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How does a polymer chain respond to external  perturbation?
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The Gaussian Chain

Boltzman Probability
For a Thermally Equilibrated System

Gaussian Probability
For a Chain of End to End Distance R

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

Force Force

Assumptions:
-Gaussian Chain

-Thermally Equilibrated
-Small Perturbation of Structure (so it is 

still Gaussian after the deformation)



3

Tensile Blob

For weak perturbations of the chain 

Application of an external stress to the ends of a chain 
create a transition size where the coil goes from Gaussian 

to Linear called the Tensile Blob.

For Larger External Perturbations of Structure 
-At small scales, small lever arm, structure remains Gaussian

-At large scales, large lever arm, structure becomes linear
Perturbation of Structure leads to a structural transition at a 

size scale ξ

Force * Distance = Energy = 3kT = F xTensile

For large perturbations of the chain 
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Because the mechanical response of a polymer chain depends on its size or mass, n

F = dE
dR

= 3kT
nlK

2 R = ksprR

kspr =
3kT
nlK

2

Mechanical deformation leads to a transition size scale, ζ

For sizes smaller than ζ the structure is not perturbed.
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For sizes smaller than ζ the structure is not perturbed.

Similar to the Bjerrum Length, lB

Or the Debye Screening Length, rD

For sizes larger you find mean field behavior => SAW (not directional Mean Field)
Below you find charges impact structure => Rod (directional)

For sizes larger there is no charge => Gaussian (not directional)
Below you find charges impact structure => SAW (Mean Field or Rod (directional)

External Force

Internal Force

Both lead to a size 
scale for transition
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This can be generalized to say that any response of a polymer chain (or any other 
mass fractal structure) will depend on its size or mass, n, and will lead to a transition 

size scale called a ‘blob’.  There are three classic types of blobs:  
Thermal  (thermic) blob (de Gennes), 
Concentration blob (Edwards), and 

Tensile (tension) blob (Pincus)

Mechanical deformation leads to a transition size scale, ζ

For sizes smaller than x the structure is not perturbed.
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Blob Type Mass Fractal Dimension
Large Scale Small Scale

Tensile 1 2 External Force
Thermal 5/3 2 Internal Collapse

Concentration 2 5/3 External Collapse
Kuhn 2 1 Internal Force

Hierarchical Symmetry of Blob Structures

Collapsed Coil  2        3  Internal Collapse
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This can be generalized to say that any response of a polymer chain (or any other 
mass fractal structure) will depend on its size or mass, n, and will lead to a transition 
size scale called a ‘blob’.  There are three classic types of blobs:  Thermal blob (de 

Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

A “scaling argument” for chain size as a function of F, n and T

A tensile blob is Gaussian so, 
lten2 = (n/nten) l2 where nten is the number of tensile blobs

So, nten = n l2/lten2

The Chain is a rod so,
R = nten lten

From an energy balance we have,
And lten = 3kT/F

So, R = n l2/lten = n l2 F/(3kT)

R is proportional to n and F and decreases with kT

Thermal energy and entropy opposes the applied force

What is the thickness of 
the layer for chains of n, 
and temperature T?
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This can be generalized to say that any response of a polymer chain (or any other 
mass fractal structure) will depend on its size or mass, n, and will lead to a transition 
size scale called a ‘blob’.  There are three classic types of blobs:  Thermal blob (de 

Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, x

For sizes smaller than ζ the structure is not perturbed.

c* ~ n
R3
~ n
n
9
5
= n−45

Overlap concentration depends on size so depending on sub-segment size a chain 
component can be in dilute (low n, df = 5/3) or concentrated (high n, df = 2) regimes

Concentration Blob
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What happens when c is larger than c*?

We can’t “see” an individual coil, no “n” dependence

Below the screening length (concentration blob size) we can see 
the same thing as in dilute

Above that size we see uniform structure like a fleece cloth

Interactions are screened, the structure is Gaussian above the blob size and 
expanded coil (dilute) below

As concentration c/c* increases the coil becomes more Gaussian and smaller
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Chain Energy depends on size so depending on sub-segment size a chain component can 
have large excluded volume component and be in good solvent (high n, df = 5/3) regime 

or small excluded volume component and be in theta solvent (low n, df = 2) regime

E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The Flory-Krigbaum Equation
Describes the situation above c*
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Blob Type Mass Fractal Dimension
Large Scale Small Scale

Tensile 1 2 External Force
Thermal 5/3 2 Internal Collapse

Concentration 2 5/3 External Collapse
Kuhn 2 1 Internal Force

Hierarchical Symmetry of Blob Structures

Collapsed Coil  2        3  Internal Collapse
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Semi-Dilute Solution Chain Statistics
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In dilute solution the coil contains a concentration c* ~ 1/[η]

for good solvent conditions

At large sizes the coil acts as if it were in a concentrated solution (c >>> c*), df = 2.  At 
small sizes the coil acts as if it were in a dilute solution, df = 5/3.  There is a size scale, 

ξ, where this “scaling transition” occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil 
and a tertiary structure of Gaussian Chains.

What is the value of ξ?

For semi-dilute solution the coil contains a concentration c > c*
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ξ is related to the coil size R since it has a limiting value of R for c < c* and has a 
scaling relationship with the reduced concentration c/c*

There are no dependencies on n above c* so (3+4P)/5 = 0 and P = -3/4

What is the value of ξ?



18

Coil Size in terms of the concentration

This is called the “Concentration Blob”

ξ = b N
nξ

⎛

⎝⎜
⎞

⎠⎟

3
5

~ c
c*

⎛
⎝⎜

⎞
⎠⎟
−3
4

nξ ~
c
c*

⎛
⎝⎜

⎞
⎠⎟
3
4( ) 53( )

= c
c*

⎛
⎝⎜

⎞
⎠⎟
5
4( )

R = ξnξ
1
2 ~ c

c*
⎛
⎝⎜

⎞
⎠⎟
−3
4 c
c*

⎛
⎝⎜

⎞
⎠⎟
5
8( )
= c

c*
⎛
⎝⎜

⎞
⎠⎟
−1
8

Number of blobs
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Blob Type Mass Fractal Dimension
Large Scale Small Scale

Tensile 1 2 External Force
Thermal 5/3 2 Internal Collapse

Concentration 2 5/3 External Collapse
Kuhn 2 1 Internal Force

Hierarchical Symmetry of Blob Structures

Collapsed Coil  2        3  Internal Collapse
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Thermal Blob

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

Flory-Krigbaum equation describes this
What occurs structurally, is the chain RW or SAW?
      (Or both?)
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Thermal Blob
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Thermal Blob

Energy Depends on n,  a chain with a mer unit of length 1 and n = 10,000
could be re-cast (renormalized) as a chain of unit length 100 and n = 100
The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy, so phase separate first.

We expect the chain to become Gaussian (worse solvation) on small scales first.
This is the opposite of the concentration blob.

Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.
As the temperature drops further the Gaussian blob becomes larger until the entire chain is

Gaussian at the theta temperature.
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Thermal Blob

Flory-Krigbaum Theory yields:

By equating these:

NT is number of blobs, nT number in a blob

At Large Scale, a SAW

At Small Scale, a RW
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Tensile Blob

Concentration
      Blob

Thermal Blob

ξConcentration ~ RGood Solvent
c
c*

⎛
⎝⎜

⎞
⎠⎟
−3

4
~ bN

3
5 c
c*

⎛
⎝⎜

⎞
⎠⎟
−3

4



27

Blob Type Mass Fractal Dimension
Large Scale Small Scale

Tensile 1 2 External Force
Thermal 5/3 2 Internal Collapse

Concentration 2 5/3 External Collapse
Kuhn 2 1 Internal Force

Hierarchical Symmetry of Blob Structures

Collapsed Coil  2        3  Internal Collapse
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Osmotic Pressure

Solute molecules move with kT and exert a pressure like a gas on the 
walls of the vessel.  This is the osmotic pressure.  

We can use this to count the number of solute molecules, n (π is a 
colligative property).  For a known mass used to make the solution we 
can obtain the number average molecular weight.

π = n
V

⎛
⎝⎜

⎞
⎠⎟ kT
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Osmotic Pressure

π = n
V

⎛
⎝⎜

⎞
⎠⎟ kT

Ideal Conditions
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Osmotic Pressure
π = n

V
⎛
⎝⎜

⎞
⎠⎟ kT

For non-ideal conditions we consider a 
power-series in number concentration, ρ, 
called a virial expansion.

π
kT

= B1ρ + B2ρ
2 + B3ρ

3 + B4ρ
4 + ...

The first virial coefficient is trivial.  The second 
virial coefficient pertains to binary interactions 
(if we are considering enthalpic effects).

ρ = n
V

= Mass
V

1
MW( )n

= φ
N

For a monomer with z sites of interaction we can define a unitless energy 
parameter 
χ = zΔε/kT that reflects the average enthalpy of interaction per kT for a monomer

Colligative => Mn

For Polymers:



Osmotic Pressure
π = n

V
⎛
⎝⎜

⎞
⎠⎟ kT

For non-Ideal conditions we consider a 
power-series in number concentration, ρ, 
called a virial expansion.

π
kT

= B1ρ + B2ρ
2 + B3ρ

3 + B4ρ
4 + ... ρ = n

V
= Mass

V
1

MW( )n
= φ
N

Heimez 
“Colloidal 
Chemistry”

Heimez’s B is usually 
called A2
B2 = A2/M2

B2 has units of effective 
excluded volume per mole

By comparison with van 
der Waals equation
B2 = b – a/kT
b is the hard-core excluded 
volume per mole
a is the attractive potential 
between particles per mole
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For a monomer with z sites of interaction we can define a unitless energy 
parameter 
χ = zΔε/kT that reflects the average enthalpy of interaction per kT for a monomer

Osmotic Pressure
π = n

V
⎛
⎝⎜

⎞
⎠⎟ kT
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Flory’s consideration of polymer mixing

Consider the ideal mixing of gas atoms.  Then entropy gained in 
mixing is given by Boltzmann in terms of the volume fraction Φ 
as: ΔSmixing = φ lnφ + 1−φ( ) ln 1−φ( )
For a polymer, each chain acts as a unit so this function is modified as:

ΔSmixing =
φ
N
lnφ + 1−φ( ) ln 1−φ( )

To account for enthalpy of mixing Flory introduce a simple binary 
interaction parameter:

Δfmixing =
φ
N
lnφ + 1−φ( ) ln 1−φ( )+ χφ 1−φ( )

Where Δf is the volumetric (Helmholtz) free energy change on mixing per monomer 
per kT.  To obtain the free energy of mixing for a chain we multiply by kT and by Ω, 
the number of monomer + solvent sites in the system.
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Osmotic Pressure

π = n
V

⎛
⎝⎜

⎞
⎠⎟ kT

At equilibrium, the chemical potentials of the solvent (and the polymer) in 
the two solutions are identical. 

Chemical potential is the change in free energy with respect to 
concentration for a given component in a given phase (you need to 
specify the component and the phase when you say chemical 
potential)
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-S U V
 H     A
-P G  T

G = A + VP
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Π = kT
Vc

φ
N

+ 1
2
− χ⎛

⎝⎜
⎞
⎠⎟φ

2 + ...⎛
⎝⎜

⎞
⎠⎟

The Flory Expression indicates a linear dependence of 
osmotic pressure in concentration at low concentration 
and a dependence on concentration to the power 2 at 
high concentration. 

From Gert Strobl, Polymer Physics
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Π = kT
Vc

φ
N

+ 1
2
− χ⎛

⎝⎜
⎞
⎠⎟φ

2 + ...⎛
⎝⎜

⎞
⎠⎟

From Gert Strobl, Polymer Physics

Right graph shows that:
1) c/c* is the natural measure of concentration
2) Flory prediction is sufficient at low c/c* but fails at large c/c*
3) The prediction of the concentration blob model is correct at large c/c*
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Concentration Blob Prediction

π ≈ kT φ
N

c
c*

⎛
⎝⎜

⎞
⎠⎟
P

c* ≈ N
−4
5

4
5
P −1= 0

P = 5
4

π ≈ c
9
4
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Flory-Huggins Equation for a Polymer Blend

Δfmixing =
φA

NA

lnφ +
1−φA( )
NB

ln 1−φA( )+ χφA 1−φA( )
if NA = NB = N
NΔfmixing = φA lnφ + 1−φA( ) ln 1−φA( )+ χNφA 1−φA( )

if NA ≠ NB

Spinodal Curve
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Concentration Fluctuations and Linear 
Response Theory (Nomenclature)
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φk =α kΨk;   dG = Ψkdφk =
φkdφk
α k

;   G = φk
2

2α k

= akφk
2

2

S k( ) = φk
2

p φk( ) = exp − G
kT

⎛
⎝⎜

⎞
⎠⎟ = exp − akφk

2

2kT
⎛
⎝⎜

⎞
⎠⎟

φk
2 =α kkT

S k( ) = φk
2 =α kkT

dG = Ψkdφk =
φkdφk
α k

α k = φk / dGk dφk( ) ≈ φ dπ dφ( )−1   Inverse Osmotic Compressibility

                        ΔG = −πVsp( )
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Random Phase Approximation
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The exponential term is the “response function”
response to a pulse perturbation
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Simple exponential relaxor
For Brownian motion of a harmonic bead in a solvent this 
response function can be used to calculate the
time correlation function <x(t)x(0)> for DLS for instance

τ is a relaxation time.
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Beads 0 and N are special

For Beads 1 to N-1

For Bead 0 use R-1 = R0 and for bead N RN+1 = RN

This is called a closure relationship
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

The Rouse unit size is arbitrary so we can make it very small and:

With dR/dt = 0 at i = 0 and N

Reflects the curvature of R in i, 
it describes modes of vibration like on a guitar string
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Describes modes of vibration like on a guitar string

For the “p’th” mode (0’th mode is the whole chain (string))
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New slides to augment old talk
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x, y, z decouple (are equivalent) so you can just deal with z

For a chain of infinite molecular weight there are wave 
solutions to this series of differential equations

ς R
dzl
dt

= bR (zl+1 − zl )+ bR (zl−1 − zl )

zl ~ exp − t
τ

⎛
⎝⎜

⎞
⎠⎟ exp ilδ( )

τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2
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τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Cyclic Boundary Conditions: zl = zl+NR

NRδ = m2π

NR values of phase shift

δm = 2π
NR

m;    m = − NR

2
−1⎛

⎝⎜
⎞
⎠⎟ ,..., NR

2

For NR = 10
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τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Free End Boundary Conditions: zl − z0 = zNR−1
− zNR−2

= 0

NR −1( )δ = mπ

NR values of phase shift

δm = π
NR −1( )m;    m = 0,1, 2,..., NR −1( )

For NR = 10

dz
dl

l = 0( ) = dz
dl

l = NR −1( ) = 0

NR Rouse Modes of order “m”
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τ R =
1
3π 2

ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

kT
R0
4

Lowest order relaxation time dominates the response

This assumes that ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

is constant, friction coefficient is proportional to number of monomer units in a Rouse segment

This is the basic assumption of the Rouse model, 

ζR ~ aR
2 ~ N

NR

= nR
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τ R =
1
3π 2

ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

kT
R0
4

Lowest order relaxation time dominates the response

Since R0
2 = a0

2N

τ R ~
N 2

kT



71

The amplitude of the Rouse modes is given by:

Zm
2 = 2

3π 2
R0
2

m2

The amplitude is independent of temperature because the free energy of a mode 
is proportional to kT and the modes are distributed by Boltzmann statistics

p Zm( ) = exp −
F
kT

⎛
⎝⎜

⎞
⎠⎟

90% of the total mean-square end to end distance of the chain originates from 
the lowest order Rouse-modes so the chain can be often represented as an 
elastic dumbbell
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Rouse dynamics (like a dumbell response)

dx
dt

= −

dU
dx

⎛
⎝⎜

⎞
⎠⎟

ζ
+ g(t) = −

ksprx
ζ

+ g(t)

x t( ) = dt 'exp − t − t '
τ

⎛
⎝⎜

⎞
⎠⎟

−∞

t

∫ g t( )

τ = ζ
kspr

Dumbbell Rouse

τ R =
ζR

4bR sin2 δ
2

δ = π
NR −1

m ,   m=0,1,2,...,NR -1



73

Rouse dynamics (like a dumbell response)

g t1( )g t2( ) = 2Dδ t( )    where t = t1 − t2    and δ ( )  is the delta function whose integral is 1

Also, D = kT
ζ

x t( )x 0( ) =
kT exp − t

τ
⎛
⎝⎜

⎞
⎠⎟

kspr
τ = ζ

kspr
For t => 0, x2 = kT

kspr
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Predictions of Rouse Model

G t( ) ~ t−
1
2

G ' ω( ) ~ ωη0( )
1
2

η0 = kTρpτ R
π 2

12
~ N
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2  (actually follows N3/df)

Diffusion constant follows 1/N (zeroth order mode is translation of the molecule)  (actually 
follows N-1/df)

Both failings are due to hydrodynamic interactions (incomplete draining of coil)

Predicts that the viscosity will follow N which is true for low molecular 
weights in the melt and for fully draining polymers in solution
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2  (actually follows N3/df)

Predicts that the viscosity will follow N 
which is true for low molecular weights in 
the melt and for fully draining polymers in 

solution
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Hierarchy of Entangled Melts



78

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf

Chain dynamics in the melt can be described by a small set of “physically motivated, 
material-specific paramters” 

Tube Diameter dT
Kuhn Length lK

Packing Length p

Hierarchy of Entangled Melts

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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Quasi-elastic neutron scattering data 
demonstrating the existence of the tube

Unconstrained motion => S(q) goes to 0 at very long times

Each curve is for a different q = 1/size

At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times 
a size for the tube can be obtained

dT
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There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior

Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time  = Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)
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Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)
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Reptation predicts that the diffusion coefficient will follow N2 (Experimentally it follows N2)
Reptation has some experimental verification

Where it is not verified we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ 1/N)
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Reptation of DNA in a concentrated solution
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Simulation of the tube
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Simulation of the tube
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Plateau Modulus

Not Dependent on N, Depends on T and concentration
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Kuhn Length- conformations of chains  <R2> = lKL

Packing Length- length were polymers interpenetrate  p = 1/(ρchain <R2>)
where ρchain is the number density of monomers
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this implies that dT ~ p
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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Block Copolymers
http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf
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Block Copolymers

SBR Rubber
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf
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Hierarchy in BCP’s and Micellar Systems

We consider primary structure as the block nature of the polymer chain.

This is similar to hydrophobic and hydrophilic interactions in proteins.

These cause a secondary self-organization into rods/spheres/sheets.

A tertiary organizaiton of these secondary structures occurs.

There are some similarities to proteins but BCP’s are extremely simple systems by comparison.

Pluronics (PEO/PPO block copolymers)
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What is the size of a Block Copolymer Domain?

-For and symmetric A-B block copolymer
-Consider a lamellar structure with Φ = 1/2
-Layer thickness D in a cube of edge length L, surface energy σ
-                         so larger D means less surface and a lower Free Energy F.

-The polymer chain is stretched as D increases.  The free energy of 
a stretched chain as a function of the extension length D is given by

-                         where N is the degree of polymerization for A or B,

b is the step length per N unit, νc is the excluded volume for a unit step
So the stretching free energy, F, increases with D2. 
 
-To minimize the free energies we have

Masao Doi, Introduction to Polymer Physics
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Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a
great index difference that we have no means to determine if they are from the same chain
other than following the chain over great distances to determine the connectivity.  That is,

Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.

The chain is composed of a series of steps with no orientational relationship to each other.

So <R> = 0

<R2> has a value:

We assume no long range interactions so that the second term can be 0.


