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Unentangled polymer 
dynamics 8 
A small colloidal particle in any liquid diffuses due to the fluctuations of 
the number of molecules hitting it randomly from different directions. 
Colloidal particles are significantly larger than the molecules in the liquid, 
but small enough that collisions with molecules noticeably move the 
particle.' The trajectory of the particle, shown in Fig. 8.1, is another 
example of a random walk. The three-dimensional mean-square dis- 
placement of the colloidal particle during time t is proportional to t ,  with 
the coefficient of proportionality related to the diffusion coefficient D: 

([v'((t) - J(O)I2) = 6Dt. (8.1) 
Fig. 8.1 

random walk that results from random 
collibions with moleculeb in the liquid 

The average distance the particle has moved is proportional to the square 
root of time: 

o f d  pdrtlcle In Ib 

([v'(t) - v'(0)]2)1'2 = (6Dt) 'I2.  (8.2) 

Whereas the motion of the particle obeys Eq. (8.1) at  all times, we shall see 
that the motion of monomers in a polymer is not always described by 
Eq. (8.1) [or Eq. (8.2)]. When the motion of a molecule obeys Eq. (8.1), it is 
called a simple diffusive motion. The random motion of small particles in a 
liquid was observed long ago using a microscope by a biologist named 
Brown and is often reerred to as Brownian motion. 

If a constant force f is applied to a small particle, pulling it through a 
liquid, the particle will achieve a constant velocity v' in the same direction 
as the applied force. For a given particle and a given liquid, the coefficient 
relating force and velocity is the friction coefficient C: 

f 

f = (v'. (8.3) 
Since the constant force acting on the particle results in a constant velo- 
city, there must be an equal and opposite viscous drag force of the liquid 
acting on the particle with magnitude Cv. The diffusion coefficient D and 
the friction coefficient C are related through the Einstein relation: 

' Colloidal particles have sizes between 1 nm and 10 pin 
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The physics behind this relation is the fluctuation-dissipation theorem: the 
same random kicks of the surrounding molecules cause both Brownian 
diffusion and the viscous dissipation leading to the frictional force. It is 
instructive to calculate the time scale r required for the particle to move a 
distance of order of its own size R: 

R2 R2C 
D kT 

rM-M-.  

The time scale for diffusive motion is proportional to the friction 
coefficient. 

The mechanical properties of a liquid are fundamentally different from 
the solids discussed in Chapter 7 .  Solids have stress proportional to 
deformation (for small deformations). However, the stress in liquids 
depends only on the rate of deformation, not the total amount of defor- 
mation. If we pour water from one bucket into another bucket, there is 
only resistance during the flow, but there is no shear stress in the water in 
either bucket at  rest. We describe the deformation rate of a liquid in shear 
by the shear rate i /  = dy/dt [Eq. (7.99)]. For the steady simple shear flow 
of Fig. 7.23, the shear rate is the same everywhere, equal to the way in 
which velocity changes with vertical position. The stress CT in a Newtonian 
liquid is proportional to this shear rate [Newton's law of viscosity 
Eq. (7.100), = rlj] ,  with the viscosity 71 being the coefficient of 
proportionality. 

If a sphere of radius R moves in a Newtonian liquid of viscosity 71, a 
simple dimensional argument can determine the friction coefficient of the 
sphere. The friction should depend only on the viscosity of the surround- 
ing liquid and the sphere size: 

The friction coefficient is the ratio of force and velocity, with units of 
kgs- I .  The viscosity is the ratio of stress and shear rate, with units 
of kgm-ls - '  and the sphere radius has units of length (m). The only 
functional form that is dimensionally correct gives a very simple relation: 

C M qR. (8.7) 

The full calculation of the slow flow of a Newtonian liquid past a sphere 
was published by Stokes in 1880, yielding the numerical prefactor of 67r 
that results in Stokes law: 

Combining Stokes law with the Einstein relation [Eq. (8.4)] gives a simple 
equation for the diffusion coefficient of a spherical particle in a liquid, 
known as the Stokes-Einstein relation: 



Rouse model 311 

This important relation is used to determine coil size from measured 
diffusion coefficient (for example, by dynamic light scattering-see 
Section 8.9, or by pulsed-field gradient NMR). The size determined from a 
measurement of diffusion coefficient is the hydrodynamic radius: 

(8.10) 

8.1 Rouse model 
The first successful molecular model of polymer dynamics was developed 
by Rouse. The chain in the Rouse model is represented as N beads con- 
nected by springs of root-mean-square size 6,  as shown in Fig. 8.2. The 
beads in the Rouse model only interact with each other through the con- 
netting springs. Each bead is characterized by its own independent friction 
with friction coefficient C. Solvent is assumed to be freely draining through 
the chain as it moves. 

The total friction coefficient of the whole Rouse chain is the sum of the 
contributions of each of the N beads: 

&- 
Fig. 8.2 
In the Rouse model, a chain of N 
monomers is mapped onto a 
bedd-hprlng cham of N beads 
connected by hprlngh 

<R = NC. (8.1 1 ) 

The viscous frictional force the chain experiences if it is pulled with velo- 
city v’ is f =  - NCV’. The diffusion coefficient of the Rouse chain is obtained 
from the Einstein relation [Eq. (8.4)]. 

(8.12) 

The polymer diffuses a distance of the order of its size during a char- 
acteristic time, called the Rouse time, T ~ :  

R2 N R2 C T R M - N  
DR kT/ (N<)  kTNR2 (8.13) 

The Rouse time has special significance. On time scales shorter than the 
Rouse time, the chain exhibits viscoelastic modes that shall be described in 
Section 8.4. However, on time scales longer than the Rouse time, the 
motion of the chain is simply diffusive. 

Polymers are fractal objects, with size related to the number of mono- 
mers in the chain2 by a power law: 

R M bNv (8.14) 

The reciprocal of the fractal dimension of the polymer (see Section 1.4) 
is u. For an ideal linear chain u = 1 /2 and the fractal dimension is 1 / u  = 2. 
The Rouse time of such a fractal chain can be written as the product of 

There are N ~ 1 springs in the Rouse model and, for long chains, the number of springs is 
approximated by N.  
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the time scale for motion of individual beads, the Kuhn monomer 
relaxation time 

<b2 t o  M - kT '  
and a power law in the number of monomers in the chain: 

(8.15) 

(8.16) 

For an ideal linear chain, u = 1 /2 and the Rouse time is proportional to the 
square of the number of monomers in the chain: 

TR M toN2. (8.17) 

The full calculation of the relaxation time of an ideal chain was published 
by Rouse in 1953, with a coefficient of 1/(67r2): 

(8.18) 

This Rouse stress relaxation time is half of the end-to-end vector correla- 
tion time because stress relaxation is determined from a quadratic function 
of the amplitudes of normal modes (see Problem 8.36). 

The time scale for motion of individual monomers ro, is the time scale at 
which a monomer would diffuse a distance of order of its size b if it were 
not attached to the chain. In a polymer solution with solvent viscosity rls, 
each monomer's friction coefficient is given by Stokes law [Eq. (8.8)]: 

< FZ rlsb. (8.19) 

The monomer relaxation time ro and the chain relaxation time of the 
Rouse model r R  can be rewritten in terms of the solvent viscosity qs: 

(8.20) 

(8.21) 

When probed on time scales smaller than ro, the polymer essentially does 
not move and exhibits elastic response. On time scales longer than rR,  the 
polymer moves diffusively and exhibits the response of a simple liquid. For 
intermediate time scales ro < t < rR, the chain exhibits interesting visco- 
elasticity discussed in Section 8.4.1. 

8.2 Zimm model 
The viscous resistance imparted by the solvent when a particle moves 
through it arises from the fact that the particle must drag some of the 
surrounding solvent with it. The force acting on a solvent molecule 
at distance I" from the particle becomes smaller as I" increases, but only 
slowly (decaying roughly as 1/1"). This long-range force acting on solvent 
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(and other particles) that arises from motion of one particle is called 
hydrodynamic interaction. In the case of the bead-spring model of a 
polymer chain, when one bead moves, there are hydrodynamic interaction 
forces acting on the other beads of the chain. The Rouse model ignores 
hydrodynamic interaction forces, and assumes the beads only interact 
through the springs that connect them. We shall see later that this 
assumption is reasonable for polymer melts, but is not correct for a 
polymer in a dilute solution. 

In dilute solutions, hydrodynamic interactions between the monomers 
in the polymer chain are strong. These hydrodynamic interactions also are 
strong between the monomers and the solvent within the pervaded volume 
of the chain. When the polymer moves, it effectively drags the solvent 
within its pervaded volume with it. For this reason, the best model of 
polymer dynamics in a dilute solution is the Zimm model, which effectively 
treats the pervaded volume of the chain as a solid object moving through 
the surrounding solvent. 

Assume that the chain (and any section of the chain) drags with it the 
solvent in its pervaded volume. Thus the chain moves as a solid object of 
size R z bN". The friction coefficient of the chain of size R being pulled 
through a solvent of viscosity v., is given by Stokes law: 

cz = ViR. (8.22) 

There is a coefficient 67r in Stokes law [Eq. (8.8)] for a spherical 
object c = 67rqbR, but chains are not spheres and we drop all numerical 
coefficients. 

From the Einstein relation [Eq. (8.4)] the diffusion coefficient of a chain 
in the Zimm model is reciprocally proportional to its size R: 

(8.23) 

This is simply the Stokes-Einstein relation [Eq. (8.9)] for a polymer in 
dilute solution. The Zimm model predicts that the chain diffuses as a 
particle with volume proportional to the chain's pervaded volume in 
solution. In 1956, Zimm published a full calculation, where he preaveraged 
the hydrodynamic interactions to obtain this result with an extra coeffi- 
cient of 8 / ( 3 d @ )  for an ideal chain: 

(8.24) 

In the Zimm model, the chain diffuses a distance of order of its own size 
during the Zimm time T Z :  

(8 .25)  

The coefficient relating the relaxation time to a power of the number 
of monomers in the chain is once again the monomer relaxation time T~ 
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[Eq. (8.20)]. Zimm's full calculation of the chain relaxation time provides 
an extra coefficient of 1 / ( 2 6 )  for an ideal chain: 

Vs 3 rz =-- I " R3 E 0.163-R . 
2 6 k T  kT (8.26) 

This Zimm stress relaxation time is half of the Zimm end-to-end vector 
correlation time. 

The Zimm time is proportional to the pervaded volume of the chain. 
Note that the Zimm time rz has a weaker dependence on chain length than 
the Rouse time rR [Eq. (8.16)]. 

3 v < 2 v + l  f o r v <  1. (8.27) 

Comparison of Eqs (8.16) and (8.25) reveals that the Zimm time is 
shorter than the Rouse time in dilute solution. In principle, a chain in 
dilute solution could move a distance of order of its size by Rouse motion, 
by Zimm motion, or some combination of the two. The chain could simply 
move its monomers by Rouse motion through the solvent without drag- 
ging any of the solvent molecules with it, or it could drag all of the solvent 
in its pervaded volume with it, thereby moving by Zimm motion. In dilute 
solution, Zimm motion has less frictional resistance than Rouse motion, 
and therefore, the faster process is Zimm motion. The chain effectively 
moves as though it were a solid particle with volume of order of its per- 
vaded volume (with linear size R). The solvent within the pervaded volume 
of the chain is hydrodynamically coupled to the cha i r3  When the chain 
moves in response to its monomers being randomly hit by solvent from 
different directions, it effectively drags the surrounding solvent with it. 

Using Eq. (3.77) for the size of the chain in a good solvent with inter- 
mediate excluded volume v in Eq. (8.25), and combining with the 8-solvent 
result of Eq. (8.25) with v - 1/2, yields a general expression for the Zimm 
time in dilute polymer solutions: 

Using v-0.588, the Zimm relaxation time for long chains is 
T o  (v/b3)0.53"-76. 

8.3 Intrinsic viscosity 

In solution, a confusing plethora of viscosities have been defined over the 
years. The ratio of solution viscosity 71 to solvent viscosity ria is the relative 
viscosity: 

71 Vr = - 
TlS 

(8.29) 

' While some solvent does move with the chain, solvent molecules diffuse into and out of 
the pervaded volume on a faster time scale than the diffusion of the polymer (see Problem 8.5). 
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The relative viscosity is the simplest dimensionless measure of solution 
viscosity. The difference of the relative viscosity from unity is the specific 
viscosity: 

(8.30) 

The numerator (71 ~ ria) is the polymer contribution to the solution visc- 
osity, so the specific viscosity is a dimensionless measure of the polymer 
contribution to the solution viscosity. 

The ratio of specific viscosity to polymer concentration is the reduced 
viscosity, v5,,/c, which has units of reciprocal concentration. In the limit of 
very low concentrations (far below the overlap concentration) the reduced 
viscosity becomes a very important material property called the intrinsic 
viscosity (see Section 1.7.3, and in particular Fig. 1.24): 

(8.31) 

The intrinsic viscosity is the initial slope of specific viscosity as a function 
of concentration, and has units of reciprocal concentration [see Eq. (1.97)]. 

The value of the stress relaxation modulus at the relaxation time G ( t )  is 
of the order of kT per chain in either the Rouse or Zimm models, just as 
the strands of a network in Chapter 7 stored of order kT of elastic energy: 

4 G ( t )  = kT-. 
Nb3 

(8.32) 

The polymer contribution to the viscosity in either the Rouse or the 
Zimm model is proportional to G ( t ) t  [Eq. (7.120)]: 

(8.33) 

The typical experimental concentration used in defining intrinsic viscosity 
is the polymer mass per unit volume of solution, c = 4M0/(b3NAy) where 
Mo is the molar mass of a Kuhn monomer [see Eq. (1.18)]. The intrinsic 
viscosity then follows: 

(8.34) 

The expression for the relaxation time in the Rouse model of an ideal 
chain tR = qsh3N2/(kr) [Eq. (8.21)] leads to the Rouse prediction for the 
intrinsic viscosity: 

[vl = ~ h3NAv N Rouse model. 
MO 

(8 .35)  

The Rouse model predicts that the intrinsic viscosity in a &solvent is 
proportional to molar mass. However, the Rouse model assumes no 
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hydrodynamic interactions and is not expected to be valid in dilute solu- 
tions where intrinsic viscosity is defined. 

Substituting the prediction for the relaxation time of the Zimm model 
rz M vyR'/(kT) [Eq. (8.25)] into the expression for intrinsic viscosity 
[Eq. (8.34)] leads to the Zimm prediction for intrinsic viscosity: 

The Zimm model assumes that as the polymer moves it drags the solvent 
inside its pervaded volume with it. The Zimm model has the correct phy- 
sics for the intrinsic viscosity. Equation (8.36) is more commonly written 
in terms of the molar mass M = MoN, 

R' [vl = @j$ (8.37) 

where @ = 0.425N~,  = 2.5 x lo2' mol-' is a universal constant for all 
polymer-solvent systems. This famous relation between intrinsic viscosity, 
coil size and molar mass is known as the Fox-Flory equation. 

Equation (8.36) predicts that the intrinsic viscosity obeys a power law in 
molar mass. This power law was empirically recognized long ago, and is 
known as the Mark-Houwink equation [Eq. (l.lOO)]: 

[TI] = KM". (8.38) 

From the derivation of the Fox-Flory equation, based on the Zimm 
model, the Mark-Houwink exponent u is related to the exponent 
describing the molar mass dependence of coil size in solution u: 

u = 3 u -  1. (8.39) 
The Mark-Houwink equation provides an indirect estimate of 

molar mass from a measurement of intrinsic viscosity [q], if the two 
Mark-Houwink constants K and u, are known. The predictions of 
Mark-Houwink constants are summarized in Table 8.1. Comparison with 
Table 1.4 shows that the Zimm model agrees reasonably well with 
experimental results, as u = 0.50 is observed in 8-solvent and 0.7 < a < 0.8 
is usually observed in good solvents. 

Using the Zimm time [Eq. (8.28)] in Eq. (8.34), yields a general expres- 
sion for the intrinsic viscosity, valid for any solvent with T 2 8: 

Table 8.1 Predictions of Mark-Houwink constants 

K n 

(8.40) 

Rouse model in 8-solvent h3NA\/bfi 1 
Ziinm model in 8-solvent h ' N ~ , l M ~ ' 2  3u-  1 = 112 
Zimm model in good solvent I I ~ N A ~ I M ;  764 3v - 1 E 0.76 
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For long chains in good solvent, v-0.588 and the intrinsic viscosity 
uiziversaIIy scales as vo 53No 16. 

This relation is tested with experimental data in Fig. 8.3.4 It is important 
to point out the fact that the intrinsic viscosity of polystyrene in toluene 
(filled squares in Fig. 8.3) crosses over to the 0-solvent result at M =  30 000 
g mol I .  This provides a direct measure of the number of Kuhn mono- 
mers in a thermal blob gT= (30 000 gmol- ')/(720 gmol- ') = 40 for 
polystyrene in toluene. The crossover between the &solvent and good 
solvent cases of Eq. (8.40) is at  N = gT= ( h ' / ~ ) ~  [Eq. (3.75)], so gT M 40 
means that the excluded volume is estimated to be v M 0.16h' for poly- 
styrene in toluene. Hence, although toluene is a quite good solvent for 
polystyrene, it is nowhere near the athermal solvent limit, which would 
have even higher intrinsic viscosity that would maintain the power law 
with 0.76 slope to even lower molar masses. Polystyrene in methyl ethyl 
ketone (open circles in Fig. 8.3) has even smaller excluded volume, as 
g T =  (100 000 gmol- ')/(720 g mol- ') = 140 and v = 0.086'. 

Figure 8.3 also shows clearly that caution is needed when using Mark- 
Houwink equations from the literature that have intermediate exponents 
in the range 0.5 < a < 0.76. Such intermediate exponents correspond to the 
crossover between regimes and are only valid for the range of molar 
masses they were measured in. 

The fact that the intrinsic viscosity measurement is simultaneously 
simple and precise makes it an extremely popular molecular character- 
ization tool. Intrinsic viscosity can easily be measured to *O. 1 % precision, 
which is far superior to osmotic pressure and light scattering, which have 
precisions of f5% under the best of circumstances. Furthermore, if 
intrinsic viscosity and absolute molar mass are measured over a suffi- 
ciently wide range, the thermodynamic nature of the polymer solvent 
interaction, reflected in the excluded volume v, can be estimated using 
Eq. (8.40). 

The temperature dependence of intrinsic viscosity enters Eq. (8.40) 
through the excluded volume v M h' ( T -  Q)/T. For chains that are smaller 
than the thermal blob, the short chain branch of Eq. (8.40) (with N <  b6/v') 
applies. For such short chains, the intrinsic viscosity is independent of 
temperature and [r,]/N' reduces data for different lengths of short chains 
to a common temperature-independent line, demonstrated in Fig. 8.4(a) 
for polyisobutylene in toluene with M < 11 000 gmol- '. On the other 
hand, chains with size far exceeding the thermal blob size have important 
excluded volume effects. The long chain branch of Eq. (8.40) (with 
N >  b6/v') applies to long chains and [v]/NO 764 reduces data for different 
lengths of long chains to a common curve, as shown in Fig. 8.4(b) for 
polyisobutylene in toluene with M > 400 000 g mol- '. The curve in Fig. 
8.4(b) is determined by the temperature dependence of excluded volume 
(v/b3)0 53 = (1 - 0 / q o  53 with 6'- 245 K E  - 28 "C determined from the fit. 
Intermediate molar masses (not shown) with M =  48 000 g mo1-I and 

100 L 

M 

Fig. 8.3 
Intrinsic viscosities of polystyrenes 
in three solvents. Cyclohexane is a 
&solvent (v = 0, filled circles, from 
Y .  Einaga et nl., J .  Polym. Sci., Polyni. 
Phys. 17,2103, 1979), with Mark- 
Houwink exponent u= 1/2. Methyl 
ethyl ketone is a better solvent 
(v N 0.0811', open circles, from R. Okada 
et ul., Mnkromol. Clzern. 59, 137, 1963) 
and toluene is a good solvent (v N 0.1611', 
filled squares, from R.  Kniewske and 
W.-M. Kulicke, Mnkroniol. Client. 184, 
2173, 1983) with n=0.76. 

The customary units for intrinsic viscosity are dL g -  ', where I dL=O.l L. 
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(a) 2.0 
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Fig. 8.4 
Temperature dependence of intrinsic viscosity for polyisobutylene fractions in toluene. 
(a) data for the three lowest molar masses (open triangles are M = 7080 g inol - I ,  filled squares 
are A4 = 9550 g mol - I and open circles are M= 10 200 g mol - I )  that all are smaller than the 
thermal blob and hence have unperturbed size. The short chain branch of Eq. (8.40) reduces 
these data to a common temperature-independent line. (b) data for the two highest molar 
masses (open squares are M= 463 000 g mol - and filled triangles are A4 = 1 260 000 gmol - 
that obey the long chain branch of Eq. (8.40). The curve is fitted to the data using Eq. (8.40) 
and the temperature dependence of excluded volume with B = - 28 "C determined from the 
fit. The data are from 7. G.  Fox and P. J. Flory, J .  Plzjs. Clzern. 53, 197 (1949). 

M =  1 10 000 g mol ' fall in the crossover between the two limiting cases of 
Eq. (8.40) and do not obey the scaling of either clean limit. Unfortunately, 
the molar mass range of 20 000 < M <  200 000 g mol-' is the important 
range for commercial polymers, and it corresponds to the crossover for 
most good solvent/polymer solutions. 

The R3 in Eq. (8.37) comes from the relaxation time in Eq. (8.34). This 
Zimm time really has two size scales within it. The hydrodynamic radius 
Rh enters through the diffusion coefficient [Eq. @.lo)] and the radius of 
gyration R, enters through the length scale that the molecule moves in its 
relaxation time: 

(8.41) 

Using data for polystyrene in two good solvents5 (ethylbenzene and 
tetrahydrofuran) Eq. (8.4 1) is found to apply reasonably with 

in the range 93 000 g mol ' 5 M, 5 4 800 000 g mol-'. 

(8.42) 

K. Venkataswainy et nl., Mucrornoleciiles 19, 124 (1986). 
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8.4 Relaxation modes 
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In Sections 8.1 and 8.2, we calculated the longest relaxation time of 
unentangled polymers using molecular models. The linear viscoelastic 
response of polymeric liquids, discussed in Section 7.6, measures the full 
spectrum of relaxation times. Since polymer chains are self-similar objects, 
they also exhibit dynamic self-similarity. Smaller sections of a polymer 
chain with g nzononzers relax just like a whole polynzer c h i n  that has g 
nzonomers. In all unentangled molecular models for polymer dynamics 
(both Rouse and Zimm and combinations thereof) the relaxations are 
described by N different relaxation modes. The modes are numbered by 
mode indexp = 1,2,3, .  . . , N. These modes are analogous to the modes of a 
vibrating guitar string. Modep involves coherent motion of sections of the 
whole chain with N / p  monomers, and the corresponding relaxation time of 
this mode zp is similar to the longest relaxation time of a chain with N/p 
monomers. For all unentangled molecular models of flexible polymer 
dynamics, the shortest mode has mode indexp = N with relaxation time T ~ ,  

the relaxation time of a monomer [Eq. (8.20)]. The longer modes depend 
on whether hydrodynamic interactions are important or not, as discussed 
below. 

Consider a polymer liquid subjected to a unit step strain at time t = 0. 
The equipartition principle states that kT/2 of free energy is associated with 
each degree of freedom at equilibrium.6 Immediately following the unit 
step strain, the entire chain stores of order NkT of elastic energy, since 
there are N independent modes that each store of order kT. To determine 
the time dependent viscoelastic response, we simply need to determine the 
relaxation time of each mode. 

8.4.1 Rouse modes 

In the Rouse model, the (longest) relaxation time of the ideal chain is given 
by Eq. (8.17): 

TR E T,N2. (8.43) 

Since the pth mode involves relaxation on the scale of chain sections with 
N / p  monomers, the relaxation time of the pth mode has a similar form to 
the longest mode: 

(8.44) 

The relaxation time of a monomer, ro [Eq. (8.15)] is the shortest relaxation 
time of the Rouse model, with mode index p = N ,  making zN = ro. The 
mode with index p =  1 is the longest relaxation mode of the chain with 
relaxation time equal to the Rouse time rl = rR,  and corresponds 
to relaxation on the scale of the entire chain. The mode with index p = 2 
corresponds to the two halves of the chain with N/2 monomers, each 

In three-dimensional space, each mode has three degrees of freedom 
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relaxing independently. The mode with index p breaks the chain into 
p sections of N/p monomers, and each of these sections relax as indepen- 
dent chains of N/p monomers on the time scale tI,. 

As expected, higher index modes, involving fewer monomers, relax 
faster than lower index modes. Therefore, at  time tp after a step strain, all 
modes with index higher than p have mostly relaxed, but modes with index 
lower than p have not yet relaxed. 

The number of unrelaxed modes per chain at time t = tp is equal to the 
mode indexp. Each unrelaxed mode contributes energy of order k T  to the 
stress relaxation modulus. The stress relaxation modulus at time t = tI, is 
proportional to the thermal energy k T  and the number density of sections 
with N/p monomers, 4/(b3N/p): 

(8.45) 

The time dependence of the mode indexp for the mode that relaxes at time 
t = tp can be found from Eq. (8.44). 

(8.46) 

Combining Eqs (8.45) and (8.46) approximates the stress relaxation 
modulus for the Rouse model at intermediate time scales: 

(8.47) 

This expression effectively interpolates between a modulus level of order 
kTper monomer at the shortest Rouse mode ( t  M to) to a modulus level of 
order k T  per chain at the longest Rouse mode ( t  = tR M toN2) using a 
power law. We already know that the stress relaxation modulus has an 
exponential decay beyond its longest relaxation time [Eq. (7.112)]. 
Therefore, an approximate description of the stress relaxation modulus of 
the Rouse model is the product of [Eq. (8.47)] and an exponential cutoff: 

The Rouse time tR is the longest stress relaxation time [Eq. (8.18)]. 
For oscillatory shear, Eqs (7.149) and (7.150) allow calculation of 

the storage and loss moduli of a solution of linear Rouse chains (see 
Problem 8.14): 
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In the frequency range, l i tR  << w << l / to,  the storage and loss moduli of 
the Rouse model are equal to each other and scale as the square root of 
frequency: 

G'(w) E ~ " ( w )  w1I2 for i / t R  << w << i / t o .  (8.51) 

For high frequencies w > l / to,  there are no relaxation modes in the Rouse 
model. The storage modulus becomes independent of frequency, and 
equal to the short time stress relaxation modulus, which is kT per mono- 
mer C'(w) = 4kT/b3. This high-frequency saturation is not included in 
Eqs (8.49) and (8.50). At low frequencies w < l / tR,  the storage modulus is 
proportional to the square of frequency and the loss modulus is pro- 
portional to frequency, as is the case for the terminal response of any 
viscoelastic liquid. 

Figure 8.5 shows that experimental data on unentangled polyelectrolyte 
solutions are described quite well by the Rouse model. Polyelectrolytes are 
charged polymers that have a wide range of concentrations where 
dynamics obey the Rouse model. 

The viscosity of the Rouse model is obtained by integrating G(t) 
[Eq. (7.1 17)]: 

(8.52) 

Equation (8.52) made use of the variable transformation x = t / tR ,  and 
the integral involving x is simply a numerical coefficient. Notice that the 
final relation is identical to that expected by Eq. (7.120), the product of 
G(tR) [Eq. (8.32)] and tR [Eq. (8.17)]. The Rouse model applies to melts 
of short unentangled chains (for which hydrodynamic interactions are 
screened). The Rouse viscosity has a very simple form for an unentangled 
polymer melt: 

V Z - N .  c (8.53) 
b 

Fig. 8.5 
Oscillatory shear data for solutions of 
poly(2-vinyl pyridine) in 0.0023 M HCI 
in water. Open symbols are the storage 
modulus G' and filled symbols are the 
loss modulus G". Squares have 
c = 0.5 g L-', triangles have 
c = I .O g L-', and circles have 
c = 2.0 g L-'. The curves are the 
predictions of the Rouse model [Eqs 
(8.49) and (8.50)]. Data from D. F. 
Hodgson and E. J. Amis, J .  Chern. Plzys. 
94, 4581 (1991). 

The viscosity of the Rouse model is proportional to the number of 
monomers in the chain. The Rouse model has been solved exactly (by 
Rouse), and the full calculation gives an extra coefficient of 1/36: 

4 
36h 

T ~ = - N  (8.54) 
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Fig. 8.6 
Stress relaxation modulus predicted by 
the Rouse model for a melt of 
unentangled chains with N = 10’. The 
solid curve is the exact Rouse result 
[Eq. (8.55)] and the dotted curve is the 
approximate Rouse result [Eq. (8.48)]. 

Rouse also derived an exact relation for the stress relaxation modulus, 

G ( t )  = kT--Cexp(-t/r,), O N  (8.55) 
/,=I Nh3 

with 

(8 .56 )  

The stress relaxation times zl, of the Rouse model are half of the correla- 
tion times of normal modes (see Problem 8.36). 

This exact form demonstrates that each mode 0, = 1,2, . . . , N )  relaxes 
as a Maxwell element [Eq. (7.11 l)]. The exact [Eq. (8.55)] and approximate 
[Eq. (8.48)] Rouse predictions of the stress relaxation modulus of an 
unentangled polymer melt are compared in Fig. 8.6. This figure clearly 
shows that Eq. (8.48) is an excellent approximation of the exact Rouse 
result for long chains ( N  >> 1). 

Chain sections containing N / p  monomers move a distance of order of 
their size b ( N / ~ ) l ’ ~  during the mode relaxation time rP. The position vector 
of monomerj at  time t is F;( t ) .  The mean-square displacement of monomer 
j during time zp is of the order of the mean-square size of the sections 
involved in coherent motion on this time scale: 

N 112 
([Y;(zp) - Y;.(O)l2) M h2- M h2(5\ . 

P TO 
(8.57) 

In the final relation we used the time dependence of the mode index p 
[Eq. (8.46)]. The mean-square displacement of a monomer on intermediate 
time scales thus increases as the square root of time: 

For the motion to be diffusive, the mean-square displacement must be 
linear in time [see Eq. (8 .1)] .  Since the mean-square displacement on 
intermediate time scales is a weaker-than-linear power of time, the motion 
is referred to as subdiffusive motion. Individual monomers are not ‘aware’ 
that they belong to an N-mer on times shorter than the Rouse time of the 
chain. At each moment of time t < TR, sections of a chain containing g ( t )  
monomers move coherently. Thus monomers only ‘realize’ that their chain 
contains at  least g ( t )  monomers at time scale t < zR. The diffusion coef- 
ficient of these coherent sections is D(t) ~ k T / ( < g ) .  The number of 
monomers in sections that coherently participate in Rouse motion 
increases proportional to the square root of time g(t) M ( t / ~ ~ ) l ’ ~  [Eq. (8.46) 
with g = N/p]  and their effective diffusion coefficient decreases with time: 
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At longer times, monomers participate in collective motion of larger sec- 
tions with smaller effective diffusion coefficient D ( t )  . Therefore the mean- 
square displacement of monomers is not a linear function of time, but 
instead subdiffusive: 

([vf(t) - Y;.(O)l2) M D(t)t N t‘/2 for to < t < r ~ .  (8.60) 

Only on time scales longer than the Rouse time of the chain, is the motion 
of the chain diffusive, with mean-square displacement proportional to 
time [Eq. (8.1)]. 

8.4.2 Zirnrn modes 
Similar scaling analysis of the mode structure can be applied to the Zimm 
model. The relaxation time of the pth mode is of the order of the Zimm 
relaxation time of the chain containing N / p  monomers [Eq. (8.25)]: 

(8.61) 

The index p of the mode relaxing at  time t = tp after a step strain imposed 
at  time t = 0 is obtained by solving the above equation for p :  

(8.62) 

The number of unrelaxed modes per chain at time t = r], isp. The stress 
relaxation modulus is proportional to the number density of chain sections 
with N/p  monomers: 

- l / (3v) 

for to < t < rz .  (8.63) kT 4 G ( t )  FZ - - p  M -4 - 
h3 N tT (r:) 

In &solvents (u = 1 /2), the stress relaxation modulus decays as the - 2/3 
power of time, while in good solvents (u  E 0.588) G(t) decays approxi- 
mately as the - 0.57 power of time. Like the stress relaxation modulus of 
the Rouse model [Eq. (8.47)], Eq. (8.63) crosses over from kT per mono- 
mer at the monomer relaxation time to to kT per chain at  the relaxation 
time of the chain r Z ~ t O N 3 ”  [Eq. (8.25)]. Once again, an excellent 
approximation to the stress relaxation modulus predicted by the Zimm 
model is the product of the power law of Eq. (8.63) and an exponential 
cutoff 

- I /( 3v) 

G(t) M %Gi(L) exp(-t/tz) for t > to. (8.64) b3 TO 
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The polymer contribution to the solution viscosity is obtained by inte- 
grating G(t) [Eq. (7.1 17)]: 

h 

2 

Fig. 8.7 
Oscillatory shear data on dilute 
solutions of polystyrene with 
M =  860 000 g mol ~ ' in two &solvents 
(circles are in decalin at 16 "C and 
squares are in di-2-ethylhexyl phthalate 
at 22 "C). Open symbols are the 
dimensionless storage modulus and 
filled symbols are the dimensionless loss 
modulus, both extrapolated to zero 
concentration. The curves are the 
predictions of the Ziinm model 
[Eqs (8.67) and (8.68)]. Data from 
R. M. Johnson et nl., Polym. J .  1 ,  
742 (1 970). 

The variable transformation x = t i tz  was used, and the integral involving x 
is simply a numerical coefficient. The second-to-last relation was obtained 
using rz= rON3" [Eq. (8.25)] and the final relation used Eq. (8.20). The 
final relation is identical to that expected by Eq. (7.120), the product of 
G ( t z )  [Eq. (8.32)] and rz [Eq. (8.25)]. The Zimm model applies to the 
relaxation of the entire chain in dilute solution (where hydrodynamic 
interactions dominate). The intrinsic viscosity is calculated from 
the polymer contribution to the solution viscosity using Eq. (8.31) and 
the relation between mass concentration and volume fraction 
c = 4Mo/(b3NA,) [(see Eq. (1.18)]: 

(8.66) 

This result is identical to Eqs (8.36) and (8.37), derived previously. 
Using Eqs (7.149) and (7.150) with the approximate Zimm model pre- 

diction for the stress relaxation modulus [Eq. (8.64)] provides predictions 
of the storage and loss moduli that are valid for dilute solutions of linear 
chains (see Problem 8.16): 

, (8.67) 
q5kTwtz sin [ ( l  - 1/(3v)) arctan (wtz)]  

G'(w) =- b3 N 2 ( 1 - 1 / ( 3 4 ) / 2  [ I  + (wtz )  I 

(8.68) 

These predictions of the Zimm model are compared with experimental 
data on dilute polystyrene solutions in two 8-solvents in Fig. 8.7. The 
Zimm model gives an excellent description of the viscoelasticity of dilute 
solutions of linear polymers. 

As in the Rouse model, the mean-square displacement of monomer j 
during time tp is of the order of the mean-square size of the section con- 
taining N/p  monomers involved in a coherent motion at  this time: 

(8.69) 

The time dependence of mode indexp [Eq. (8.62)] was used to get the final 
result. Notice that this final result has an exponent that does not depend on 
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solvent quality. The mean-square displacement of a monomer in the Zimm 
model is subdiffusive on intermediate time scales: 
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(8.70) 

Consistent with the fact that the longest relaxation time of the Zimm 
model is shorter than the Rouse model, the subdiffusive monomer motion 
of the Zimm model [(Eq. (8.70)] is always faster than in the Rouse model 
[Eq. (8.58)] with the same monomer relaxation time ro. This is demon- 
strated in Fig. 8.8, where the mean-square monomer displacements pre- 
dicted by the Rouse and Zimm models are compared. Each model exhibits 
subdiffusive motion on length scales smaller than the size of the chain, but 
motion becomes diffusive on larger scales, corresponding to times longer 
than the longest relaxation time. 

8.5 Semidilute unentangled solutions 

There are two limits for unentangled polymer dynamics: 

(1) The Zimm limit applies to dilute solutions, where the solvent within 
the pervaded volume of the polymer is hydrodynamically coupled to the 
polymer. Polymer dynamics are described by the Zimm model in dilute 
solutions. 

(2) The Rouse limit applies to unentangled polymer melts because 
hydrodynamic interactions are screened in melts (just as excluded volume 
interactions are screened in melts). Polymer dynamics in the melt state 
(with no solvent) are described by the Rouse model, for short chains that 
are not entangled. 

In semidilute solutions there is a length scale, called the hydrodynamic 
screening length &, separating these two types of dynamics. On length 
scales shorter than the hydrodynamic screening length (for Y < <h), the 
hydrodynamic interactions dominate and dynamics are described by the 
Zimm model. On length scales larger than the screening length (for Y > th) 
the hydrodynamic interactions are screened by surrounding chains and the 
dynamics are described by the Rouse model. 

In Section 5.3, the static correlation length < was defined for semidilute 
solutions. This correlation length separates single-chain (dilute-like) con- 
formations at  shorter length scales (Y < <) from many-chain (melt-like) 
statistics at  longer length scales (for Y > <). The concentration correlation 
blob of size contains g monomers of a chain, with conformation similar 
to dilute solutions: 

< M hg”. (8.71) 

t 

Fig. 8.8 
Time dependence of the mean-square 
monomer displacements predicted by 
the Rouse and Zimm models on 
logarithmic scales. 

The exponent u = 1/2 in 0-solvents and v M 0.588 in good solvents. The 
correlation volumes are densely packed, so the volume fraction within 
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each correlation volume (gb3/ t3)  must be the same as the overall volume 
fraction of the solution 4: 

4 M -  gh3 
t3 (8.72) 

The correlation length decreases with increasing concentration 
[Eq. (5.23)]: 

< b4-1//(3u-1) (8.73) 

The scaling exponent v/(3v ~ 1) = 1 in H-solvents (v = 1/2) and 
v/(3v ~ 1) E 0.76 in good solvents (v E 0.588). 

The hydrodynamic screening length t h  in semidilute solutions is expec- 
ted to be proportional to the static correlation length7 t: 

<h <. (8.74) 

This proportionality makes sense in both limits. In the melt (4 = l) ,  both 
excluded volume and hydrodynamic interactions are fully screened to the 
level of individual monomers, so t h  M < M h. At the overlap concentration 
(4 = 4*), both excluded volume and hydrodynamic interactions apply 
over length scales comparable to the size of the entire chain, with 

The hydrodynamic screening length can neither be much larger nor 
much smaller that the static correlation length. Each of the N modes of a 
chain can, in principle, relax by either Rouse or Zimm motion. On small 
length scales, Zimm modes are faster than Rouse modes (see Fig. 8.8) 
because only solvent and other monomers on the same chain are hydro- 
dynamically coupled. However, this situation changes beyond the corre- 
lation length, because Zimm motion would couple the motion of 
monomers from different chains. This extra coupling makes Rouse motion 
faster than Zimm motion for sections of chain that are larger than the 
static correlation length, so Rouse dynamics apply on larger length scales. 

In semidilute solutions, both statics and dynamics are similar to dilute 
solutions on length scales shorter than the screening length. For short 
distances from a given monomer (v < t), essentially all other monomers 
are from the same chain (see Fig. 5.4). The chain conformation is similar 
to dilute solution and the dynamics are controlled by strong hydro- 
dynamic interactions. Therefore, the relaxation time T~ of a chain section 
of size < is described by the Zimm model and proportional to the corre- 
lation volume t3: 

t h  M < M R. 

(8.75) 

On length scales larger than the screening length < the dynamics are many- 
chain-like, with both excluded volume and hydrodynamic interactions 

Experimental results appear to be consistent with the expectation that hydrodynamic 
interactions and excluded volume interactions are screened on similar length scales. 
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screened. The Rouse model applies to the random walk chain of N/g 
correlation blobs. The relaxation time of the whole chain rchain is given by 
Eq. (8.17), with T~ the effective ‘monomer’ relaxation time, N / g  the effec- 
tive number of ‘monomers’: 
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(8.76) 

The number of monomers in a correlation blob is determined by com- 
bining Eqs (8.72) and (8.73) [as was done previously in deriving Eq. (5.24)]: 

From Eqs (8.76) and (8.77), the concentration dependence of the relaxa- 
tion time of the chain in semidilute solution is obtained: 

rchain - - kT 
(8.78) 

The concentration dependence of the polymer’s relaxation time is a power 
law with exponent 

2 - 3u 
3 u -  1 = 1 in Q - solvents (u  = 1/2), (8.79) 

and 

2 - 3u 
-~ ? 0.31 3 u -  1 (8.80) in good solvents (u  E 0.588). 

Note that if the polymer in dilute solution were highly extended with 
exponent u > 2/3,  the relaxation time in unentangled semidilute solutions 
would be predicted to decrease with increasing concentration. This is 
actually observed for semidilute unentangled solutions of charged poly- 
mers, called polyelectrolytes, which have u = 1 in dilute solutions because 
of charge repulsion. However, for the neutral flexible polymers discussed 
here, the relaxation time of the chain always increases with concentration. 

Polymers diffuse a distance of the order of their size R during their 
relaxation time rch‘,,,,. Recall the size of a linear polymer chain in a semi- 
dilute solution [Eq. (5.26) with v = b3]: 

The exponent 

2 u -  1 
6~ - 2 = 0 in Q - solvents (u  = 1/2)$ (8.82) 
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because the chain maintains a nearly ideal conformation at  all con- 
centrations and 

10-3; ' ' " " " :  10 ' , - . . , I  100 
&4* 

Fig. 8.9 
Concentration dependence of diffusion 
coefficient in good solvent. Filled 
symbols are four molar masses of 
polystyrene in benzene spanning the 
range 78 000-750000 gmol- ', from 
L. Leger and J .  L. Viovy, C'orztmp. Phys. 
29, 579 (1988). Open symbols are three 
molar masses of poly(ethy1ene oxide) in 
water spanning the range 73 000- 
660000 gmol-' ,  from W. Brown, 
Polymer 25, 680 (1984). To facilitate 
comparison, q5* was taken as the volume 
fraction at  which D = Dz for each data 
set. The low concentration line is 
Eq. (8.85) and the high concentration 
line has the slope expected for entangled 
solutions in good solvent [Eq. (9.43)]. 

2u - 1 
~- r 0.12 
6~ - 2 (8.83) in good solvents (u  E 0.588). 

The diffusion coefficient D in semidilute solutions decreases as a power 
law in concentration: 

(8.84) 

The semidilute diffusion coefficient can be written in terms of the Zimm 
diffusion coefficient of the chain Dz [Eq. (8.23) valid for diffusion in dilute 
solutions] and the overlap concentration 4* M N p ' 3 " p  ' )  [Eq. (5.19)]: 

The scaling exponent 

1 - u  
3u-  1 

= I  i n &  

and 

solvents (u  = 1/2), 

(8.85) 

(8.86) 

1 - u  
~~ ? 0.54 
3 u -  1 in good solvents (u cz 0.588). 

The concentration dependence of the diffusion coefficient is plotted in 
Fig. 8.9 in the scaling form suggested by Eq. (8.85) for polymer solutions in 
good solvents. The expected exponent is observed over a limited range of 
approximately one decade above the overlap concentration 4* and a 
stronger concentration dependence is seen at higher concentrations, where 
entanglements become important. 

In semidilute solutions, hydrodynamic interactions are not screened on 
length scales smaller than the correlation length <. Each mode involves 
coherent motion of N/p monomers. If N/p is smaller than the g monomers 
in a correlation blob, motion associated with that mode is described by the 
Zimm model. On larger length scales, hydrodynamic interactions are 
screened and modes with index p < N/g are described by the Rouse model. 
The number of monomers in a correlation blob is given by Eq. (8.77). The 
crossover mode index for hydrodynamic interaction is 

(8.87) 

There are three time scales important for the stress relaxation modulus 
in semidilute unentangled solutions. The shortest time scale is the relaxa- 
tion time of a monomer [Eq. (8.20)]. The intermediate time scale is the 
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Zimm relaxation time corresponding to the correlation blob [Eq. (8.75)]. 
The longest time scale is the Rouse relaxation time of the chain of corre- 
lation blobs [Eq. (8.78)]. 

The stress relaxation modulus follows the Zimm dependence on time 
scales shorter than rc, corresponding to motion of chain sections smaller 
than the correlation length: 
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(8.88) 

At the crossover time t = r( [Eq. (8.75)] the stress relaxation modulus is of 
the order of the osmotic pressure: 

(8.89) 

At longer times, the stress relaxation modulus follows the Rouse depen- 
dence: 

The value of the stress relaxation modulus at  the relaxation time of the 
chain can be determined from Eq. (8.90): 

Equations (8.76) and (8.77) were used to simplify this expression for 
G(TChain). The terminal modulus is of order kTper chain, as it must be for 
any unentangled flexible chain [see Eq. (8.32)]. The stress relaxation 
modulus at long times is approximated well by the product of the power 
law and an exponential cutoff 

The time dependence of the stress relaxation modulus in semidilute 
unentangled solution is sketched in Fig. 8.10. Experimental verification of 
Rouse dynamics for frequencies smaller than lit( was shown in Fig. 8.5, 
for a semidilute unentangled polyelectrolyte solution. 

The polymer contribution to viscosity in semidilute unentangled solu- 
tions is obtained by integrating the stress relaxation modulus over time 
[Eq. (7.1 17)]. 

(8.93) 

In Problem 8.21, the integration is shown to be controlled by the longest 
relaxation time q.hain. 

Fig. 8.10 
Stress relaxation modulus of an 
unentangled semidilute solution of 
chains with N =  10’ monomers at 
volume fraction o = 0.1 in an athermal 
solvent (logarithmic scales). 
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This result can alternatively be obtained from a de Gennes scaling 
argument. At the overlap concentration 4* = Nlp3" , the polymer con- 
tribution to viscosity is of the order of the solvent viscosity, and grows as a 
power law in concentration in semidilute solution: 

lo6T 105 (8.94) 

The exponent x can be determined from the condition that the long-time 
modes are Rouse-like, and therefore the polymer contribution to solution 
viscosity should be linearly proportional to polymer molar mass: 

rl - qs = rlsN(3"-1)Y($Y, (8.95) 

(8.96) 

In 8-solvents (v = 1/2), the exponent 1/(3v - 1) = 2, and the viscosity is 
predicted to grow as the square of polymer concentration in unentangled 
semidilute 0-solutions: 

1 
(3v-  l ) x =  1 * <x=- 

3 u -  1 '  

00001 0001 001 0 1 
c (g mI-') 

Fig. 8.11 
Concentration dependence of specific 

(8.97) 
viscobity for linear poly(ethy1ene oxide) 
with M,= 5 x 106gmol-' in water a t  
25 0 "C Ddtd courteby of s Singh 

This concentration dependence is demonstrated in Fig. 8.1 1. In good sol- 
vents (v E 0.588), the exponent 1/(3v - 1) E 1.3, and the viscosity is pre- 
dicted to grow as a weaker power of concentration: 

(8.98) 

8.6 
Polymer dynamics discussed in the previous sections of this chapter cor- 
respond to completely flexible chains and are related to modes on length 
scales larger than the Kuhn length. The relaxation mode structure on 
length scales shorter than the Kuhn length is significantly different. Many 
chains, in particular biopolymers, are locally quite stiff. A large part of the 
relaxation spectrum of such semiflexible chains corresponds to modes with 
wavelengths shorter than their Kuhn length. In this section, the mode 
spectrum of semiflexible chains without any intrinsic curvature or twist is 

Modes of a semiflexible chain 

A 
Ly 

' 8.6.1 Bending energy and dynamics 

Consider an elastic beam of length L, thickness L). and width L, with 
Young's modulus E. It is instructive to calculate the elastic energy of 
bending this beam by a small angle 8 (see Fig. 8.12): 

8 = sin ' ( h q  - =LJ, 

Fig. 8.12 
Bending o f a  rod by angle 8 ,  Insert: the 
elongation along a surface that is a 
distance y above the undeformed middle 
surface is y8 (and y < 0 below the middle (8.99) 
surface, in compression). L L  
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The central part of the beam (dashed line in Fig. 8.12) is undeformed, the 
upper half of the beam (AB) is under tension, while the lower half (A’B’) is 
under compression. The deformation along the plane of the bent beam a 
distance y away from the undeformed central surface is A L  = yQ (see insert 
in Fig. 8.12). The corresponding extensional strain is EO;) = AL/L =yQ/L.  
The elastic energy density is the work done by deformation per unit 
volume. Stress is force per unit cross-sectional area and strain is the 
deformation per unit length, so elastic energy density is proportional to 
the product of stress and strain CTE = E E ~ ,  where E is Young’s modulus. The 
elastic energy of a thin slice of the beam of thickness dy and cross-sectional 
area LL, is E ( J @ / L ) ~ L L , ~ ~ .  The total elastic energy of a bent beam is 
obtained by integrating the contribution from each slice over the thickness 
of the beam: 

(8.100) 

The Kuhn length h determines the crossover between stiff and flexible 
length scales. For rods or beams with length L of the order of the Kuhn 
length 6 ,  the angle of thermally induced fluctuations is of the order of 
unity Q M 1: 

(8.101) 
L3 L, ub( 1) M E% M kT. 

This equation can be solved for the Kuhn length: 

L3 L, 
bEE?. 

kT 
(8.102) 

The bending energy of a bent beam [Eq. (8.100)] then can be rewritten in 
terms of the Kuhn length: 

b 
L 

U L ( Q )  FZ kT-Q2 FZ (8.103) 

The last relation was obtained using Eq. (8.99) for the deformation angle 8. 
By writing Eq. (8.103) in terms of the Kuhn length, it becomes much 
more general and applies to beams with cross-sections that are not rec- 
tangular (such as the bending of a cylindrical rod). 

Since the beam or rod is a solid, it has natural modes of bending with 
wavelengths that allow the ends of the beam to be stationary. The first 
(longest wavelength) mode has wavelength X = 2L, the second mode has 
X = L, the third mode has X = 2L/3, etc. The fourth mode (with X = L/2) is 
illustrated in Fig. 8.13. Spontaneous thermally induced vibration modes of 
the beam will form at these wavelengths, and the amplitude of each mode 
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Fig. 8.13 
Schematic of the fourth vibration mode (with wavelength X = L/2) of a rigid rod of length L. 
The transverse oscillation with amplitude lz,. reduces the projected rod length along the x-axis. 
The amount that the rod length is reduced, per wavelength A, oscillates with longitudinal 
amplitude lz,. 

is determined by setting the bending energy from Eq. (8.103) at length 
scale X equal to the thermal energy k T  

112 

X3 
Ux M k T h 2  M kT. (8.104) 

This equation can be solved for the mean-square amplitude of these modes 
in the transverse direction: 

(8.1 05) 

To understand the dynamics of the bending fluctuations associated with 
these natural modes, a force balance per unit length is required. The force 
per unit length associated with the bending mode of wavelength X is cal- 
culated by differentiating the energy Ux and it is resisted by the frictional 
dissipation: 

(8.106) 

To understand the frictional dissipation term, recall that the friction 
coefficient < of a Kuhn segment of length b is the ratio of force and velocity 
in a liquid. Hence, </b is the ratio of force per unit length and the 
velocity dh,,ldt. This equation can be solved by separation of variables 
and integration: 

(8.107) 

The solution is exponentially decaying in time h,. - exp ( - tit) with 
relaxation time T proportional to the fourth power of the wavelength X of 
the mode: 

T M -  X4. 
k Th2 

(8.108) 

Alternatively, the wavelength of a bending mode is proportional to the 1/4 
power of its relaxation time: 

(-t) kTh2 'I4 Z b ( 5 t )  114 114 . (8.109) 

< TO 
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