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Polymer Dynamics and Rheology

Brownian motion
Harmonic Oscillator
Damped harmonic oscillator
Elastic dumbbell model
Boltzmann superposition principle
Rubber elasticity and viscous drag
Temporary network model (Green & Tobolsky 1946)
Rouse model (1953)
Cox-Merz rule and dynamic viscoelasticity
Reptation
The gel point



The Gaussian Chain

Boltzman Probability Gaussian Probability

For a Thermally Equilibrated System For a Chain of End to End Distance R
I ) 3 V2 3(R)
P;r(R)—CXP(- KT ] P(R)=[2:m:,) ex;{l—z((,)zl

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

E = kT2X
2nl;
Force Force
Assumptions:
F = dE — 3kT R=k R -Gaussian Chain
“dR  nl2 7 “Thermally Equilibrated

-Small Perturbation of Structure (so
it is still Gaussian after the deformation)



Stoke’s Law

F=vg
¢ =67mnR

‘ F




Creep Experiment
€, =0y,/E

de,/dt = 6,,/M
€, =k (1 - exp(-t/1))

Fig. 6.1. Creep curve of a polymer sample under tension (schematic). The elonga-
tion AL, induced by a constant force applied at zero time is set up by a superposition
of an instantaneous elastic response (dashed line), a retarded anelastic part (dash-
dot line), and viscous flow (dotted line). An irreversible elongation is retained after
an unloading and the completion of the recovery process

1=1/® Cox-Merz Rule
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Fig. 6.2. Stress relaxation curve (schematic)
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Fig. 6.3. Time dependence of stress (¢..) and strain (e..) in a dynamic-mechanical
experiment (schematic)



Boltzmann Superposition
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Figure 1.11 Storage and loss moduli for a low density polyethylene “Melt 1.” (These data were
measured at several temperatures and shifted along the frequency axis by a “shift factor” ar to form
collapsed curves; see Section 3.5.2). The lines are empirical fits of Eqgs. (3-25a) and (3-25b) to the
data. (From Laun 1978, reprinted with permission from Steinkopff Publishers.)
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Figure 3.9 (a) Loss modulus G”
and (b) storage modulus G’ versus
frequency computed from Egs. (3-
25a) and (3-25b) for the cight modes
given in Table 3-1 for Melt I, a
polyethylene melt. Summing up over
all the modes gives the “envelope”
curves shown; these curves are re-
produced in Fig. 1-11, where they
arc seen to represent accurately the
linear data for this melt. (From Laun
1978, reprinted with permission from
Steinkopff Publishers.)



Stress Relaxation (liquids)  E(t) = 6,,(t)/g,,

Creep (solids) J(t)= ?
Dynamic Measurement E*(w) = o,,(t)/g, (1)

o,() = 0'011 exp(imt)

£,,(t) = €°;, exp(-id) exp(iwt)

Harmonic Oscillator: 6= 90° for all @ except = |/ ¢ where §&0°
Hookean Elastic & 0°

Newtonian Fluid & =90°

e'A=cos A -isin A e"*=cos A +isin A



Brownian Motion

<V({t)>=0
<V(t1)V(t2)>= Cv(tl - tz)

C,(t) is the velocity correlation function

correlation time, T,
<V(t)V(t)>= <V(H)V(0)>=C, (1)

<V*t)> =kT/m For short times E=kT =% mV?
For long times <Vi(t)>= 0
m (dV/dt) = -6mn.a V F=ma=_V
V = Vexp(-6mn.a (t, - t,)/m) = Vexp(-(t, - t,)/ Ty) Integrate

Ty = m/(6mn)a)
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For a sphere of density p, m = (4n/3)a’, and 1, = (2n/9)p a’/m,.

The relaxation time, Ty, is very small for colloidal scale objects such as polymer coils, O(10"%)

polymer in dilute solution Ty =0
displacement E(r) = IV(t’ )dt
0

(£07)= [a Vet =201 Jas [ 208001
0 0

<V(t,)V(t)>= <V(t)V(0)> = 2Dd(t)



B ian Motion in a Potential Field:

dE =F dx

<V> = -(1/0)dU/dx = <dx/dt>, F=(V

dx/dt = -(1/{)dU/dx + g(t)  Langevin Equation

<g(t>»> =0

<g(t)g(t)> = 2Do(t-t') <V(t,)V(t,)>= <V(t)V(0)> = 2DJ(t)



B ian Motion of a H ic Oscillator:

) F = kdx
U(x) = kx/2 Fdx =dU
Langevin Equation
dx/dt = -kx/{ + g(t) dx/dt = -(1/C)dU/dx + g(t)

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html

! ~k(t-t)
x(1) = Idt’ e /{g(t‘ )

(x(t)x(O)) = _[dtl J'dtz exd_k(t_tl o tz)/CKg(tl )g(tz»
Using <g(t)g(t)> = 2Dd(t-t') and D = kT/C,

<x(t)x(0)> = kTexp(-t/t)/k

Spr

1={_/k

spr

For t=>0, <x’> = kT/k,,, as predicted by a Boltzman distribution, ¥, o exp(-k,,x*/2kT)

spr?


http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html

{(x()- x(0))" ) = {(x()°) +{x(0)" ) - 2{x(1)x(0))

=2{x")- 2{x()x(0))
= 2kT Ik, (1- exp(-t /1))

For t=>0 this yields (2kT/{)t = 2Dt which is the expected result from the discussion of Brownian

motion above.



General Linear Response Theory:
y(t) as the kind of force that is applied when you strike a bell

X(t) = Wy 1(t)

the primary response function
H(t)

describes the response of a material to an infinitely short, pulsed force or field, y(t) = y, &(t)

d(t), has a value of « for a given t
The integral with respect to time is 1.
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Fig. 6.4. Primary response function of a damped harmonic oscillator (a), a perfectly
viscous body (b), a Hookean solid (c), and a simple relaxatory system (d)



The response to any force field

o0)= [ul-W(e X

The latter expression relies on two assumptions:

1) Causality principle, the response is caused by the field or force that the material experienced
in the past;
2) Superposition principle, the field or force over time can be described by a sequence of pulses
and the response is a summation of the responses to these pulses.



Relationships Between Different Dynamic Measurements:

Creep Measurement:

Following Strobl, p. 200, consider a creep experiment where a stress, Y(t), is applied to a sample
at t=0, for 0; y(t) = y,. The creep, x(t), is given by

x(1) =j we =t hy, dt’

For this constant stress experiment the displacement, x(t) can be directly normalized by the force,
V,, to yield the susceptibility, o(t), or the integral of the response function, or the cumulative
response function.

;L:) = jp(t —t')dt’ = _:[ w(e")dr’

we can also write that the response function is the derivative of the time dependent
susceptibility,

w0 =2 ()



Stress Relaxation Measurment:
In the stress relaxation experiment the strain is fixed, x(t) = x,,, while the stress relaxes, y(t),

!

%, = [ u(t- )y (¢')d

0

It is natural to reduce the stress, y(t), by the fixed strain, x,, to yield a time dependent modulus,
a(t) = y(t)/x,. Then,

!

1= _[(t—t)(t)dt—_[ (t =t)a(t’)dt’

0
3

19 Fig. 6.2. Stress relaxation curve (schematic)



Boltzman Superposition Equation:
If the susceptibility is used in the definition of the response function we have,

' ’ ’ ’ ‘ da ’ ’ ’
x(0)= [u-rW @ = [ZX (- (e
The latter expression can be reduced using integration by parts;
Iudv =uv—jvdu

where u = y(t') and dv = (da/dt’) dt', so v = a(t) and du = dy(t'), then,
x(0)= [al-r)dy(r)

The latter expression indicates that the integral over all time till now of the change in force times
the susceptibility yields the response. This equation indicates that the load on a sample can be
broken down into differential steps and the response can be obtained by integration of these steps
times the susceptibility of the material to loading.

20



A similar analysis can be made using the definition of the time dependent modulus, a(t), to
describe the corollary of the Boltzman equation for creep,

w)= [alt-r)ade)

The force at time t, Y(t), is composed of incremental steps of strain, dx, times the time dependent
modulus, a(t).

21



Dynamic Mechanical Measurements:

In a dynamic mechanical measurement an oscillating force, y(t) = y, exp it = y, (cos ot + i sin
t), is applied to the sample and the strain response displays a time lag (phase angle difference),
d, so the strain is written, x(t) = x, exp-id exp iot = x, exp i(wt - §). Using,

x(0) = [ (- ()ar’
0
and substituting the dynamic expressions,

xexp{ilar—8)} = [t - v, explionJir’

The dynamic susceptibility, a*(®), can be obtained in analogy to the creep experiment, a*(®) =
{x, exp -i8}/y,. The dynamic susceptibility is related to the primary response function, pu(t), by,

o (@)= ju(t-:')exp{im (e—1)}dt’ = Iu(:”)cxp{—hw”}dl" = Iu(t”)exp{-iox”}dt"

the latter equality being due to i = 0 below t=0. Then the complex susceptibility is the Fourier
transform of the primary response function, u(t)!

22



Kramers-Kronig Dispersion Relations:

The dynamic susceptibility is a complex function, a*(®) = a'(®) - i a"(w). The imaginary part,
a"(w), reflects the loss (Hookean response for susceptibility); while the real part, o'(®), reflects
motion of the material (flow). Each of these parts are related to the primary response function,
u(t), that is a real function. This can be easily demonstrated by expansion of the complex
exponential,

ad'®)-o"(w)= {Ip(:)cos(mt)dt} - v{] p,(:)sin(wt)dt}

Both loss and storage are based on the primary response function, so it
should be possible to express a relationship between the two.

The response function is not defined at t =~ or @t w =0
This leads to a singularity where you can’t do the integrals

Cauchy ri lim [®* o~ - ” ]
Integral P[Lw(_x_modm}=¢ _90,_ I w(iwodm+ I m(_x.wode

—oo o +0

23



[= o 1
a'(m)=lPljg_(2)de
a"(o))—lPI— oL'(m)dm]

T |lo-o,

24




Power Consumption (Rate of Work) in a Dynamic Measurement:

The power consumption, (dW/dt)/V, in a perturbation, y(t), response, x(t) observation is given

by,
W energy = Force * distance

Y(t) =y, cos mt

dx(t)/dt = -oa' Y, sin Ot + OA" Y, cos Ot

- = d—: =mQ, cos(wf)fo” cos(mr) — o’sin(@?)} = 0P, {(1'0082((01) i 0L;’Sill(zmt)}

heat generated energy of oscillation
sin(x)cos(x) = sin(2x)/2. 0 over time

25



Dynamic Dielectric Measurements:
D = SOE + P = SOEE Dielectric Displacement

Parallel Analytic Technique to Dynamic Mechanical
(Most of the math was originally worked out for dielectric relaxation)

Simple types of relaxation can be considered, water molecules for instance.

P=¢g(e-1)E, D=¢ggE dielectric displacement
P is the resulting polarization

E is an applied electric field

g, Free Space

Creep: a constant field E; ¢ Material
P(t) =g,(g, -1) E, +&, Ae(t) E, ¢, Dynamic material

Instantaneous Time-lag
Response Response

Dynamic:
Et)=E,expiot, P(t) =expi(wt- d)
e*(w) =€'(w) -ie"(w) = ¢, + P, (exp -id)/E,

26



Modes of Relaxation

water molecules.

Rotational Motion
at Equilibrium

P, = {p p’ E/(3kT)}

p is the dipole moment of the water molecules
electric field, E.

A single relaxation mode, 7 relaxation

100/e % or 36.8% of the molecules have reached the equilibrium state

27



Single-Time Relaxation Processes:

Creep Measurement
o, is applied at time t = 0 and the strain v,,(t) develops with time

Response
AJ 6,,°, where Al is called the relaxation strength

.dy,,(t)/dt, changes with time and reaches 0 when the system is at equilibrium
Y1) =AJ 0'120

a linear decay

A = G + ) dy0/dt =K (v,0-A o) k=)

Y12 (t) = AJo (1 —exp(— /7))

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html

limiting conditions of y =0 at
t=0 or for the t=co limit of y= AJ ©,,°

28


http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html

Apply to a dynamic mechanical measurement

lez(t)/ dt=K ( le(t) -AJ 6120)

Y. (2) = Ab?z(l —exp(— /T))

Al oG, Al G,(t) O, =0, exp(iwt)

dy,,(t)/dt = (-1/7) (1,,(1) - AV 5,,° exp(iwt))
YD) = 0120 J*(w) exp(imt)
dy, (1)

=iwo,,J (@)exp(iot)
dt
J*(w)=—21 Single mode Multiply by U2E=1
1+iwt Debye Relaxation (it —1)
A
Jaye Fipe . j oM

—1
1+0*x? 1+0*1?

29



Single mode
Debye Relaxation

AJ _; AJort
l+0o7? 1+0%t?

J¥(@)= J—il"=

Alot/(1 + 1) = Al/{(1/ot)+ot} = AJ/{107°*"+10""}
Symmetric on a log-log plot

1.0 1.0
08 |- 08 -
06 -
% —
04 |-
02 |-

0.0 prod vl
0.01 0.1 1 10 100 0.01 0.1 1 10 100

ot wt

Fig. 6.5. Real part (left) and imaginary part (right) of the dynamic compliance
associated with a mechanical Debye process
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Relationship between the Loss and Storage Compliance for a Debye-Process:

AJ _; AJort
l+o? 1+o’t?
Alot/(1 + 1) = Al/{(1/ot)+wt} = AJ/{107=*"+10"="}

J¥(@)= J—il"=

"l = ——A
/_OOJ d log(wT) 5T 10 J

"impossible to have a loss
compliance without a corresponding
(in frequency) change in the storage compliance"

31
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Single mode
Debye Relaxation

0.01 0.1 1 10 100

it

The total width at half-height 1s 1.2 decades.
lower limit for a relaxation process

More complex processes have a broader peak

harmonic oscillator is single valued
a damped harmonic oscillator

Shows a broader peak but much narrower than a Debye relaxation

The width of the loss peak indicates the difference
between a vibration and a relaxation process

Oscillating system displays a moment of inertia
Relaxing system only dissipates energy

32



Cole-Cole Plot:

Equation for a circle in J’-J”” space
(x-X0)* + (y-yo)' =

AJ _; AJot
l+o*? l1+0%t?

J*¥w)=J—iJ"=

——

(1+0%?)" |

(
(f__) . l(lﬂo'r J 1+o7’

L]

2

AJ J
_2(1 mt)\ (—Zm} AP f1+2mtz+m“t“]
]
b A”
J

AP 4[(1 +0°1%)

[

4 (1+e™?) 4
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Fig. 6.6. Cole—Cole plots of dielectric data obtained for a dipole carrying a rod-like
molecule of low molar mass (left) and a polysiloxane with these molecules attached

as side-groups (right) [67]
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Cole-Cole Plot:

{s'{e"+A—;)]2+(e" ; =A£Tz
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Fig. 6.6. Cole—Cole plots of dielectric data obtained for a dipole carrying a rod-like
molecule of low molar mass (left) and a polysiloxane with these molecules attached

as side-groups (right) [67]
The left curve is for a rod molecule with a strong dipole moment that displays a simple Debye-
process relaxation. The instantaneous polarization, €,, is about €, = 3.73 which is determined at
the left of the plot (w => o limit). The right intercept, €' = €, + A€, is at about 5.06 so Ae = 1.33.
The peak occurs at about £" = Ae/2 = 0.67 for €' = g, + Ae/2 =4.40.

The right curve is for the same rod-like chemical group attached as a side-group to a polymer
chain. For the Debye-process (left curve) we had e¥(wt) =¢, + Ae/(l1 +iwT) =¢, +
Ac(1-w1)/ {(1 -1t) (1 +i01)}= g, +Ae/(]l + 0*1) - iwt Ae/(1 + ®*1%). A comparison
between the simple single-valued relaxation time, Debye-process of the left curve and the
deviatory process of the right curve include:
1) Shift of €, from 3.73 to about 3.89 (larger instantaneous polarization)
2) Shift of Ae from 1.33 to 1.71 (larger relaxation strength, A€)
3) The center of the relaxation circle occurs at €' = 4.75 which remains close to €' =€, + Ag/2.
4) Peak value is lower than " = Ae/2, €" ., = 0.69 (compare to the expected value of 0.86).

Deviations from the Debye-process in the right curve can be modeled by a Cole-Cole Function
that includes a scaling parameter, B, £*(w1) = €, + A¢/(1 + i @1)"®, where B =0 for a Debye-
process. Expansion of this equation yields a coupling between the imaginary and real relaxation
terms, e¥(@1) = €, + Ag(1 - iwt) /(1 + 0*1)"%.



Time

Dependent o Relaxation Spectra:
Equilibrium
Value . .
\ V7Iue ¥ ). Alo,®) 0,,(t) =6, exp(imt)

d_y Y(I) +AJo,

7 dy,,(t)/dt = (-1/7) ('y,,(1) - Ao, exp(iwt))

Y:.(t) = 6., J*(w) exp(iot)

By substitution of this expression into the differential equation and solving for the dynamic compliance, J*(w),

J*(0)=—=2
l1+iot
I*(@)= J-ir=——_ _; AKX

—1
l+0 1t 1+’
A linear sum of Debye-processes is the simplest description of a series of relaxation processes
each with a strength of relaxation, AJ, and a time constant T,,

o AJ,
J (@)=, +21 1+ior, Lodge Liquid

Boltzmann Superposition

: L,(logTt)
J (@)=J,+ |——d(logt
@)=, Il+mn (logt)
L,(log 1) is called the retardation time spectrum.
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For a creep measurement, the strain with time is given by 7,,(t) = AJo°,, (1-exp(-t/1)). The
retardation time spectrum, L;(logt) can be used to describe the creep of a complex material with
a relaxation spectrum,

J(t)=J0(t) + I{l— exp—?t}L ,(logt )d(logt)

where O(t) is 1 for 0 and O for t<0.

36



J*¥(w) =1, + AJ/(1 + io1))

G*(®) = 1/1%(w)
substituting J,=J, +AJ t=1J/1,G,=1/J,,G.=1/],and AG =G, - G,

G*(w) =G, + AG/(1+ i)

G'(©)=G,- | %%‘)d(logf)
G(t)=G,0(t)+ I{exp %t }H ;(logt )d(logt)

H(logt) is called the relaxation time spectrum for the material.

37



Boltzmann Superposition
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Figure 1.11 Storage and loss moduli for a low density polyethylene “Melt 1.” (These data were
measured at several temperatures and shifted along the frequency axis by a “shift factor” ar to form
collapsed curves; see Section 3.5.2). The lines are empirical fits of Eqgs. (3-25a) and (3-25b) to the
data. (From Laun 1978, reprinted with permission from Steinkopff Publishers.)

Loss Modulus G* () (N/m?2)

Storage Modulus G’ (@) (N/m?)

38

10’

101
T (s)

102
) 1 !

104 109 10" 102

10*

103

102

1

0
103

1007 100 107 102
Angular Frequency o (s™')

10°

Figure 3.9 (a) Loss modulus G”
and (b) storage modulus G’ versus
frequency computed from Egs. (3-
25a) and (3-25b) for the cight modes
given in Table 3-1 for Melt I, a
polyethylene melt. Summing up over
all the modes gives the “envelope”
curves shown; these curves are re-
produced in Fig. 1-11, where they
arc seen to represent accurately the
linear data for this melt. (From Laun
1978, reprinted with permission from
Steinkopff Publishers.)
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10°
a Rouse Dynamics
E ot
=z 10 / 1/2
= G'(w) o (mow)/
o
G’(o). follows @* '
10° ] ! ! ] !
10°  10° 107 10' 10° 10°
Newtonian fluid there would be no storage shear modulus, G’ ols']

Fig. 6.16. Storage shear moduli measured for a series of fractions of PS with differ-
ent molar masses in the range M = 8.9x10? to 5.81 x10° gmol ~'. The dashed line in
the upper right corner indicates the slope corresponding to the power law Eq. (8.82)
derived for the Rouse model of the glass transition. Data from Onogi et al. [74]

Following the plateau regime a second power law regime is observed in the log-log plot of figure
5.15. The slope in this regime is 2 for a frequency plot and -2 for a time plot, G’(®) =K’ | ®* or

Et) =K, t?.
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dr’/dt =dy,,(t)/dt (1/,,) = 1m

terminal flow/region

log J

log t

Fig. 6.12. General shape of the complete creep curve of PS, as suggested by the
appearance of the different parts shown in Fig. 6.11



For a Newtonian fluid, o, =1, dy, /dt. If a Newtonian fluid is measured in a dynamic
compliance experiment, where, 0, = oxy" exp(iot) and y=1J *ny" exp(iot). Taking the derivative
of the strain and inserting into Newton’s law of viscosity yields,

J* = -i/(nw)
The Newtonian fluid differs from a polymeric melt in that the Newtonian fluid does not display a
recoverable shear compliance, J.°, associated with elasticity of the melt. At the zero-shear rate
limit the dynamic compliance for a polymeric fluid is given by,

F*(@=>0) =] - i/(n,w)

Then, the recoverable shear compliance is the real part of the zero shear rate compliance, J°, and
the zero-shear rate viscosity is related to the imaginary part of the zero shear rate compliance, J”.

41



By taking the inverse of J* we can obtain G* as.

G*(@=>0) =1." (0my)” +i (&n,)
Then we have well defined power-laws in frequency for G* and J* at the zero shear rate limit
(low frequency regime) and the recoverable shear compliance and zero shear rate viscosity are

the primary parameters of importance. The ®* dependence is shown in the first plot of this
chapter (G' versus o in figure 5.15).

42
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Fig.9.3

Master curve at 25°C from oscillatory
shear data at six temperatures for a
1.4-polybutadiene sample with

M, = 130000 gmol !, Data from

R. H. Colby, L. J. Fetters and

W. W. Graessley, Macromolecules 20,
2226 (1987).



y(1)= [a@—1 Yix()

and the viscosity, 1, is the stress, y(t), divided by the strain rate, de/dt, so the zero shear rate
viscosity, 1, (at infinite time, t = o) in a shear experiment where there is no strain before time
t=0, is given by,

N = j:G(tﬂt



The time dependent modulus, a(t) or here G(t), is related to the primary response function by:
p(t) = dG(t)/dt

J.” can also be related to the time dependent modulus and the primary response function by
considering a dynamic mechanical experiment where e(t) = e, exp(imt) and o(t) = G* e(t). Using
the above equation for the Boltzman superposition principle:

o(1)= [Gle~r )t
taking the derivative of the strain, de/dt = i exp(imt) and substituting t" = t-t',

G*= [G@t"ice™ dr"
"=0
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For ® => 0, the exponential can be expanded, exp(-iA) =1 + A + ...., s0,
Gl=0=0 I 1G(1)dt
=0
G'(w=0)=w IG(t)it
=0

The first expression can be coupled with the previous expression for G', G' = J.” (am,)?, to yield a
description of J.°,

Ine = j 1G(t)dr
0

46



The ratios of the two integrals that define J ” and 1, yields a time,

I 1G(t)dt
T=bt——= -’fﬂo

[G(yar

This time is called the mean viscoelastic relaxation time. For non-entangled melts (below M)
this time is proportional to the molecular weight squared. For entangled melts it is proportional
to the moleculare weight to the 3.4 power. This is because for entangled melts J.* is constant
(plateau) and the time is proportional to the viscosity that increases with a 3.4 power
experimentally. Below the entanglement molecular weight both J.”and the zero shear rate
viscosity are proportional to M (as will be discussed later).

47



nw) =0,y
¥,(Y) = (04 - 6, )/(Y)
¥,(Y) = (0, - 6, )/(¥)’
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Fig. 9.17. PE under steady state shear flow at 150 °C: Strain rate dependencies of
the viscosity 7, the primary normal stress coefficient ¥, and the recoverable shear
strain .. The dotted line represents Eq. (9.157). Results obtained by Laun [116]



Figure 7.15 shows the recoverable shear strain, y,, that is proportional to the recoverable shear
compliance, J, =Y/0,,. At low strain rates the recoverable shear strain is just linear in the rate of
strain as indicated by the dashed line. The linear behavior occurs in the regime where the
viscosity and first normal stress coefficient are constant. In fact, the dashed line follows a linear
function of the viscosity and first normal stress coefficient,

Y(Y=>0) = (¥,(y=>0) / {2 n(Y=>0)}) ¥ = (0« - 6.)/(2 6,,)

then,

I =v(y=>0)/0,, =¥,/(21,)

At low shear rates there remain only two independent parameters that describe polymeric flow.
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Newtonian Entanglement Rouse

Flow Reptation Behavior
. I/rm[, /Ty, liT, /T,
lo‘f ‘ - %
_ 10"
5
=10’
Fs
< 10° .
s Fig. 9.3
=10 Master curve at 25°C from oscillatory
‘i 104 shear data at six temperatures for a
o 1.4-polybutadiene sample with
10° M., = 130000 gmol ', Data from
102 —A—, e R. H. Colby, L. J. Fetters and
102100 1 100 102100 100 100 10° 107 108 10%10'"0 1012 W. W. Graessley, Macromolecules 20,

may (rad/s) 2226 (1987).
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Lodge Liquid and Transient Network Model

: dBtt’) :
/G ) a

" L+ (v(t) =v(¥))* 0 ~(t) =) Simple Shear
B(t, t') = 0 1 0 .
~(8) = A(t) 0 1 Finger Tensor
L
i / G(t—t)dv,dt Simple Shear
gtk dt Stress
: a5 First Normal
Ce=0)®=2 [ GE-1)0®-TENTE  Sress
t'=—o00

Second Normal
Oyy — 0zz =0 Stress
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For a Hookean Elastic G = const

0.z(t) = Gy(t) ,

dy

(02— 02)(® =26 [ (28 = 7(¢)) Gt

= Gy2(t) .
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For Newtonian Fluid Gt —t') =nd(t—t')

dy
Ozz (t) =0 a

(Umm s azz)(t) =0,
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Fig. 9.17. PE under steady state shear flow at 150 °C: Strain rate dependencies of
the viscosity 7, the primary normal stress coefficient ¥, and the recoverable shear
strain 7.. The dotted line represents Eq. (9.157). Results obtained by Laun [116]

54



55



Dumbbell Model

x(1)= ;[odt'exp %_tl)]g(t)

NN D

time

amplitude

Fig. 8.4. Time dependence of the amplitude Z,. of a Rouse mode (schematic)




Dilute Solution Chain

Dynamics of the chain

Rouse Motion

Parameters A=34gT, AT parames
- Beads 0 and N are special
E="2%(R-R.)
2 Z‘( k) For Beads | to N-1
dR. —k
dR, —\dE/dR, L= (R, +R_ —2R)+glt
— ( / )+gl(t) dt g ( i+1 i—1 z) gl()

g - 6ﬂnsolventa

For Bead O use R-i = Ro and for bead N Rn+1 = RN

This is called a closure relationship
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Dilute Solution Chain

Dynamics of the chain

Rouse Motion

1=0

Fig. 8.1. Rouse chain composed of Ny beads connected by springs

Crdr/dt=bg (r,, -1)+b; (r,, -1)

dR, _ —k,
dtl = ép (Ri+1 +R_, - 2Ri)+ g;(1) =bg (r,, +r,-2r)
The Rouse unit size is arbitrary so we can make it very small and:
dR —k, d°R , ,
= -+ &) With dR/dt=0ati=0and N
dt E di
d’R

Reflects the curvature of R in i,
di it describes modes of vibration like on a guitar string

58



X, Y, Z decouple (are equivalent) so you can just deal with z

dz
—L = bR(ZHl _Zl)+bR(Zl—1 _Zl) Cg dr/dt=by (r,,, - 1) + bg (r,, - 1)
t

R
d =bg (X, +1,-2r)

For a chain of infinite molecular weight there are wave
solutions to this series of differential equations

!
7, ~eXp| —— exp(il5) Phase shift between adjacent beads

T

Use the proposed solution in the
differential equation results in:

T = b—R(Z —2cosd) = 40

| | | | |
e é’ g
—R T
o R R

Fig. 8.2. Relaxation rates of Rouse modes as a function of the phase shift §. Marks
on the inside of the abscissa show the mode positions for a cyclic chain with Ng = 10
beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse modes of the two chains with relaxation rates 7 1
are especially indicated by a filled square and a filled circle

T T T 1T Y01 77010

)

sin® —
2
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o2

4b,

For Ng = 10 T =-£(2-2c0s8) = sinzz

s

R

-R

Fig. 8.2. Relaxation rates of Rouse modes as a function of the phase shift §. Marks
on the inside of the abscissa show the mode positions for a cyclic chain with Ng = 10
beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse modes of the two chains with relaxation rates 7 1
are especially indicated by a filled square and a filled circle

Cyclic Boundary Conditions: 2 = Zup,
N0 =m2r
Nk values of phase shift

2
o) =—ﬂm; m=-— &—1 e,

Np
"N, 2 2
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" | _1 bR 4bR . 2 5
For Ng = 10 [ ' =-£(2-2c0s8)=—Esin 5
B CR gR
| | | | |
e
[
0
Fig. 8.2. Relaxation rates of Rouse modes as a function of the phase shift §. Marks
on the inside of the abscissa show the mode positions for a cyclic chain with Ng = 10
beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse modes of the two chains with relaxation rates 7 1
are especially indicated by a filled square and a filled circle
Free End Boundary Conditions: 2= 2= 2Zy.1— 2. =0
R R

dz dz
—(/=0)=—(I=N,-1)=0
dl( ) dl( K )

(N,—1)6 =mn
Nk values of phase shift

T
Nx Rouse Modes of order “m” 0, = (N _ 1) LGS 0’1’2""’(NR _1)
R
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Lowest order relaxation time dominates the response

-
o 1 \ag ),
B 3g? kT

This assumes that LCR)
2

ap

is constant, friction coefficient is proportional to number of monomer units in a Rouse segment

This is the basic assumption of the Rouse model,

N,
R R — 'R
NR

62



Lowest order relaxation time dominates the response

-
o 1 \ag ),
B 3g? kT

Since R} =a,N

N —
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The amplitude of the Rouse modes is given by:

2 2
%)= 5

The amplitude is independent of temperature because the free energy of a mode
is proportional to kT and the modes are distributed by Boltzmann statistics

p(2,) =exp(—<kiT>)

90% of the total mean-square end to end distance of the chain originates from
the lowest order Rouse-modes so the chain can be often represented as an
elastic dumbbell
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ampiitude

Fig. 8.4. Time dependence of the amplitude Z,. of a Rouse mode (schematic)

Rouse dynamics (like a dumbell response)

Dumbbell Rouse
(dU) :
d-x dx kspr')C T, = R
=— +g(t)=—2"+g(t R
dt 4 s G A 4b, sinzg
Jdt exp| — Uy (7) §=—"m , m=0,1,2,... N -1
T N,-1

4

T —_—
Ky,
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\J\ .
|

fime

ampiitude

Fig. 8.4. Time dependence of the amplitude Z,. of a Rouse mode (schematic)

Rouse dynamics (like a dumbell response)

<g(t1 ) g(t2)> =2D56(t) wheret=t,—1t, and &( ) is the delta function whose integral is 1

Also, D = k?T
t
kTeXp(_r) T=—— Fort=>0 <x2>—k—T
(x()3(0) -— Sy e k,
spr
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Predictions of Rouse Model

109 = —veoman, \
e
A
\‘\‘
o
‘e 10° |-
=
\
O \
t
)
10" \
%
\ e,
L o
\
10° | L L
1070 10° 10° 10° 10"
t [s]

Fig. 8.6. Time-dependent shear modulus of PVC. Master curve set up for 7, =
65 °C as the reference temperature. The dashed line indicates the slope predicted
by the Rouse model. Data from Eisele [101]
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Newtonian Entanglement Rouse

Flow Reptation Behavior
. I/rm[, /Ty, liT, /T,
lo‘f ‘ - %
_ 10"
5
=10’
Fs
< 10° .
s Fig. 9.3
=10 Master curve at 25°C from oscillatory
‘i 104 shear data at six temperatures for a
o 1.4-polybutadiene sample with
10° M., = 130000 gmol ', Data from
102 —A—, e R. H. Colby, L. J. Fetters and
102100 1 100 102100 100 100 10° 107 108 10%10'"0 1012 W. W. Graessley, Macromolecules 20,

may (rad/s) 2226 (1987).
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Dilute Solution Chain

Dynamics of the chain

Rouse Motion

as
-
-n
" .,
- .
L e

..Q.

-

-
v
DL
-
.

St

»>
.
>

.

at

Predicts that the viscosity will follow N which is true for low molecular
weights in the melt and for fully draining polymers in solution

Rouse model predicts
Relaxation time follows N2 (actually follows N3/df)
Diffusion constant follows I/N (zeroth order mode is translation of the molecule) (actually

follows N-!/df)
Both failings are due to hydrodynamic interactions (incomplete draining of coil)
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I I [ [ [ I
Dilute Solution Chain - frod
Dynamics of the chain /
Rouse Motion 5
5.3 Specific Pelaxation Processes and Flow Behavior 235
'I)" e
1w' - E = o el
3 ‘E Palydinathyls oxere
10 i o
1w 8 Palyisobutylen:
104 Folyettw ena
108 - _’owuuwnm ]
107 |- { 3 —l;avwa-mg'nvt-p-‘ohmvk-- &
3 = o 3 siluxany 2
M
[ Polymathyinsthac ylste
Fig. 5.21. Molecular weight dependence of the relaxation time of the dielectric
normal mode in ces-PIP. Data from Boese and Kromer 58 | Folyxthyiere
‘ glycal ]
Predicts that the viscosity will follow N R L
a 1 2 3 a L ]

Canstant + log M

f 364, Plots of wustaul + lug 17; vs consane + log M foe nine different polymers The
omsk are different for cach of the pelymers, and the one appearicg in the abscissa s

which is true for low molecular weights in
the melt and for fully draining polymers in
solution

A: nal to ion, which i fur u given undilutad polymer. For each polymer the
of th left and right srraight line regions are 1.0 and 3.4, respectively. [G. C. Barry and T, G.
de. Palyw: Sci,, 5, 261-357 (1963).]

Rouse model predicts
Relaxation time follows N2 (actually follows N3/df)
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Hierarchy of Entangled Melts

Chain dynamics in the melt can be described by a small set of “physically motivated,
material-specific paramters”

Tube Diameter dr
Kuhn Length Ik
Packing Length p

.
" :.l - -
- ) .‘
. *
st er >

-

v

£ PLAPY
.":,/ : 2 w LR
rd. > .' Ve
. a8
| 4
-
T™he ~ AdTizead gararmacer a

Parameters A=3kg T%, ¢

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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6.3 Entanglement Effects 229

S(1/8(q.0)

S(qy/Sq0)

Fig. 6.8. Results of o quasiclastic neutron scattering experiment on a melt of
poly(ethylenc- co-propylene) at 199°C (10% protonated chains dissolyed in a deuter
abed matrix; M = 8.6 - 10"): [ntermediato seattering laws messured at the indi-
cated scaltering yectors (top); data representation using the dimensionkess variable
&= g 126Tad e/ (n)' 2 (bottam). Prom Richter ot al.[67]

6.3 Entangioment Effects FUS]

O

Pig. 6.10. Modelling the Interal constraints on the chain motion imposed by the
entanglements by a ‘tube’. The average over the rapid wriggling motion wirhI‘n the
tube defines the ‘primitive path’ (continwons dark line)

Quasi-elastic neutron scattering data demonstrating
the existence of the tube

Unconstrained motion => S(q) goes to 0 at very long times

Each curve is for a different q = 1/size
At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times
a size for the tube can be obtained
dr
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.3 Entanglement Effects 281

60
20 -
2 wrl e
= 1
v wl _r-“"i
-
0 - 1 N
400 500 600
T [K]
Fig. 6.9. Size d of the confinement range, as derived from the long teem limits of
the curves shown In Fig. 6.5 [67)

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time =Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3)
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284 Chapter . Micrescopic Dynamical Models

Fig. 6.11. Reptation moedel: Decomposition of the tube resulting from i replative
motion of the primitive chain. The parts which are loft empty disappeat

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N34)
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786 Chapter 6. Microscopic Dynamical Models

0.02
F 10" =
W o0 f
& 0
L]
i 10" |-
000
¥ ‘044 Lol i el
.
10t
M

Fig. 6.12. Determination of diffusion eoeffickents of denterated PE's in a PE maleix
by infrared absorption messurements in a micrescope. Concentration profiles 4(x)
obtained in the separated state at the begin of a diffusion run and at » laler stage
of diffusive mixing (the deshal lines wore calculated for monodisperse components;
the deviations are due to polydispersity) (lft). Diffusion coefficients at 7' = 176°C,
derived from messurements= on aseries of GPE's of different molecular weight {720he),
[he contéricons bine corresponds to a power law D ~ M?, Work of Klein [68]

Reptation predicts that the diffusion coefficient will follow N? (Experimentally it follows N?)
Reptation has some experimental verification
Where it 1s not verified, we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ 1/N)
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Reptation of DNA in a concentrated solution

6.4 Hydrodynamic Interaction in Solutions 987
- '

F B.13. Se s ol imapes n H . "
4 b Derkes of images ol A Duorescently stalned DNA chaiy nmln:!.!uliu:Lu'nn
"l’l-\l"l g '1 l‘ill'l l,-”“.',"",.. l o
Aution of stained chains: [nit confa A1 Y- ot
by & rapid move of the bead ins: [nitinl conformation (lef?); partial stretchi ]
g ' 104y ) [ . o ¥ | slal: y ' ! )

ol \ wad L one end (second from the L JU: chain recoil by a
st it y . ) ! )
reptative mobon in the tube (subsequent pictures 1o the riaht . Reprinted with oar
] - .n ! i "y ! > ' - B o 4 s I8 : y . | \ (8
nssion from L. Parking, DK Smith and S.( hu. Sciemce, 264-819. 1094 Copyright

3 b . » “ ;'.‘ :

131 y v - .
(1994) American Association for the Advancement of Scien: v
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Simulation of the tube

77

Fig. 3. Result of the primitive-path
analysis of a melt of 200 chains of
N + 1 = 350 beads. We show the
primitive path of one chain (red)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines.



Simulation of the tube

Fig. 3. A representative amorphous polymer sample and the correspond-
ing network of primitive paths.



Plateau Modulus

Not Dependent on N, Depends on T and concentration

10°
10°
§ 10*
? T 4RT
2 107 G0=4PR — .
W SM, Sp
[
v 10° 1 1 1 1 1

10°% 10°? 10" 10’ 10° 10°

@ [s"]

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9-10° to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54]
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Kuhn Length- conformations of chains <R2> = IkL

Packing Length- length, were polymers interpenetrate p = I/(pchain <R?>)
where pchain is the number density of monomers
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Fig. 2. Dimensionless
plateau moduli G 3/kgT
as a function of the di-
mensionless ratio //p
of Kuhn length [, and
packing length p. The
figure contains (i) ex-
perimentally measured
plateau moduli for
polymer melts (25) (+;
colors mark different
groups of polymers as
indicated) and semidi-
lute solutions (26-28)
(X); (ii) plateau moduli
inferred from the nor-
mal tensions measured
in computer simulation
of bead-spring melts
(35, 36) (Elrand a semi-

10 , | |
polyolefins  +
polydienes + . <&

10° |- polyacrylates  + ad

miscellaneous  +
polycarbonate  + d'
1 PSTCP X
10 PB/PO X |
0.00226 (I /p)3 ..........
2 - X ¥+
102 | o |
x x7
10-3 i _..."" |
X" melts W []
4 X solutions @
ol x BPAPC ¢ O
X
-5 1 | |
10
107! 100 e
IK/p

atomistic polycarbonate melt (37) (<) under an elongational strain; and (jii) predictions of the tube
model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (m), bead-spring
semidilute solutions (®), and the semi-atomistic polycarbonate melt (). The line indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

this implies that dt ~ p
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Fig. 1. Schematic representation of dual slip-links. (a) Chains coupled by
virtual links. (b} Dual slip-links. (c) Real space representation of the
corresponding network of primitive paths.
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

comb

star

4

linear

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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