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040423  Quiz 4 Polymer Properties

For a symmetric distribution function the mean, median and most probable values are identical.
This is not true for a skewed distribution (single mode but asymmetric) such as the log-normal
and Lorentzian distributions.  The function R2 PG(R) is asymmetric despite the symmetry of
PG(R), the 3d Gaussian distribution.

a)  Show that the generic probability P(R) is given by P R( ) = −
R

mp, R2

dP(R)

dR

 
 

 
 

2
, where Rmp,R2 is

the most probable "R" value of the function R2 P(R).

b)  Use this expression for P(R) to calculate R2 , the mean value of R2 in terms of Rmp,R2.

Assume that P(R) is symmetric.  You will need to use integration by parts, udv = uv − vdu∫∫ .

(Also, note that a normalized P(R) has units of inverse size.)

c)  How does the result in "b" support or detract from the Flory-Krigbaum approach to the
calculation of the scaling behavior for an isolated polymer coil in a good solvent?  (If successful
you have shown that Rmp,R2 ~ <R2>1/2)

d)  The consideration of excluded volume as a generic description of and as an equivalent
statement of long-range interactions in analogy to our previous consideration of short range
interactions in the context of prohibiting local chain backtrack is the basis of segregation of the
study of polymers into local persistence effects and global chain scaling effects.  Describe briefly
how such conceptual segregation might be used to describe a polyelectrolyte (charged polymer)
in a good solvent such as sulfonated polystyrene in water as a function of chain charge.

e)  An expression for the free energy of an isolated chain in a theta or in a good solvent can be
obtained from the Flory Krigbaum approach and the Boltzmann principle.  Give the expressions
for the free energy of these two cases showing how the expressions relate to the conformational
probability functions discussed in class.



2

ANSWERS:  040423  Quiz 4 Polymer Properties

a)  Calculate Rmp,R2:

0 =
d R2P(R)( )

dR
= 2R

mp,R2 P R( ) + R
mp,R 2

2 d P(R)( )
dR

solve for P(R) to obtain the expression.

b)  R2 = R2

− L

L

∫ P(R)dR =
−R

mp,R 2

2
R2

−L

L

∫ d P(R)( )
dR

dR

use integration by parts with u = R2 and dv =
d P R( )( )

dR
dR , so, v = P(R), then

R2 =
−R

mp ,R 2

2
R2P(R) − 2 RP R( )

− L

L

∫ dR
 
  

 
  = R

mp,R 2 L2P(L)[ ]

c)  The equality in "b" shows that the maximum probability value is proportional to the rms
value if the distribution function is symmetric.  This is assumed for the Flory-Krigbaum
derivation, meaning that the derivation of the scaling behavior of the end-to-end distance is
reasonable except for the implicit assumption that it is a perturbation from the Gaussian
symmetric distribution.

d)  For a charged polymer the short range interactions between like charged groups lead to
repulsion and are well known to significantly increase the chain persistence, sometimes by an
order of magnitude!  On the other hand, the Flory-Krigbaum theory states that once the polymer
shows strong affinity for the solvent the global chain scaling should display a dimension of 5/3
for a self-avoiding walk, as long as the persistence length is smaller than the overall chain size.
In polyelectrolytes it is possible for the entire chain to be persistent so that no coil dimension is
observed at all.  Without an understanding of segregation between coil scaling and chain
persistence (long and short range interactions) it is impossible to understand the structural
manifestations of electrostatic charge on polymer coils.

e)  The Boltzmann distribution function states that the probability of a physical state
(conformation), P(R), is related to the free energy of the conformation, ∆E,

P(R) = K exp −
∆E

kT

 
 

 
 

Through comparison of the Gaussian probability for a Brownian chain,
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W0(R) = ZN 4πR2 2πRF
2

3

 
 
  

 
 

− 3/2

exp −
3R2

2RF
2

 
 
  

 
 dR

we can obtain an expression for the free energy of an isolated chain by comparison,

∆E ~ kT
3R2

2RF
2

For the Flory-Krigbaum expression we have similarly,

∆E ~ kT
3R2

2RF
2 −

N 2Vc 1− 2χ( )
2R3

 
 
  

 
 


