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Abstract 

 
Numerous papers have recently appeared in the literature presenting quantitative 

comparisons of experimental linear viscoelastic data to the most recent versions of “tube” 
models for entangled polymer melts and solutions.  Since these tube models are now 
being used for quantitative, rather than just qualitative, predictions, it has become 
important that numerical pre-factors for the time constants that appear in these theories be 
evaluated correctly using literature data for the constants (i.e., density, plateau modulus, 
etc.) that go into the theories.  However, in the literature two definitions of the 
entanglement spacing in terms of plateau modulus have been presented, and confusion 
between these has produced numerous errors in the recent literature. In addition, two 
different definitions of the “equilibration time,” a fundamental time constant, have also 
appeared, creating additional potential for confusion.  We therefore carefully review the 
alternative definitions and clarify the values of the pre-factors that must be used for the 
different definitions, in the hope of helping future authors to avoid such errors. 
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“Tube” models are now being used more and more frequently for quantitative 

calculations of relaxation processes for polymers of linear, star, and more complex 
topologies.  Since numerous errors have appeared in these calculations due to incorrect or 
inconsistent use of the definitions of the key quantities, especially of the entanglement 
molecular weight. The objective of this note is to summarize the formulae that allow one 
to calculate the parameters of the reptation tube model from measured melt properties, 
and discuss alternative definitions of the parameters.  Along the way, we will point out, 
and correct, some errors made in the literature in the calculation of reptation tube 
parameters.  Finally, we will summarize the most common “canonical” lists of definitions 
and equations used in tube models, which we commend to those working in this field.  
Above all, we urge that all papers published in the future make clear which set of 
definitions are being used and that authors take pains to be sure they are used 
consistently. Consistent use of these definitions also requires that any parameter values 
taken from tabulations in the literature (especially entanglement spacings) be corrected, if 
necessary, to account for any differences in definition between that used by whomever 
created the tabulation and the calculations using that parameter. 

 
The “tube” properties that we calculate are τe, the “equilibration time,” τR, the 

Rouse orientational relaxation time, τd, the “disengagement time” (or “reptation time”), 
Me, the “entanglement molecular weight,” a, the “tube diameter,” and Z, the “number of 
tube segments” per molecule. These quantities are computed from certain measured or 
known quantities, including the temperature T, Boltzmann’s constant kB, and Avogadro’s 
number NA, from which the universal gas constant is obtained as R = NAkB.  In addition, 
some properties of the polymer are required, including the polymer density ρ, the 
monomer molecular weight M0, the polymer molecular weight M, and the polymer 
statistical segment length b (which is defined such that the polymer mean-square end-to-
end distance is R2=Nb2, where N≡ M/M0 is the number of monomers in the polymer. The 

radius of gyration is then given by Rg = Nb2 / 6 . (Note that the universal gas constant 

uses the same symbol as the polymer end-to-end distance, but the former can always be 
recognized in that it is immediately followed by “T” for temperature.) Finally, two 
rheological parameters are required, namely the plateau modulus GN

0 and the monomeric 
friction coefficient ζ. These two quantities have been measured for many polymers and 
are tablulated in Ferry’s (1980) book, for example. Up-to-date values of the plateau 
modulus for many polymers can be found in Fetters, et al. (1994; 1999). As described 
below, values of the entanglement molecular weight Me given by Fetters et al. are based 
on a different definition of Me than those given in Ferry, and this has led to errors in 
published papers that we hope (by publishing this note) to prevent being propagated or 
repeated in the future.   

 
The various lengths in the problem are depicted in Figure 1, showing b << a << 

R= 6 Rg << Ltube << L.  Rather than the “statistical segment length” b as defined above, 
sometimes the “Kuhn” step length bK is used, which follows a formula for the mean 
square end-to-end length similar to that of b, namely R2=NKbK

2, where here NK is the 
“number of Kuhn steps” rather than the number of monomers, and the number of Kuhn 
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steps is defined so that NKbK = L, the total polymer length.  For synthetic polymers with a 

carbon backbone, the “Kuhn step length” is related to b by bK =
C∞

0.82 j
 and NK is 

related to N by NK =
j (0.82)2

C∞
N , where C∞  is the “characteristic ratio” relating R2 to the 

number n = jN of backbone bonds and their length   l  by   R
2 = C∞nl 2 , and j is the number 

of carbon-carbon bonds per monomer. The factor “0.82” enters because the tetrahedral 
bonding angles produce a zig-zag polymer conformation when the chain is fully 
extended. 
 
 Formulae describing the reptation model are taken from Doi and Edwards’ (1986) 
book. First, we give the formulae for the polymer contribution to the stress tensor, which 
assumes that tube is made of straight segments of length a, which are uncorrelated before 
deformation (eq. 7.3 from Doi-Edwards book).  
           (1) 

where nM is the number of monomers per unit volume of sample. In Doi and Edwards’ 
book, this quantity (nM) is given the symbol “c,” but the symbol “c” has a well-
established use as the mass concentration of polymer, and so here we introduce a 
different symbol for the number of monomers per unit volume. For a bulk polymer (no 
solvent), nM is related to the polymer density and monomer molecular weight by 
 

nM =
ρNA
M0

         (2) 

 
Note that a is therefore introduced strictly as a tube persistence length rather than as a 
“tube diameter”, by which it is more colloquially referred-to. 

 
. Using this expression,   Doi and Edwards’  derived the stress relaxation due to reptation: 
 
where ψ(t) is well known relaxation function changing from 1 to 0, and the plateau 
modulus is  

GN
0 =

4
5

nM
b2

a2 kBT         (3) 

 
 
 
Eq. (2) allows us to write the plateau modulus for a melt as 
 

σαβ (t) = GN
0ψ (t)

σαβ (t) =
3kBT

b2
nM
N

∂Rnα (t)
∂n

∂Rnβ (t)

∂n∑
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GN
0 =

4
5

ρRT
M0

b2

a2         (4) 

 
Eq. 4 is then the basic equation for obtaining the tube diameter a (which is assumed to be 
equal to the tube persistence length) from the plateau modulus GN

0. A similar formula is 
given as Eq. 7.51 by Doi and Edwards, but their formula is only an approximate scaling 
relationship and does not include the factor 4/5. 
 
 We next obtain the number of tube segments in a polymer of molecular weight M. 
The number of tube segments Z is chosen so that the random walk describing the tube 
conformation has the same mean-square end-to-end length as the real polymer.  This 
implies that (see Doi and Edwards, Eq. 6.20) 
 
Za2 = Nb2          (5) 
 
Combining this with Eq. (4) gives a relationship between Z and the plateau modulus: 
 

GN
0 =

4
5

ρRT
M0

Z
N

        (6) 

 
 Doi and Edwards also give the formula for Me, the molecular weight between 
entanglements, as (Doi and Edwards, Eq. 7.52) 
 
 

Me
F =

ρRT
GN

0          (7) 

where we have superscripted the entanglement molecular weight Me with “F” to indicate 
that this is Ferry’s definition (see Ferry 1980), which is used in Doi and Edwards’ book.   
This definition arose from the result for the modulus of affine network made of strands of 
length Me

F, but we note that it does not apply to entangled melt because entanglements 
allow chain to slip through it, unlike crosslinks. Also there is no reason to believe that the 
network of entanglements deforms affinely.  There is in consequence no reason to expect 
the prefactor of unity in (7) to be particularly robust. 
 
Another definition, used by Fetters, et al. (1984), will be discussed later.  We find from 
Eqs. 4 and 7 that 
 

a2 =
4
5

Me
F

M0
b2          (8) 

 
Combining Eqs. 6 and 7, we find  a very counterintuitive result 

 

Z =
5
4

M
Me

F          (9) 
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The quantity M/Me

F is sometimes referred to as the “number of entanglements” per 
molecule. However, Eq. 9 shows that this is not quite equal to the number of tube 
segments per molecule, but rather Z is 25% larger than M/Me

F. This difference has 
caused considerable confusion in the literature, as discussed below. The fundamental 
reason for such confusion is probably inconsistent mixture of two alternative concepts: 
entanglements and the tube. 
 
 The Rouse rotational relaxation time τR is given by a formula that is independent 
of the tube model (Doi and Edwards, Eq. 4-37): 
 

τ R =
ζN2b2

3π 2kBT
         (10) 

 
Note that the terminal stress relaxation time of the Rouse model is a factor of two smaller 
than this value of the rotational relaxation time τR; see the parenthetical comment at the 
top of page 115 of Doi and Edwards. The above equation can be re-written as 
 

τ R =
ζZ 2a4

3π 2kBTb 2         (11) 

 
It is now convenient to define a molecular-weight-independent relaxation time-

scale, by setting Z=1 in Eq. 10, giving the equilibration time τe, which is the Rouse 
relaxation time of a chain of length equal to one tube segment: 
 

τe =
ζa4

3π 2kBTb2 =
4
5

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

Me
F

M0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ζb2

3π 2kBT
     (12) 

 
where Eq. 8 has been used to get the second equality. This choice for the definition of the 
equilibration time makes the formula 6.106 in Doi and Edwards, which was intended as a 
scaling relationship, into the precise definition of τe.  Using Eq. 12, once τe is specified 
for a given polymer at a given temperature, the Rouse time τR is then given by simply: 
 

τ R =Z2τ e =
5
4

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

M
Me

F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

τ e        (13) 

 
 
 Finally, we obtain a formula for the reptation disengagement time τd (without 
fluctuation correction) from Eq. 6.19 of Doi and Edwards: 
 

τd =
ζN3b4

π 2kBTa2 =3Z3τe         (14) 
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The above formulae permit calculation of all the tube-model parameters from standard 
polymer properties tabulated in Ferry (1980) and Fetters et al. (1994).  We note, however, 
that the Ferry tabulation of the monomeric friction coefficient ζ  is based on data from the 
transition region, and might not be very accurate for calculation of slow relaxation 
processes.  Many authors therefore feel justified in adjusting τe to obtain the best 
agreement with experimental data for entangled polymers. Adjustment of this one 
parameter still leaves plenty of room for rigorous testing of the tube model since τe must 
in principle be held fixed when varying molecular weight, chain architecture, or blending 
together different chain architectures. 
 
 An alternative definition of the “equilibrium” time has been used frequently by 
Milner, McLeish, and coworkers (see, for example, Milner and McLeish, 1997), which 
chooses it to be the Rouse time of an entanglement segment of molecular weight Me

F, 
rather than of a tube segment. Thus, the Milner-McLeish equilibration time is larger by a 
factor of (5/4)2 than that given above.  Superscripting this choice of τe with “MM,” we 
have  
 

τe
MM =

5
4

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2 ςa4

3π 2kBTb2 =
Me

F

Mo

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ςb2

3π 2kBT
     (15) 

 
We therefore obtain 
 

τ R =
4
5

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

Z 2τe
MM =

M
Me

F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

τe
MM       (16) 

 
and 
 

τd =
ζN3b4

π 2kBTa2 =
15
4

M
Me

F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

3

τe
MM       (17) 

 
 Much confusion and many errors in the literature have been produced because of 
the differing definitions of Me and τe, and because of the factor of 4/5 that appears in 
many places in the above equations. The key problem is that the number of tube segments 
Z is not equal to the molecular weight divided by the entanglement molecular weight if 
one uses the Ferry definition, given as Me

F in Eq. 7.  Thus, Pattamaprom et al. (2000) 
have made errors of 4/5 or powers thereof, in their calculations of the tube diameter, and 
the reptation time, owing to their (incorrect) assumption that Z is equal to M/Me

F. To 
avoid this problem, Fetters et al. (1994) incorporate the “pesky factor” of 4/5 into the 
definition of Me in Eq. 7, producing a value of Me only 4/5 as large as that of Ferry. We 
will refer to this as the “G definition,” which is given by 
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Me
G ≡

4
5

ρRT
GN

0          (18) 

 
The “G” definition of the entanglement spacing has been attributed to Graessley 

(1980); however, the formula in this paper by Graessley relates GN
0 to the number of tube 

segments (here Z), not to Me.  Thus, to our knowledge, the first to propose the definition 
in Eq 17 for Me is Fetters et al. (1994). So, we use a superscript “G” for this second 
definition to distinguish it from the “F” used for the first definition, which is due to Ferry. 
The “G” definition results in Z = M/Me

G, which removes factors of 4/5 from the formulae 
for the relaxation times, avoiding a source of possible error. This also means that Me

G has 
a simple physical meaning of number of monomers in one tube segment, so that the 
concept of entanglement is not necessary in any of “G”  definition.However, one must 
then re-compute and re-tabulate the values of Me, which has been done by Fetters, et al. 
(1994).  While intended to simplify matters, this re-tabulation has led to further errors, 
because some authors have used values of Me from Fetters et al., but have employed the 
Ferry definition of Me in theoretical calculations.  (An example of this error occurs in 
Milner and McLeish 1997). This causes only rather small errors for linear polymers, 
where small powers of 4/5 end up erroneously included or omitted, but for star polymers, 
the errors are large, since the quantity M/Me appears inside an exponential function for 
the relaxation time or viscosity.   
 

Therefore, authors must take pains to make sure that the literature value of Me 
used in their calculations was determined using the appropriate definition, or is 
corrected to account for any difference in definition. Thus, in summary, using the “G” 
definition for the entanglement molecular weight, the formulae for the tube model are: 

 

Z =
M

Me
G          (19) 

 

τe =
ζa4

3π 2kBTb2 =
Me

G

M0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ζb2

3π 2 kBT
      (20) 

 

τ R =Z2τ e =
M

Me
G

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

τ e         (21) 

 

τd =
ζN3b4

π 2kBTa2 =3Z3τe =3
M

Me
G

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

3

τe       (22) 

 

On the other hand, the Ferry definition of Me, namely Me
F ≡

ρRT
GN

0  (Eq. 6) leads 

to 
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Z =
5
4

M
Me

F          (23) 

 

τe =
ζa4

3π 2kBTb2 =
4
5

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

Me
F

M0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ζb2

3π 2kBT
     (24) 

 

τ R =Z2τ e =
5
4

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

M
Me

F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

τe        (25) 

 

τd =
ζN3b4

π 2kBTa2 =3Z3τe =3
5
4

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
3

M
Me

F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

3

τe      (26) 

 
(Ron: do we really need to list these out all again here – why not just refer to the box at 
the end) 
If the “Milner-McLeish” definition of τe is used, then the factor of (4/5)2 is missing from 
Eq. 23, and, correspondingly, two powers of 5/4 are dropped from the formulae for τr and 
τd in Eqs. 24 and 25.  
 

Finally, we note that other expressions are affected by the definitions of Me and of 
τe, such as the equation for the “early time” primitive path fluctuations of a star arm (or 
of a linear polymer thought of as a “two-arm star”), discussed by Milner and McLeish 
(1997). Milner and McLeish give the formula for this time as 

 

τearly (s)=
225π 3

256
M

Me
F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

4

τe
MMs4      (27) 

 
which is taken from Eq. 13 of the Milner-McLeish (1997) paper, combined with their 
relationship for the Rouse time in terms of their definition of the equilibration time. The 
parameter s is the fractional distance from the tip of the star arm (s=0) to the branch point 
(s=1), or to the center of the linear molecule, for a “two-arm star.” We note that it was 
shown (Likhtman and McLeish, 2002) that the concept of average local relaxation time is 
in fact not applicable to small times t<τ R  (since the local relaxation of orientation is not a 
single exponential near the chain end) and therefore the prefactor in eq. (26) does not 
have much meaning. We still mention it here because of its wide use as an approximate 
formulae. 
 
This result can be converted into the “G” definition of the entanglement spacing, but we 
must also note the difference in definitions of τe .  That is, if we change to the definition 
ofτe  in Eq. 12, we obtain 
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τearly (s)=
9π 3

16
M

Me
G

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

4

τ e s 4 =
5625π 3

4096
M

Me
F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

4

τ es
4     

 (28) 
 

The G definition of Me avoids the bulky prefactors (225/256 or 5625/4096) arising from a 
square or a fourth power of 5/4 (Likhtman and McLeish 2002). 
 
 The alternative definitions are summarized in Table 1, under the headings “G 
Definitions,” which are followed in a recent paper by Likhtman and McLeish. (2002); “F 
Definitions,” which are based on the Ferry definition of Me and the definition of τe used 
in Doi and Edwards, and the “MM Definitions,” which are followed in the equations in 
Milner and McLeish (1997). 
 

We note that the “late-time” fluctuation time is also affected by the definitions of 
the entanglement spacing and of the equilibration time.  The Milner-McLeish (1997) 
theory for this relaxation time, in the case of monodisperse star polymers, is   

 

τlate(s)=
2π 5

15

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

1/ 2
M

Me
F

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

3/ 2

τe
MM

exp Ueff (s)( )

s2 (1 − s)2α + 4Me
F

15M

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ (1+ α )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2α / (α +1)

Γ −2 1
α + 1

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/2

 (29) 
 
where Ueff is the effective potential, given by 
 

Ueff (s)=
15M
4Me

F
1 − (1 − s)α +1[1 + (1 +α )s]

(1 +α )(2 +α )
      (30) 

 
Here α  is the “dilution exponent” of Milner and McLeish, which has been assigned the 
values either of 4/3 or unity.  Γ (x) is the “gamma function,” which in Eq. 30 is raised to 
the –2 power.  An error of a factor of two was introduced into Eq. 30 by Milner and 
McLeish (1998), but corrected in Frischknecht, et al. (2002; see their footnote 24). 
However one missprint has been carried persistently from one paper to another, which is 
in factor of s2 in denominator of eq. (30): it must multiply only the first term in brackets. 
  

The above pair of equations uses the “MM” set of definitions for Me and τe. When 
converted to the “G” definitions, these equations yield: 
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τlate(s)=
π 5

6

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

1/2
M

Me
G

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

3/ 2

τ e

exp Ueff (s)( )

s2 (1 − s)2α + Me
G

3M

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ (1+ α )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2α /(α +1)

Γ −2 1
α +1

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/2  

 (31) 
 
and 
 

Ueff (s)=
3M

2Me
G

1− (1 − s)α +1[1 + (1 +α )s]
(1 +α )(2 +α )

      (32) 

 
It is also important to define these essential parameters from experimental point of view. 
We have already shown that the definition of the elementary time τe is theory-dependent: 
if it is defined from high frequency Rouse spectrum of unentangled short chains, one 
needs some assumptions about glass transition dependence on the chain length. If τe is 
defined from fitting the spectrum of entangled polymers, the result will be strongly model 
dependent. The situation with the experimental definition of the plateau modulus is better 
but not perfect. The most reliable and well-defined route to determination of GN

0 from 
experiment  is to take the value of G’ in the plateau region, for example at the minimum 
of G’’, for an extremely entangled polymer, with at least 100-200 entanglements. In 
practice however this is not always possible and people define the plateau modulus for 
each sample, and then argue that it can be molecular weight dependent. This however 
strongly contradicts all theoretical assumptions of tube models, that the entanglement 
molecular weight is set by the local packing propensity of the polymer chain. As was 
shown in Likhtman and McLeish (2002), the tube theory, when contour lengthy 
fluctuations and constraint release are properly incorporated, does predict a weak 
dependence of the apparent plateau of G’ on molecular weight as approximately Z0.1-0.15, 
which saturates to reasonable accuracy between about Z=150 and Z=1000 (we reiterate 
that this is true for a constant value for the parameter called the plateau modulus and 
given the notation GN

0).  Figure 9 of this reference shows this gentle saturation for 
several assumptions of the strength of constraint release.  That for a wide range of 
molecular weights the experimentally-apparent plateau modulus is smaller than the high-
molecular weight limit is particularly important for the experimental determination of 
plateau modulus dependence on concentration in polymer solutions, because these are 
never extremely strongly entangled. We suggest that the plateau modulus should  be 
determined by fitting linear spectra with the full theory for the linear viscoelastic 
response at each concentration, rather than obtained by some empirical definition 
evaluated at a restricted range or point of the spectrum. 
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Table 1 Summary of the alternative definitions of tube parameters 

 
  

G Definitions 
(Fetters et al.) 

Based on Eq. 17 
for Me and Eq. 19 

for τe   

 
F Definitions 

(Ferry) 
Based on Eq. 22 for 

Me and Eq. 19 for τe  

 

MM Definitions 
(Milner-McLeish) 

Based on Eq. 22 for 
Me and Eq. 14 for 

τe  
Me 

Entanglement 
molecular weight 

 

Me
G ≡

4
5

ρRT
GN

0  

 

Me
F ≡

ρRT
GN

0  

 

Me
F ≡

ρRT
GN

0
 

Z 
Number of tube 

segments 

 

Z =
M

Me
G  

 

Z =
5
4

M
Me

F  
 

Z =
5
4

M
Me

F
 

τe  
Equilibration 

time 

 

τe =
Me

G

M0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ζb2

3π 2kB

 

 

τe =
4
5

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

Me
F

M0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ζb2

3π 2kB

 

 

τe
MM =

Me
F

M0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
ζb

3π 2k

 
τr  

Rouse rotational 
time 

 
τr = Z 2τ e

 
 

τr = Z 2τ e  τr =
4
5

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

Z 2τe
MM  

τd  
Reptation time 

 
τd =3Z 3τe  

 
τd =3Z 3τe  τd = 3

4
5

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

Z 3τe
MM  

τearly(s) 
Early-time 

arm fluctuation 
time 

 

τearly (s)=
9π 3

16
M

Me
G

⎛ 

⎝ ⎜ 

 

 

τearly (s) =
5625π 3

4096
M

Me
F

⎛ 

⎝ ⎜ 

 

 

τearly (s)=
225π 3

256
M

Me
F

⎛ 

⎝ ⎜ 
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Fig. 1.  Illustration of tube model, and the various length scales of the polymer chain and 
the tube. The blow-up shows a small section of the polymer, modeled as a freely-jointed 
chain. 


