Zimm Model (Non-draining)

Zimm model predicts
D =kT/§ =kT/(6m ng, b N?2) ~ N-ldt

T=NE=6mn,bN'?=6nn,bN¥  ¢H=200
n ~ N3/df-1 = N\J0.50r 0.8 n=no(1+ ) ~no(1+#/p)~N 4"
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Fig. 5.21. Malecular weight dependence of the relaxation time of the dielectrie
normal mode in ces-PIP. Data from Boese and Kremer 58

Predicts that the viscosity will follow N which
is true for low molecular weights in the melt
and for fully draining polymers in solution

Rouse model predicts relaxation time follows N2
D =kT/§ = kTN/z follows D ~ kT/N



Rouse Model

le
ZE = kopr (2141 + 2121 — 22}) Debye used ma for heat capacity

For L = oo You have a wave solution with no modes for &

t

Zl"'e_; ell6

Debye gets w = (k/m)*”? 7 is the relaxation time {’k o0 is the phase shift between beads

spr

There are four unknowns and two equations; z, t, 7, 0
So, we can solve for a relationship between rand &

Rk ok Beid=t=l =0

R

o » 3



For Ny =10

Fig. 8.2. Relaxation rates of Rouse modes as a function of the phase shift §. Marks
on the inside of the abscissa show the mode positions for a cyclic chain with Ng = 10
beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse modes of the two chains with relaxation rates 74 !
are especially indicated by a filled square and a filled circle

Cyclic Boundary Conditions:

T =

m

b

< = 3N,

N0 =m2m

R (2-2co0s8) =
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For Ny =10
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Fig. 8.2. Relaxation rates of Rouse modes as a function of the phase shift §. Marks
on the inside of the abscissa show the mode positions for a cyclic chain with Ng = 10
beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse modes of the two chains with relaxation rates 74 !
are especially indicated by a filled square and a filled circle

Free End Boundary Conditions:

4 =2y = Ly, —Zy,2 =0

dz dz
E1=0)=2(1=N,-1)=0

(Ne—=1)6=mx
Nr values of phase shift

T
5, = mm m=0,1,2,...(N,—1)

Nk Rouse Modes of order “m” °



The amplitude of the Rouse modes is given by:

2 2
(@)= St

The amplitude is independent of temperature because the free energy of a mode is
proportional to kT and the modes are distributed by Boltzmann statistics

p(zm)=exp(_<ij

kT

90% of the total mean-square end to end distance of the chain originates
from the lowest order Rouse-modes so the chain can be often represented as
an elastic dumbbell



Rouse dynamics
(like a dumbell response)

Dumbbell
(de
dx dx sprx
— =— +g(r)=- +g(t

ampiitude
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Fig. 6.16. Storage shear moduli measured for a series of fractions of PS with differ-
ent molar masses in the range M = 8.9 x10? to 5.81 x10° gmol~'. The dashed line in
the upper right corner indicates the slope corresponding to the power law Eq. (8.82)
derived for the Rouse model of the glass transition. Data from Onogi et al. [74]



Some rules and approaches for complex constitutive parameters
Cox-Merz Rule time measurements are equivalent to frequency measurements. Complex
viscosity and steady shear viscosity are equivalent measurements.

Kramers-Kronig Relation

Since there 1s a response function, x(t), from which all mechanical responses can be
calculated, then the loss and storage moduli are related to each other through the Cauchy
integral, P().

a'lm)-io"(w)= {ju(r)cos((m)dt} - :{j u(t)sin((oz)dz}

lim [®* o~ s ]
P(Im mdm) ¢_’0,.I a dm+Jw (ode




Then the Kramers-Kronig dispersion relations can be written using the Cauchy integral as,
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Consider the creep compliance, J(t) because it is easier to model.
(Stress relaxation is easier to measure, G(t).)

Maxwell Model or Simple relaxor or Dumbell Model Dumbbell
dx _ \ dx k,,x
=" +g(t) =——"—+g()
r E dt 4 ¢

T

O D /BBOB80N—O x(t) = idt'exp(-"")g(t)

.
kspr

NINON

o

time

amplitude
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Debye Single Relaxation time “Relaxor”

J () = Joexp(—t/7)

For an oscillatory strain

A
J(w) = j A]exp(— t/T)exp(—iwt)dt = j AJexp (—t(l/T + ia))) dt = 1;
/’[‘l‘ lw
0 0
" _ A A Ye—iw A]/T . wd] 1A . wtA] o, -
] ((1)) - 1/T+iw_ 1 i Yp—iw - 1/1.2"'“)2 11/12_'_“)2 T 147202 - l1+‘L'2(x)2 _] - l]



JI

Maxwell Model

‘(@) = TAJ  wTtlJ o
Jlw)= 1+ 202 "1+ 1202 =/ -y
, wTAJ
,  Th] )= 1+ 12w?
S = 1+ 12w2 _ AJ
"~ 10-log(w1) + 10log(wt)

1.0 1.0
08 08 |-
06 -
04 -
02 -
00 prod vyl o1

0.01 0.1 1

wt

10 100 0.01 0.1 1 10 100

wt
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Cole-Cole Plot as an indication of a simple Debye relaxor

. TA] . wtl] L
] (w)=]u+1+1'2(1)2_l1+7,'2(1)2=]u+] _l]

J, 1s the unrelaxed compliance
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Fig. 6.6. Cole-Cole plots of dielectric data obtained for a dipole carrying a rod-like
molecule of low molar mass (left) and a polysiloxane with these molecules attached
as side-groups (right) [67] -



Shear compliance, J*(w), easy to calculate. Shear modulus, G*(w), easy to measure.

. A 1 1—iwt 1 A 1 AG
](w)_]u-l_l—l(l)'l' G*((l))= " = - = — - " A=Gu+ A
J(w) J,A-iwt)+4] J, JJr1l-iwt 1—iwt
T 1 1
Jr=lu+A;t=—=;6G =G, = —AG =G, — G

Jr Jr Ju

(o] [o0]

J (w) = f A]exp(— t/T)exp(—iwt)dt = f AJexp (—t(l/T + iw)) dt =

0 0

AJ
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In the terminal flow regime

terminal flow/region
| glass-rubber/transition
. . At long times, the Maxwell
log t element is just viscous
y(@®) =]t () = G()yo
dy dj(t) ai) 1 love i 1 C lona ti
— —_ = - i — mes
T =1 It ToNo it it e slope is - at long

In the terminal flow regime for the dynamic compliance

1
At 1 ~1/t J* =0 4+i—
ow w~1/t J*(w) ]e+1n0w
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In the terminal flow regime/low frequency regime

108
10°

§
§ 10*
(O]

In the terminal flow regime for the dynamic compliance

1
Atlow w~1/t [J*(w) =)0 +i—
Now

NNow (Mow)?Je — inow

Gl > 0) =]*(‘U - 0) - NowJg + i B (MowJd)? + 1

G'(w > 0) = (now)?Je G (0~ 0) =now
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G'[Nm™?]

Newtonian
G'(w—0)
= (now)?Je

Fig. 6.16. Storage shear moduli measured for a series of fractions of PS with differ-
ent molar masses in the range M = 8.9 x10* to 5.81 x10° gmol~*. The dashed line in
the upper right corner indicates the slope corresponding to the power law Eq. (8.82)
derived for the Rouse model of the glass transition. Data from Onogi et al. [74]
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Rouse
G (w) o< (mow)'/?

Modulus has units of energy per volume, MPa
Each mode of vibration, p, in the Rouse Model has

N
el

Larger p modes have smaller 7, so larger p modes are relaxed when t = 7,
When t = 7, there are p unrelaxed modes composed of segments with kT energy
Each of these segments have N/p monomers of volume b3
For a volume fraction of monomers of ¢, the number of unrelaxed segments per volume is ¢/(b3N/p)
So, the storage modulus is G(z,) ~ kT (¢/(b>N/p)
We know that 7, = 75 (N/p)? so p ~ (7y/7,)"N and For 5y <t < 7
G(z,) ~ kT (4/(b3N/p) = (kT/b3) 7,/ 75) V' and for time t = 7, G(?) ~ (KT/b3) it/ 7y) 12
G’ (@) ~ (KT/b3)H w7p)V? ~ (KT/b3) K wrr) 12

2

G(®) ~ (KT/b3) Mt/ 15)12 exp(-t/zR) For 7y <t

20



Rouse

G(?) ~ (KT/b3) @t/ 75)12? exp(-t/7R) For 5y <t

e}

6'(@) = Goq + @ j [6(6) = Goglsin (wb)dt

0
00

G'(w) = w J [G(t) — Geq]cos (wt)dt
0

GKT (wTR)?

G'(w) =
b3 o
0+ e[t + YT+ el

G’ (w) =

- Foro<l/g
kT [1 +[1+ (wTR)Z]J
B3 R M ()7



Rouse
G’((U) — ¢bk3T ((‘)TR)Z -
0+ eI [L+ YT Cone?]]
gk [r T ()
G(w%‘b3whj- [1+ (wtg)?]

For oty << 1, low frequency Normal Viscoelastic Fluid

OkT GKT

3 (wtg)? G¢"(w) = b3 WTR

G'(w) =

kT per monomer

For 1/73 << @ << 1/7, Rouse Range, Fluid acts like a gel (Winter-Chambon)
(Solution in the limit g >> 1)

G'(w) =G (w) ~ ()2

lo‘L._Z.?._‘M . -

G'MI(¢RT), (G"-aomIM/I(cRT)

102 107" 100 10" 10* 10°
Tt

Fig. 8.5

Oscillatory shear data for solutions of
poly(2-vinyl pyridine) in 0.0023 M HCI
in water. Open symbols are the storage
modulus G’ and filled symbols are the
loss modulus G”. Squares have
¢=0.5gL~", triangles have
¢=1.0gL"". and circles have

¢=2.0gL "' The curves are the
predictions of the Rouse model [Eqs
(8.49) and (8.50)]. Data from D. F.
Hodgson and E. J. Amis, J. Chem. Phys.
94, 4581 (1991).



For 1/7y << @, High Frequency limit
No relaxation modes,
G’ (@) =kT ¢/b3
High-frequency saturation of G’

G”(CO)N(O

This is Solid Behavior

G'MI(¢RT), (G"-aomIM/I(cRT)

102 1007 100 10" 10* 10°
Tt

Fig. 8.5

Oscillatory shear data for solutions of
poly(2-vinyl pyridine) in 0.0023 M HCI
in water. Open symbols are the storage
modulus G’ and filled symbols are the
loss modulus G”. Squares have
¢=0.5gL~", triangles have
¢=1.0gL"". and circles have
¢=2.0gL"". The curves are the
predictions of the Rouse model [Eqs
(8.49) and (8.50)]. Data from D. F.
Hodgson and E. J. Amis, J. Chem. Phys.
94, 4581 (1991).
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Liquid |

Winter HH, Chambon F, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel
Point J. Rheo. 30 367-382 (1986).
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s

Fig. 1.
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Schematic of steady shear viscosity and equilibrium modulus of a
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Fig. 3. Reduced storage and loss moduli of PDMS samples for which the reac-
tion has been stopped at intermediate states of conversion. ¢, is the instant of
intersection (see Figure 2) of G’ and G". The curves were shifted sideways (factor

A) to avoid overlap.
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Fig. 2. Evolution of the storage modulus G’ and the loss modulus G” of a
crosslinking PDMS in an oscillatory shear experiment at constant frequency w.

G’ (T, w) = G” (T, w) = (/2)12 S(T) wn,

The Power-Law is not Restricted in Frequency Range

0< w<ow

S(T) = (2/75)1/2 C ar 1/2bT

Experimentally n = 42 (same as Rouse at moderate o)



Winter HH, Chambon F, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel
Point J. Rheo. 30 367-382 (1986).

Kramers and Kronig relationship must be followed for this equation

2C

G'(®») 2 G"(x)/x
= > 5 ax

W T o w? — x
— 2 ” n—1 a2y 1
1 = = y (1 <) dy
a Jo

Solve for n (only positive values are physical)

n =Y -3 - —1145h
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m = [ G(t)dt Jong = | G(t)tdt
/ /

The ratios of the two integrals that define J " and 1, yields a time,

This time is called the mean viscoelastic relaxation time. For non-entangled melts (below M)
this time is proportional to the molecular weight squared. For entangled melts it is proportional
to the moleculare weight to the 3.4 power. This is because for entangled melts J. is constant
(plateau) and the time is proportional to the viscosity that increases with a 3.4 power
experimentally. Below the entanglement molecular weight both J.”and the zero shear rate
viscosity are proportional to M (as will be discussed later).
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by G’ and by G" (Pa)

Newtonian Entanglement Rouse
Flow Reptation Behavior

ny, Ty I/, /T

10% ZAIA

Fig.9.3

Master curve at 25°C from oscillatory
shear data at six temperatures for a
1.4-polybutadiene sample with

M, = 130000 gmol™ I Data from

R. H. Colby, L. J. Fetters and

W. W. Graessley, Macromolecules 20,
2226 (1987).

1021070 1 10" 107 107 107 10° 10% 107 10% 10% 101011012
oy (rad/s)
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Reptation

Blobs

Monomers

| ST

-One-dimensional diffusion along the tube
-Relaxation time, Zption, 18 the time for the
chain to diffuse a distance L ~ N by Rouse
diffusion, Dy~ 1/N

dP—DdZP Fick's 2'nd L nl—d
77 = Do ick's 2'nd Law in
_ 1 _SZ/4D t
P(s,t) = —1/e 0
(4mDyt) /2

[oe}

(s?) = f s2P(s,t)ds = 2D,t

— 00

L* N?
Trep = Z_DO N N1 ~N?® Compare: TRouse ™~ N2
<R2> N -1
Drep = ——~—~N"2 Compare: Drgyse ~ N

6Trep N3
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Reptation -Consider a Maxwell model for the fluid

Trep = Mrep Where G, is the plateau modulus, G, ~ 3kT/M,
0

Nrep™~GoTrep~(3kT/Me)N 3

Experimental shows N34 due to tube renewal

16
14 L Figure 11.54.
° _ Typical viscosity-molecular
; AL weight dependence for molten
= N polymers. x, is proportional
§ 0 k- . to the number of backbone
2 | S atoms and M,. From Berry
Monomers 3 8 | Polyisobutylene and Fox (1968).
L ]34
6 |  Polyethylene
Polybutadiene
3 = Polytetramethyl
4 L siloxane
l | Polymethyl
methacrylate
2 | Polyethylene
glycol
= Polyvinyl acetate
Blobs 0 Polystyrepe 1 1 1 (P |
0 1 2 3 4 5 6

17,
log 107y, 31



Stress Relaxation Modulus for Reptation

7, = N2 Follows Rouse Relaxation

G(t) ~ Go(t/fo)_l/z For 70 <t< Te
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Normal Stress and Recoverable Shear Compliance
ny) = oY
¥,(Y) = (0 - 6.)/(Y)

2 107 10°
¥,(Y) = (0, - 6, )/(Y)
10° 10°
6
“.‘m 10° 10’
€
<
_ 10 10°
w  q0° 10"
s
= 10° 10
101 1 | 1 1 10-3

10* 10* 10? 10" 10° 10 10*° 10°
7 18]
Fig. 9.17. PE under steady state shear flow at 150 °C: Strain rate dependencies of

the viscosity 7, the primary normal stress coefficient ¥, and the recoverable shear
strain 7.. The dotted line represents Eq. (9.157). Results obtained by Laun [116]
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Figure 7.15 shows the recoverable shear strain, ., that is proportional to the recoverable shear

compliance, J, = 7/0,,. At low strain rates the recoverable shear strain is just linear in the rate of
strain as indicated by the dashed line. The linear behavior occurs in the regime where the
viscosity and first normal stress coefficient are constant. In fact, the dashed line follows a linear
function of the viscosity and first normal stress coefficient,

1.(Y=>0) = (¥,(y=>0) / {2 n(y=>0)}) ¥ = (0, - 6,.)/(2 G,.)
then,
Jco = Yc(Y=>O)/Gu = \PI.OI(Z Tloz)

At low shear rates there remain only two independent parameters that describe polymeric flow.
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Relaxation Spectrum (Strobl (2007) p. 242-245)

7 —J AJ [ If there are multiple relaxations like x(t) = x, exp-(t/1)
¢ (w) — Yu 1 —iw oy Each with an amplitude AJ; and a relaxation time T;.
1
J(W) = Ju -+ / : L‘] (log 7') d log T. In integral form. Here we use In t as the argument since
1 —wT each relaxation is of exponential form.

G(w) =Gy — / #H o (lO g f-) dlog 7  The modulus function has a similar form but

1 —ilwT dramatically different values for t.
t ) . J.
G(t)=G,+ | exp| —= | Hg(log 7)d log 7 7= T
T Jr

37



H(t)*r (Pa.s)

Relaxation Spectrum (Strobl (2007) p. 242-245)

1

———Hg(log7)dlog 7

1 —iwT

d Int =dt/t

Then the functional dependence of interest is:
THg(T) vs. ©
That 1s why we see plots like:

PMMA&PS

e

]

4 !
10 jw\r\x,‘;?'l‘xm’“&

e

104

, | —o—Blend - 80/20/2.5
10%7 —o— Multilayer - 12 layer with JNPs

102 107 10° 10°
T (s)

10?

108

Qiao H, Zheng B, Zhong G, Li Z, Cardinaels R, Moldenaers P,
Lamnawar K, Maazouz A, Liu C, Zhang H Understanding the
Rheology of Polymer-Polymer Interfaces Covered with Janus
Nanoparticles: Polymer Blends versus Particle Sandwiched
Multilayers Macromolecules 56 647- 663 (2023)
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by G’ and by G" (Pa

Rouse

Newtonian  Entanglement
Flow Reptation Behavior
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Fig.9.3

Master curve at 25°C from oscillatory
shear data at six temperatures for a
1.4-polybutadiene sample with

M, = 130000 g mol ! Data from

R. H. Colby, L. J. Fetters and

W. W. Graessley, Macromolecules 20,
2226 (1987).



