 0, <x >:_

k spr spr



Predictions of Rouse Model

6.2 The Rouse-Model
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Tig. 6.6. Time dependent shear modulus of PVC. Maste

65°C as the reference temperature. The dashed line indi
by the Rouse-model. Data from Eisele [66]
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Predicts that the viscosity will follow N which is true for low molecular
weights in the melt and for fully draining polymers in solution

Rouse model predicts

Relaxation time follows N? (actually follows N3/df)

Diffusion constant follows 1/N (zeroth order mode is translation of the molecule) (actually follows N-/df)
Both failings are due to hydrodynamic interactions (incomplete draining of coil)
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Rouse Motion
5.3 Specific Relaxation Processes and Flow Behavior 235
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Fig. 5.21. Malecular weight dependence of the relaxation time of the dielectric
normal mode in cis-PIP. Data from Boese and Kremer (68 | Folyzihriere
) glycal
Predicts that the viscosity will follow N S :
a 1 2 3 a L3 &

which is true for low molecular weights in
the melt and for fully draining polymers in
solution

Rouse model predicts

Canstant + log M

364, Plots of wustaul + lug 11; vs constsnt + log M for nine different polymers The
sk are different for cach of the pelymers, and the one appearieg in the abscissa is

which is for s given und:lutad polymer. For each polymer the

¥ the left and right etraight line regions are 1.0 and 3.4, respectively. [G. C. Barry and T, G.

Palyw. Sei, 8, 261-357 (1963).]

Relaxation time follows N? (actually follows N3/df)



