
030423  Quiz 4 Properties

1)  a &b)  Give two scattering functions that are used in the literature to describe scattering
from a polymer coil.
c & d)  Show that these two functions yield the same power-law equation at the high-q
limit.
e)  Which of these functions could be used for a dilute polymer solution'' in a good
solvent? Explain.

2)  Derive a relationship between the end to end distance of a linear Gaussian chain and the
radius of gyration.  Given that,
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(Explain each step in the derivation)

3)  a)  Find an expression for the end-to-end distance of maximum probability, R*, for a self-
avoiding walk if the probability for a walk of length R is given by,
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where k is a constant.
b)  The free energy of a self-avoiding chain as a function of extension, R, is sometimes
written,
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How can this be obtained using the Boltzmann probability and the function given above?
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ANSWERS:      030423  Quiz 4 Properties

1) a)  Debye Scattering Function for a Gaussian Polymer Coil,

g q( ) =
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b)  Ornstein-Zernike Function (Lorentzian Function)
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c) For the Debye function at high q the exp(-Q) term goes to 0 and Q>>1 so g(q) =>2N/Q

d)  For the Lorentzian function at high q, Q/2 >>1 so g(q) =>2N/Q

e)  The high q power of -2 slope in q indicates a 2 dimensional mass-fractal structure.  A good
solvent coil shows self-avoiding statistics so the slope is -5/3 in this region.  Neither of these
functions is appropriate for a good solvent coil.

2)  Following the web notes,
step 1:  Realize that the difference between two segments in a Gaussian walk is given by nb2 so
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where the second summation realizes the symmetry of the double summation.

step 2:  The double summation can be written as a series in Z = N-1, this is evident after writing
the first few terms of the double summation
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step 3:  using the summation of a power rule given above for the two summations the expression
becomes:
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3)  a)  To find the maximum probability we take the derivative of W(R) with respect to R and set
this equal to 0,
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b)  By comparison of the function for the probability of an end to end distance R given in the
problem and by comparison with the Boltzman probability, exp(-F(R)/kT) we can directly write
an expression for the free energy as a function of R for a self-avoiding chain.


