Rubber Elasticity
(Indented text follows Strobl, other follows Doi)

Elasticity of A Single Chain:

The spring constant associated with a single polymer chain is of importance in awide range of
situations from the development of a simple description of rubber elasticity to understanding
flow behavior and other physical deformations of the chain. The basis of rubber elasticity isthe
Gaussian chain and most descriptions are limited by this framework. Despite this limitation the
description of the elasticity of a polymer chain isone of the major success stories of polymer
science. Elasticity in polymersis based on therma motion of the chain units. Consider ajump
rope that is being swung. The ends of the rope are pulled inward due to the kinetic energy of the
rope. Similarly, the thermal kinetic energy of a polymer chain tends to oppose stresses applied to
the random coil. Put differently, the chain seeks to maintain a random state and any force
applied to deform the chain acts to reduce the randomness of the chain. Thiscan bea
compressive, tensile or shear force.

For achain of length N and W(r) conformational states the free energy can be written asa sum
of the entropic and enthalpic contributions,

A = KT InW(r) + C = 3kT r¥(2N1.?3) + C

where C is a constant associated with the enthalpy of the chain. The free energy is afunction of
the chain extension, r. Changesin this free energy with respect tor result in aforce, -f,

f =-dA/dr =-3KT r/(NI ?)

Thermal motion of the chain is the source of thisforce just as thermal motion of atomsin agas
giveriseto pressure. Generally, we can speak of a spring constant f = K r, where K =
3KT/(NI ?), for anideal chain.

For an ideal chain the free energy associated with deformation in the "y"-direction comes
solely from entropy changes.

Force = df/dy = -T dg/dy

The entropy is given by the partition function Z from s = k InZ(y), where Z is the number
of conformations available to the chain when the two ends are separated by a distance
"y". The Gaussian distribution describes the probability of agiven end to end distance,



P(x, . 2) = (2pRy73)** exp{-3(x*+y*+Z)/(2Ry")}

This reflects the number of conformations for a given end to end distance. For x =0, z =
O andy having avalue,

Z(y) ~exp(-3y’/(2Ry))

and the entropy is

s(y) = K +Kk(-3y*/(2R,))

Then the force associated with deformation of asingle chainisforce = 3kT/(R,?) y
Free Energy of a Network (Rubber):

Consider a bulk sample of rubber composed of tens of millions of single chains connected by
crosslink sites. For such systemsit is appropriate to consider a continuum view and define a
deformation by the displacement of a material element at position R in the unstressed state to a
position R" in the stressed state. The deformation gradient tensor, E;; , describes the defomation
in terms of atensor expression E; = dR'/dR;, where i and j are any combination of Cartesian
coordinates 1,2,3. Then E; isa3x3 matrix describing the relative positions of material elements

on deformation.

Consider that the position of a material element in the deformed state R’ is afunction of
theinitial , undeformed position R, R'(R). Thisis the displacement function. Not all
deformations dR'(R)/dR lead to stress. Rigid body rotations and tranglations, for
example, do not lead to the development of stress. Then the question is how can we
consider only deformations that lead to stress. Take R' and R' + dR', two neighboring
positionsin the deformed state. Then release stress so the two positions go to R and
R+dR. Therelative changein position is given by the square root of dR'*dR' - dR+dR,
and this must have a value different from O for the development of stress. We have that
dR = (dR/dR’) dR" and (dR/dR’); = (dR/dR)). If you substitute in these expressions you
obtain,

dR*dR’ - dR*dR, = dR; (Cy - d) AR,

where C, is the Cauchy tensor that gives deformations that lead to stress. C, =
(dR/dR")(dR/dR',)



As noted above, the free energy of achain between crosslinks of N units with end to end vector r
is

f = (3KT/(2NI ))r?
In the network chains of variable end to end distance exist so the free energy, A, must be

integrated over r. If the rubber contains n, chains, and the probability of a chain of molecular
weight N and end to end distancer isY (N, r) then,

¥
A=n cyr ¢pNY (r,N) 3sz r’ +K
. 2N

p

where K isaconstant. This expression is simplified by the following assumptions:

1) The chains are Gaussian in the deformed and undeformed states.
/
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2) Deformationisaffinesor' = E ¢ r where E isthe deformation gradient tensor. Then the free

energy for the deformed stateiis,

¥
A=n,Cyr GNY (r, N) ;’;lTZ(E 1)’ +K
0
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Integrating leads to,
2
A=n3KT(E,) +K
Deformation of a Real Rubber:
Under isothermal conditions the change in free energy, dA, dueto an infinitesimal strain, de, is,
dA =Vs_, de,,
The infinitesimal change in the deformation gradient tensor, dE,,, is given by,

dE,, = Sde,, dE,,



and the change in volume, dV, is,

dvV =SV de,,

where the summations are over theindiciesm From the expression for the free energy,
dA = SSS {nkT de,, E,, E., + (dK/dV); V de.}

where the summations are over a, b and m From this an expression for the stress, s, can be
obtained,

Sab = S(nclv) KT Eam Ebm' Pdab
where the summation is over m
Finger Tensor:

The deformation gradient, E; = dR'/dR,, relates the position in the stressed (prime) to the
unstressed state. The Finger tensor is expressed by,

B, = SE,,E,,= SdR/dR, dR'/dR,,

where the summation is over theindex m The Finger tensor describes the deformation in
the absence of rotations and trand ations that do not lead to a change in the material
position R relative to a coordinate system based in the material, i.e. a codeformational
coordinate system. Thistensor is necessary since the Flory expression for rubber
elasticity does not consider translation and rotation as leading to a change in free energy.
Then we can write for incompressible elastic bodies,

s=GB-P1

and for arubber,

S., = (V) kT B, - Pd,,

The Cauchy tensor, C;;, isrelated to the Finger tensor by,

C, =1lB,

ij ij



The Eulerian strain tensor, g; (the strain for linear response), is related to these tensors by,
2g,=d; - C;
Simple Shear Defor mation:
For simple shear deformation, X'=qy+X; y'=y; z'=z
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and B; isgiven by,
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SO,

Sy =(n/V) kT g

Sy = (NJV) KT (1+g) - P
Syy =8, =(NJV)KT -P

The shear modulusis given by,

G= "M Su oy
Tg@®0g

where n, is the number density of network chains.
1) Thereisalinear relationship between shear stress and shear strain.

2) Thefirst normal stress difference for anideal rubber, s, - s,, = (n/V) kT ¢f isnon-
linear depending on ¢f.

3) The second normal stress differenceis O for an ideal rubber.



Pur e Shear:

For pure shear (Strobl p. 319) they coordinateis held constantand z' =1 *z; x' =1 x;y'
=y under deformation, so,
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All three normal stress differences have values;

1) SZZ-SXX:G(|2-|_2)
2) s,-s,=G(1%-1)
3) Sy =S =G(1-17?)

Uniaxial Extension:

For uniaxial extension, z =1z, x'=xl Y3 y' =yl "2
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and B;; is given by (depending on the definition of | ), (as given by Strobl p. 318)
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Sy =(NJV)KT g
S, =nkTlI?-P
Sy =Sy =N KT/l -P

fors,, =s,,=0,P=nKT/l, and
S,=n.KT(?%-1/1)
The latter equation is the basis of the Mooney-Rivlin Plot (Strobl p. 323) of reduced

tensile stress, s/(l - 1/I ?), versus the inverse of strain, 1/l . This approach does not work
for compression as shown by Strobl on page 323.



