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Computer modeling of polymer stars in variable
solvent conditions: a comparison of MD
simulations, self-consistent field (SCF) modeling
and novel hybrid Monte Carlo SCF approach

Alexander D. Kazakov, *a Varvara M. Prokacheva, a Filip Uhlı́k,a

Peter Košovan a and Frans A. M. Leermakers b

Computer-aided modeling is a systematic approach to grasp the physics of macromolecules, but it

remains essential to know when to trust the results and when not. For a polymer star, we consider three

approaches: (i) Molecular Dynamics (MD) simulations and implementing a coarse-grained model, (ii) the

self-consistent field approach based on a mean-field approximation and implementing the lattice model

due to Scheutjens and Fleer (SF-SCF) and (iii) novel hybrid Monte Carlo self-consistent field (MC-SCF)

method, which combines a coarse-grained model driven by a Monte Carlo method and a mean-field

representation driven by SF-SCF. We compare the performance of these approaches under a wide range

of solvent qualities. The MD approach is formally the most exact but suffers from reasonable

convergence. The mean-field approach works similarly in all solvent qualities but is quantitatively least

accurate. The MC-SCF hybrid allows us to combine the benefits of the simulation route and the

effective performance of SCF. We consider the center-to-end distance Rce, the radius of gyration Rg
2 of

the star and the polymer density profiles j(r) of polymer-segments in it. All three methods show a good

qualitative agreement one to another. The MC-SCF method is in good agreement with the scaling

predictions in the whole range of solvent quality values showing that it grasps the essential physics while

remaining computationally in bounds.

1 Introduction

The polymer coil is one of the most soft objects known to man.
Its softness, but also many other properties, continues to
fascinate scientists across disciplines. There are various ways
one can get deeper insight in its intricate behaviors. Computer
aided modeling is a prominent tool that is frequently used
for this. There are various methods all with their own pros
and cons.

Computer simulations, for example, are used to predict
effects such as the swelling or compression of coils, something
that might be hard and/or expensive to lay your hand on using
experiments. Simulations might also be used to deepen our
knowledge in general.1 With computer simulations, one typically
samples phase space and by doing so one builds up knowledge of
the (exact) system partition function. In turn, this function holds

all insights that we can know about the system of interest.
Their predictions are valuable and undeniably contribute to
our knowledge. With the increasing strength of computer
resources the computer simulation tool gains in importance.

In many cases, however, computer simulations do not (yet)
resolve all issues. In particular, there may be length- and time
scale challenges in combination with limited computational
resources that prevent us from reaching acceptably small values
for the statistical error estimation of targeted measurables.
When this happens, one may even argue that it is meaningless
to discuss values for the targeted effects, or one may even doubt
whether simulations can relate to the existence per se of the
targeted effect.

In cases when simulation methods are in trouble, that is
in particular when satisfactory statistical accuracies cannot
be reached, we may resort to alternatives. Invariably, these are
based upon mean-field approximations and focus on the mean-
field partition function. These approximations are implemented
specifically to reduce the computation time and because in some
cases, one can even make progress analytically. The mean-field
approximation is a good example of sacrificing the system
resolution to reach effective probability distributions.
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One prominent simulation method that gains importance,
and is used below, is Molecular Dynamics (MD) simulations.
MD samples the partition function by integrating the Newton
law of motion. It accounts for correlations between segment
interactions and therefore the method earned well-deserved
recognition in the scientific audience and hence in the com-
munity of modeling of macromolecules. However, with an
increasing number of segments in a polymer chain, MD simu-
lation becomes less efficient and suffers from slow dynamics
and accumulated errors.2,3 For long polymer chains, we have to
sacrifice the resolution of a system to get statistically reliable
results. The MD technique is also limited because it has just
one strategy to sample the degrees of freedom. When the
dynamics is not per se of interest and the sampling of only
the equilibrium properties is targeted, one can alternatively use
the Monte Carlo (MC) simulation method. This method is an
ensemble sampling approach that can make use of arbitrary
changes of the system degrees of freedom and not necessarily ones
that pass by through the motion of the molecule. By inventing
arbitrary moves such that all phase space variables (typically the
positional coordinates of all particles) can be reached, one can
more effectively than MD, sample the Boltzmann distribution that
characterizes equilibrium. MC can be used with exactly the same
molecular model as MD and typically employs the Metropolis
algorithm to guarantee that the Boltzmann distribution is indeed
observed. When MD has trouble reaching the equilibrium distribu-
tion, also MC will quickly be in trouble. Hence the two methods are
really complementary to each other but are limited in practice to
’small systems’.2 MD may be preferred in cases when the coil is
dense, while MC may be preferred for more open coils depending
on the success of the sampling techniques. When the sampling
is sufficiently rigorous both methods give the same exact results
(for the same model).

The self-consistent field approach for inhomogeneous
polymer systems using the Scheutjens–Fleer protocol (SF-SCF)
is our mean-field approach that is embraced. This technique
will not give the rigorous result, but an approximate one and
also the model that is implemented has adjusted characteristics.
In SF-SCF, one does not determine individual segment
configurations, instead one evaluates their overall distributions
based on the interactions of the segments with their averaged
environment. This makes the method faster because, unlike in
MD or MC, one averages over all chain configurations at once.
This goes at the cost of neglecting some correlation and the
method must of course be validated for each task that it is
used for.

In this paper, we not only make use of the MD and the
SF-SCF route, but specifically we elaborate on a hybrid method
that combines the MC approach with the SF-SCF method such
that we take advantage of the benefits of both methods. We will
refer to this as the MC-SCF hybrid. In short, part of the degrees
of freedom (segments) for the polymer coil will be managed
by MC (so-called explicit segments). The remainder of the
segments is handled by SF-SCF (so-called implicit segments).
Importantly, the number of segments that is accounted for
explicitly may be tuned and therefore we can go from a pure MC

model all the way to a pure SF-SCF model. While doing so we
can handle some systems better than with the pure approaches.
Meanwhile, we can keep the computational time within
bounds.

The idea to use hybrid computational strategies is rather
new and promising.4–10 Ying Zhao et al. used the idea of a
hybrid method to investigate the self-assembly in mixed
solvents.4 The authors mimic the micellization of Pluronic
PEO20–PPO70–PEO20(P123) in a water/ethanol/turpentine oil-
mixed solvent by using the hybrid particle-field molecular
dynamics (MD-SCF) method. Their simulation showed agreement
with experiments with certain errors. Antonio De Nicola et al. were
interested in the reproduction of micellar and non-micellar
phases for Pluronic L62 and L64.5 The authors reported that the
reproduction of the studied morphologies depends on the
concentration and temperature of these aqueous solutions.
The modeling results with their hybrid method appeared in
good agreement with the experimental phase diagrams. Johan
Bergsma et al. simulated dendrimers in good solvent conditions.6

These authors compared three models: a cell model (SF-SCF),
the hybrid MC-SCF model and a freely-jointed chain model
with excluded volume. They showed that the hybrid MC-SCF
model gives a slightly different scaling and, unlike other
models, also predicts a bimodal distribution for a large number
of star arms and a multimodal distribution for dendrons of
higher generations.

In all these works it was evident that hybrid methods go
beyond the mean-field approximation because there is some
account of correlations between segments. Meanwhile, of
course, the speed of hybrid methods is not nearly that of the
pure mean-field calculations which, compared to simulations,
are ultra fast. Yet the method is often not as expensive as pure
simulation approaches.

Our object of choice is the polymer star. One target of the
current paper is to show that the MC-SCF hybrid, which can
bridge between the pure MC and the pure SF-SCF, is able to give
reliable results in all cases that we considered, whereas the
pure MD has problems at long chain lengths and the pure
1-gradient SF-SCF suffers from the neglect of correlations.

We present the MC-SCF method and argue that the polymer
star provides an excellent testing ground for it. We focus on the
size and the radial density profile of such stars. The polymer
star is the simplest example of branched polymers. Analytical
predictions already exist for many of its properties. Also, these
analytical predictions are put to the test. Hence there are
interesting ways to check our results as well as test the predictions.
We show that the MC-SCF method is a good alternative to pure MD
simulations (equivalently to pure MC which we do not do) based on
the coarse-grained (CG) model. The hybrid method produces good
results in general. Needles to say, the MC-SCF method produces
results that are superior to the 1D-SCF method.

The remainder of the paper is organized as follows. In the
second section, we introduce the model for the polymer star
that is considered and present the simulation protocols of each
of the methods used. In the third section, we show how we have
extracted various characteristics from the simulation data and
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subsequently discuss the results. In the fourth section, we end
with a summary of the results.

2 Models

In the present work, we compare different representation
models of the polymer star. We use three models: coarse-
grained (CG), mean-field (MF) and the hybrid of mean-field
and coarse-grained representations; illustrations of these
models are presented in Fig. 1. The polymer star consists of
f arms (we limit to f = 3) with N segments per arm, the total
number of segments could be counted as fN.

2.1 Coarse-grained model

In simulations, we embrace the coarse-grained (CG) model
for computational reasons. Admittedly, in comparison to the
all-atom models, the coarse-grained (CG) model has a relatively
low resolution. Typically, in the CG model, one functional unit
of a molecule is considered as one segment (bead). As usual,
the solvent is represented as a structureless medium. This
reduces the number of particles in the simulation box and
additionally decreases the computational cost.

Despite such a coarse description, the model is widely used
because of both qualitative and quantitative agreement with
experiments.11,12 Even with these approximations, it is unfor-
tunate that one can simulate systems for only a limited range of
time and length scales. To extend these limits even more, one
should further reduce the resolution of the simulation but
there is a limit to it. Eventually, one has to fall back onto
mean-field models as explained above in a step-wise fashion.
Below we will develop a hybrid method that allows us to fall
back on the mean-field models in a systematic and gradual way.

All our MD simulations were performed using the ESPResSo
package.13 Both the non-bonded and bonded interactions are
specified in these simulations. For the interactions between
two non-bonding segments, we use the Lennard-Jones
potential14

VLJðrÞ ¼
4e

s
r

� �12
� s

r

� �6� �
; if ro rcutoff

0; elsewhere

;

8><
>: (1)

where r is the distance between the two segments in s units,
s is treated as the size of the segments (at that point the
potential is zero), e is the depth of the potential well in kBT
units and rcutoff is the cut-off distance beyond which the
potential is zero, it has s units. By varying either the depth e
and the cut-off rcutoff, we tune the attractions between the
segments. In a model with an implicit solvent, this means that
these two parameters are used to tune the solvent quality of the
polymers.

We use a finite extension nonlinear elastic (FENE) potential
eqn (2) to account for the bonding interactions.15 It is quite
common to use a FENE potential for such a bead-spring
polymer model because it accounts for nonlinear elastic exten-
sions and as a consequence, the simulation is not constrained
too much.

VFENEðrÞ ¼ �
1

2
KDrmax

2 ln 1� r� r0

Drmax

� �2
" #

; (2)

where K is the magnitude of symmetric interaction between
two segments, Drmax is the maximal stretching length of the
bond and r0 is the equilibrium bond length. In our MD
simulations we set K = 10kBT/s2, Drmax = 2s and r0 = 0.13

We use the Langevin thermostat as implemented in the
ESPResSo package. In the package, it is also necessary to specify
the thermal energy kBT and a constant that entails the coupling
coefficient with the bath g. We set the following parameters:
kBT = 1.0 and g = 1.0.13

2.2 Mean-field model

The mean-field (MF) model implements another strategy to
reduce the studied system resolution. The idea behind it is to
approximate particle–particle interactions by interactions with
a density field. It provides an opportunity to simulate systems
of bigger sizes without an unacceptable increase in computa-
tional costs. Typically, such models are lattice based.

The classical example of a MF model is the Flory–Huggins
(FH) theory. In FH theory it is assumed that no (polymer)
density variations exist throughout the system. In the present
work, we use the Scheutjens-Fleer self-consistent field method,
which exploits ideas from the Flory–Huggins theory, yet taking
density variations (typically in one direction, but higher
dimensions are also elaborated) into account.16,17 It is based
on an approximation of explicit pairwise interactions between
particles by interactions that are proportional to the average
local density of the interacting species. As already mentioned
this approximation reduces the computational costs dramatically.
At the same time, the MF approach is a reliable alternative to
full-scale simulations in terms of accuracy.18

The mean-field approximation works well when correlations
between individual particles are not too strong. In such a case,
it is well justified to replace the explicit particle–particle inter-
actions with the average probability of the interaction defined
by the density. In the case of strong correlations, the mean-field
approximation fails and an explicit particle representation is
required.

Fig. 1 Schematic representation of different models: (from left to right)
the coarse-grained model in 3D, the hybrid model in 3D and the mean-
field model in 1D. The coarse-grained model consists of explicit segments
only (red beads). The hybrid model consists of both explicit segments (red
beads) and implicit segments (blur). The mean-field model consists of
implicit segments only (blur).
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We use the one-gradient Scheutjens–Fleer self-consistent
field (1D-SCF) approach to model the polymer star in the mean-
field approximation. The classical Scheutjens-Fleer theory is well
described in literature.6,10,16,19–21 Here we outline the ideas in the
context of the modeling of a polymer star.

The one-gradient SF-SCF method for a polymer star takes the
center of the star at the center of a spherical coordinate system.
In a star with f equivalent arms, we can make optimal use of the
symmetry and evaluate the segment distribution for just one
arm and multiply the result by f, see Fig. 2. This trick reduces
the computational time dramatically. In order to allow a
detailed description of how the SF-SCF protocol is imple-
mented in the hybrid method, it is necessary to go into slightly
more detail.

The SF-SCF approach is constructed around a mean-field
Helmholtz energy functional, which features the density pro-
files (both for the solvent and the polymer) the corresponding
potential profiles and Lagrange parameters that take care of the
incompressibility constraint.10,22–24 The saddle point of this
free energy leads to the SF-SCF rule on how to compute the
volume fraction (densities) from potentials and another rule on
how to compute the potentials from the volume fractions.
We need to implement these rules both for the monomeric
solvent and for the polymer segments in the star. The Lagrange
parameters must be chosen such that the considered solution
obeys the incompressibility condition:

P
j

jjð~r Þ ¼ 1, where the

sum goes through all types of polymer segments and mono-
meric solvent.

The volume fraction profile of the solvent jsð~r Þ is coupled to the
corresponding potential profile usð~r Þ through Boltzmanns law:

jsð~r Þ ¼ Cs expð�usð~r ÞÞ; (3)

where it is understood that the potentials are already normalized
by kBT and Cs is a constant determined from the normalization.
In the case that far from the star there is only the solvent, we can
set Cs = 1. The potentials that feature in the Boltzmann weight are
coupled to the volume fractions of the polymer jð~r Þ (how the
polymer density is computed is discussed below)

usð~r Þ ¼ að~r Þ þ w jð~r Þh i � jb
� 	

; (4)

where w is the dimensionless Flory–Huggins parameter, and að~r Þ
is the Lagrange multiplier. The bulk volume fraction of polymer
jb is introduced to ensure that the potentials are zero in the bulk,
but because the bulk concentration is zero for a pinned star,

we may also leave this quantity out in this case. The angular
brackets implement a three-layer average. This local averaging is
a hall-mark of the Scheutjens-Fleer approach. Especially when the
w-parameter is high and large gradients in density exist, it is
necessary to account for these gradients. The three-layer average is
computed by

jð~r Þh i ¼ l ~r;~r� 1ð Þj ~r� 1ð Þ þ l ~r;~rð Þj ~rð Þ þ l ~r;~rþ 1ð Þj ~rþ 1ð Þ
(5)

for each -r the three transition probabilities obey to

l ~r;~r� 1ð Þ þ l ~r;~rð Þ þ l ~r;~rþ 1ð Þ ¼ 1:

We choose

l ~r;~r� 1ð Þ ¼ 1

6

A ~r� 1ð Þ
L ~rð Þ ; l ~r;~rþ 1ð Þ ¼ 1

6

A ~rð Þ
L ~rð Þ;

where A ~rð Þ ¼ 4pr2 and Lð~r Þ ¼ Vð~r Þ � Vð~r� 1Þ with

Vð~r Þ ¼ 4

3
pr3. With this strategy it can be shown that jð~r Þh i �

jð~r Þ þ 1

6
r2jð~r Þ in the continuous limit.

The evaluation of the polymer segment distribution is
slightly more involved and requires a choice for the chain
model. A popular chain model that is often implemented is
the lattice variant of the freely jointed chain model. Within this
model, there is a simple propagator formalism to find the
polymer volume fractions. In this propagator formalism two
complementary end-point distributions appear: G(-r0,s0|1,1) and
G(-r0,s|N). The first one contains the statistical weight for all
walks that start with segment s = 1 at coordinate -

r = 1 (center of
the coordinate system) and ends at segment s = s0 at coordinate
-
r = -

r0. The second one contains the combined statistical weight
for all walks that started with s = N (the free end) at any location
and ends at the same coordinate -

r = -
r0 with segment s = s0. The

volume fractions are given by the combination of these two
end-point distributions. This combination is usually referred to
as the composition law:

jð~r Þ ¼
XN
s¼1

C
Gð~r; sj1; 1ÞGð~r; sjNÞ

G1ð~r Þ
; (6)

where C is a normalisation constant such that
fN ¼

P
~r

Lð~r Þjð~r Þ. The normalization by the free segment dis-

tribution G1ð~r Þ ¼ expð�uð~r ÞÞ is needed to prevent double
counting for the statistical weight of the overlapping segment
s. The two end-point probability functions are found by the
following recurrence relations:

Gð~r; sj1; 1Þ ¼ Gð~r; s� 1j1; 1Þh iG1ð~r Þ (7)

Gð~r0; sjNÞ ¼ hGð~r0; sþ 1jNÞiG1ð~r Þ (8)

also known as the forward and backward propagators,
respectively. Both propagators need suitable initiations. For
the forward propagator we need to account for the fact that the
chain starts at the center of the spherical coordinate system
and therefore Gð~r; 1j1; 1Þ ¼ G1ð~r Þdð~r; 1Þ, where dð~r; 1Þ ¼ 1 when

Fig. 2 Schematic representation of 3-arm star in mean-field model in
1D-SCF.
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-
r = 1 and zero otherwise. The backward propagator is initiated
without constraints, that is Gð~r;NjNÞ ¼ G1ð~r Þ.

Finally, we need the segment potentials; these are a function
of the volume fractions of the solvent:

uð~r Þ ¼ að~r Þ þ w jsð~r Þh i � jb
s

� 	
: (9)

As jb
s = 1 (outside the star, that is in the bulk, there is only the

solvent) and again the potentials are set to zero at large values
of -r (far from the star).

The above set of equations, in general, cannot be solved
analytically: we need the segments and solvent volume frac-
tions to compute the potentials and vice versa. Also, we need
values of the Lagrange parameters a. A fixed point of these
equations is routinely found numerically using an iterative
method. In the absence of a suitable initial guess, one typically
starts with zeros for both the Lagrange parameters and the
potentials. Then the segment and solvent densities can be

computed. The Lagrange parameters are updated anewð~r Þ ¼
aoldð~r Þ þ b jð~r Þ þ jsð~r Þ � 1ð Þ with a suitable parameter 0 o
b o 1. Next, the potentials u(-r ) may be recomputed and

updated: unewð~r Þ ¼ ð1� bÞuoldð~r Þ þ buð~r Þ (for both the polymer
segments and the solvent). This procedure can be repeated
until convergence is reached. Typically, however, such a scheme
is slow and in practice a more sophisticated algorithm is used,
which reaches convergence in order 100 iterations and then at
least 7 significant digits is reached.25

Once the SCF fixed point is found, we know not only the
density distributions, but we can also evaluate the (mean-field)
Helmholtz energy F of the system. The latter one (in units of
kBT) is given by

F ¼ � ln Q�
X
~r

uð~r Þjð~r Þ � usð~r Þjsð~r Þð Þ

þ
X
~r

Lð~r Þwjsð~r Þ jð~r Þh i; (10)

where the system partition function Q may be decomposed into

molecular partition functions, Q ¼ q
qnss
ns!

, wherein the solvent

partition function qs ¼
P
~r

Lð~r Þ expð�usð~r ÞÞ and the polymer

partition function q = (L(1)G(1,1|N)) f. The number of solvent
molecules, ns, is given by ns ¼

P
~r

Lð~r Þjsð~r Þ.

2.3 Hybrid model

The hybrid MC-SCF method is based on a combination of
the mean-field and the coarse-grained models. Instead of MD,
we use the MC solver for the coarse-grained model. It represents
selected segments of the system as explicit particles, and the
remaining (implicit) segments as a density field, shown in Fig. 1.
All work now is done in a 3-dimensional box of lattice sites, each
coordinate x–y–z has M lattice sites, where M is large enough so
that the system boundaries do not affect the conformational
properties of the central star.

Idea of MC-SCF fragments. With a protocol discussed below
the star, the molecule is split into a number of fragments,
which we may number k = 1,. . .,K. Each of these fragments has a

length n segments and is bracketed by explicit segments. The
task for SF-SCF is to compute for each of these fragments the
Helmholtz energy Fk (as well as the distributions of the seg-
ments). For this, we slightly deviate from the above SF-SCF
protocol. Instead of a one-gradient approach, we now have to
consider three gradients. The first and last coordinates (explicit
segments) of a given fragment number k are given by ~r 0k and

~r nþ1k , respectively. These coordinates are provided by the MC
protocol. We design a sub-box around these two points so that
with SF-SCF we can efficiently compute the Helmholtz energy
for this sub-box. The size of the sub-box is m � m � m lattice
sites, where we notice that frequently m may be significantly
smaller than M. The position of the boundaries of the
sub-boxes k is ideally far away from the coordinates of the
two explicit segments so that the fragment in between the
constraining segment can not reach the sub-box boundary.
Nevertheless, at the boundaries of the sub-boxes, we implement
reflecting (mirror-like) boundary conditions so that in cases
that the sub-walks hit the sub-box boundaries the adverse
effects are minimized.

The MC-SCF hybrid is rather flexible in how the workflow is
distributed between the MC and the SCF parts. When computa-
tional efficiency is important one typically should aim for long
fragments n and thus few MC-degrees of freedom (relatively few
explicit segments). In this case, the MC-sampling is less
demanding and this outweighs the increase in workload for
the SCF part. Inversely when the ‘correctness’ of results is most
evident, one should strive for more MC particles (explicit
segments) and thus shorter fragments. The more explicit
segments in the model the higher is the potential to account
for the excluded volume effects.

SCF procedure in the MC-SCF method. We have to extend
the above protocol so that the SCF equations take three spatial
coordinates ~r ¼ ðx; y; zÞð Þ into account. So both the potentials
and the densities are now needed for all spatial coordinates.
Now Lð~r Þ ¼ 1 for all coordinates. Let us assume that for the
sub-box k we know the potentials for all its coordinates. The
evaluation of the polymer volume fractions for fragment k
requires the use of the composition law, which now features

two end-point distributions Gk ~r; sj~r 0k; 0
� 	

and Gk ~r; sj~r nþ1k ; nþ 1
� 	

,
as both the begin as well as the end of the walk of the fragment is
specified:

jkð~r Þ ¼
Xn
s¼1

C
Gk ~r; sj~r 0k; 0
� 	

Gk ~r; sj~r nþ1k ; nþ 1
� 	

G1ð~r Þ
; (11)

where again C is computed such that n ¼
P
~r

jkð~r Þ. The propaga-

tors can be initiated by Gk ~r; 0j~r 0k; 0
� 	

¼ 1 for ~r ¼~r 0k and zero

otherwise, and similarly, Gk ~r; nþ 1j~r nþ1k ; nþ 1
� 	

¼ 1 when

~r ¼~r nþ1k and zero otherwise. The propagators now read

Gk ~r; sj~rk; 0ð Þ ¼ Gk ~r; s� 1j~rk; 0ð Þh iG1ð~r Þ (12)

Gk ~r; sj~rk; nþ 1ð Þ ¼ Gk ~r; sþ 1j~rk; nþ 1ð Þh iG1ð~r Þ: (13)
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In the three-gradient system, the angle brackets are computed as

Gðx; y; zÞh i ¼ 1

6
Gðx� 1; y; zÞ þ Gðxþ 1; y; zÞ þ Gðx; y� 1; zÞð

þG x; yþ 1; zð Þ þ G x; y; z� 1ð Þ þ G x; y; zþð ÞÞ
(14)

The overall volume fraction of the segments that are accounted for
by SCF is found by a summation over all the sub-boxes:

jð~r Þ ¼
X
k

jkð~r Þ: (15)

The corresponding potentials are found by eqn (9) implemented
for the x�y- z coordinates and with the proper definition of
the angle brackets. The evaluation of the solvent density and
potentials are computed likewise.

With this revised protocol it is possible to find again the
SF-SCF fixed point. The overall Helmholtz energy (a 3-gradient
variant of the Helmholtz energy is obtained similarly as
in eqn (10) with straightforward minor adjustments) for the
overall system is found by the summation over the SF-SCF
Helmholtz energies per sub-box, that is F ¼

P
k

Fk. This overall

Helmholtz energy is to be used in the MC protocol.
MC procedure in the MC-SCF method. There are a few

salient features that we need to mention at this stage. Typically,
the explicit segments are assumed to have a density of unit
at the specified coordinates and therefore the implicit
segments cannot enter the site already taken by the explicit
segments. This is implemented by putting the statistical
weight G1 to zero for these ‘taken’sites. When the sub-boxes
overlap it can happen that in the sub-box explicit segments
occur that are linked to other fragments. Then also for these
taken sites the statistical weights G1 are set to zero. Hence, all
coordinates that are occupied by explicit segments were
excluded for the implicit ones. Secondly, by virtue of the cubic
lattice, starting and finishing positions for a fragment with
length n are allowed. There is an even/odd problem, but this
problem is trivially accounted for in the MC protocol that
generates the starting and stopping coordinates for each
fragment k.

The task for the MC protocol is to find successive explicit
particle positions in order to sample the positional degree of
freedom of the star segments. The movement is driven by
Monte Carlo (MC) protocol. We implemented Metropolis–Hast-
ings algorithm with nested Monte Carlo cycle with an approx-
imate inner potential within.26 In the inner loop the acceptance
criterion for the MC trial moves is the standard Metropolis
criterion,27 but instead of the internal energy of the system, the
criterion uses the potentials of mean force (as computed by a
Helmholtz energy equivalent to eqn (10), but of course com-
puted for the model used in the hybrid strategy as already
mentioned) F, as an input.

The probability of acceptance for MC moves is the following:

p ¼ min 1; exp �b Fnewð~r 0Þ � Foldð~r Þ

 �� 
� 	

; (16)

where Fnew and Fold are the potentials of mean force with the
explicit segments placed at coordinates ~r 0 in the old configu-
ration and at -r in the new configuration, respectively.

In the outer loop we use Metropolis–Hastings acceptance
criterion:

p ¼ min 1;
pjpi

0

pipj
0

� �
; (17)

where pj and pi are trial and current configurations,
respectively, calculating by the SCF part of the MC-SCF method.
The pj

0 and pi
0 are trial and current configurations calculating

(in the inner loop) by following approximate potential:

Fk ¼
3

2

Rk
2

N

þ Vk 1� N

Vk

� �
ln 1� N

Vk

� �
þ w

N

Vk
1� N

Vk

� �� �
; (18)

where Vk = Rk
3N3n, for all solvent quality conditions n = 0.9. The

approximate potential consists of 3 terms: conformational,
translational entropy of solvent, and interactions term.

To summarize the above hybrid protocol we can say that the
potentials of mean force correspond to the Helmholtz energies
obtained from the SF-SCF calculation keeping the explicit
segments fixed at given positions and averaging over all possible
locations of the remaining implicit segments.6,22 In this way, we
can account for local density fluctuations on the level of explicit
segments, beyond the mean-field level, and simultaneously
reduce the computational cost as compared to explicit particle
simulations.

MC trials. We have implemented three types of MC-moves:
pivot, ‘‘one-bond’’, and one-node movements. We randomly
choose a type of movement on each MC step. By this, we try to
sample configurational space as fast as possible.

The idea of the pivot movement is shown in Fig. 3. Firstly,
we randomly choose the explicit node in one of the star arms
(the empty segment in Fig. 3). After that, starting from the
chosen node and further to the end of the star arm, we rotate all
nodes as one rigid object with an angle y. The angle of rotation
due to simple cubic geometry could be only �p/2.

The ‘‘one-bond’’ movement is another type of movement in
our implementation. This type of movement is needed because
the pivot movements cannot reach all degrees of freedom. The
one-bond movements fill in for these missed positional degrees
of freedom. By this movement only one ‘‘bond’’ in the system
changes, by ‘‘bond’’ now we mean implicit segments between
two neighboring nodes. We choose randomly one node and
therefore we split the star into 2 sets of nodes. The first set is all

Fig. 3 The idea of the pivot movement. Circles represent nodes, blue
connections are implicit polymer segments.
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nodes excluded the chosen node and nodes, which go after the
chosen one. The second set of nodes is the total number of
nodes minus the first set. By using these two sets we can move
only one ‘‘bond’’ of the star. This means that all nodes in one of
the sets are shifted by the same amount.

The one-node move is the simplest movement in the
MC-SCF method. By this movement only one randomly picked
node is moved by one lattice point.

Using these three types of movements we successfully
sample polymer star at any solvent quality conditions using
the MC-SCF method.

2.4 Simulation protocols

We perform simulations for a number of solvent qualities for
one polymer star with f = 3 arms and a different number of
segments per arm N in a range from N = 20 up to N = 200.

We choose appropriate box sizes for each of the methods.
The box size at least must fit the star and should exceed N0.6.
In principle, the upper limit is not restricted. Simulation boxes
for the MD and the MC-SCF methods were identical. The
performance of an MD simulation strongly depends on the
number of beads (segments) and not on the box size. In the
MC-SCF method, the performance does depend on the size
of the box size. More accurately, it depends on the sizes of the
MC-SCF fragment (sub-box) and the number of fragments in
the star. Taking this into account, we varied box size from boxl =
32 for N = 20 up to boxl = 90 for N = 200. In the 1D-SCF method,
the simulation box was chosen in order to satisfy boxl =
N [units] + 5 so that none of the segments of the star can reach
the system boundary.

For the MD method we equilibrated all systems within
12 hours, after that we run production simulation for 24 hours.
For the MC-SCF method we run simulation only for 24 hours.
All methods we simulated on similar, in terms of efficiency,
CPU cores. For comparison reasons, we used only one CPU core
from one processor per simulation. For small systems (N r 60)
this condition was more than sufficient to reach good statistical
accuracies. For the 1D-SCF method, all these restrictions are
irrelevant because the calculation of any of the systems took
less than 1 CPU minute.

2.4.1 MD method. The simulation protocol for the MD
method is straightforward. We construct an initial configu-
ration of the star. After construction, we turn on the bonded
and non-bonded interactions between all segments. After that,
we do a sufficiently long equilibration run. Finally, we let the
system evolve while data is collected.

2.4.2 1D-SCF method. In order to simulate polymer star
using the 1D-SCF method, we apply spherical symmetry.
We consider only one linear chain fixed to the center of the
simulation box with a certain volume density, which corre-
sponds to the defined number of the arms Fig. 2. After SF-SCF
minimization, we have a polymer star in an equilibrium state
for a specified value of the w parameter.

2.4.3 MC-SCF method. A simulation protocol for the MC-
SCF method can be summarized as follows:

1. construct the initial configuration of the system;

2. calculate the free energy of the system Fold using the SCF
part of the MC-SCF method and approximate potential eqn (18);

inner loop:
(a) for each inner step (we do 3 times) do following:
(b) choose an explicit segment;
(c) choose a type of movement (pivot, ’one-bond’ or one-

node);
(d) move corresponding (to movement) explicit segments;
(e) calculate the free energy of the system Fnew using

eqn (18);
(f) accept with probability P (see eqn (16)) and update the

positions of explicit segments. When the new positions are
rejected, return all explicit segments to the old positions;

3. calculate the free energy of the system Fnew using SCF part
of the MC-SCF method and approximate potential eqn (18);

4. accept with probability P (see eqn (17)) and update the
position of explicit segments. When the new positions are
rejected, return all explicit segments to old positions;

5. go to inner loop.
We emphasize that the MC-SCF method distinguishes all

explicit segments of the star. By choosing one explicit segment
we choose (in pivot move) only one arm of the star.

3 Results and discussion
3.1 Data analysis

In order to compare different models, we use the center-to-end
distance Rce, the radius of gyration Rg

2 of the star and its radial
volume fraction distribution j(r).

Let us start with the center-to-end distance Rce. Due to the
fact that the star has several arms, we should take an average of
distances from the center to the end of each arm:

Rce ¼
1

f

Xf
i¼1

rcenter-to-end; i; (19)

where f is the number of arms, rcenter-to-end,i is the distance from
the center of the star to the end of the arm number i. eqn (19)
can be applied to both CG and hybrid models because in CG
the positions of all segments at any time are available and in
the hybrid method the ends are also available. In the 1D-SCF
method, instead of all positions of all segments, we have a
distribution of the ends of the star. That is why eqn (19) is not
used. A typical end-point distribution is presented in Fig. 4.
Using this distribution we calculate the average distance of the
ends from the center with eqn (20):

Rce ¼
X
~r

rjendsð~r ÞLð~r Þ
jendsð~r ÞLð~r Þ

; (20)

where r is a distance from the center to a layer in spherical
geometry, jendsð~r Þ is the volume density of the ends of the star
in -

r, L(-r) is the number of cells in -
r, sum goes from the first layer

to the end of the simulation box.
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The radius of gyration Rg
2 for branched polymers is

defined as:

Rg
2 ¼ mseg

Mtot

X
i

~ri �~rcmð Þ2; (21)

where ~ri �~rcmð Þ2 is a distance between monomers at a given
coordinate (position vector -

ri) and the polymer center of mass
(position vector -

rcm), mseg is the mass of the segment, Mtot is the
total mass of the polymer. The sum goes over all segments.

The vector to the center of mass is given by:

~rcm ¼
mseg

Mtot

X
i

~ri: (22)

All simulations are constructed in a way that the center of
the polymer star is fixed in the center of the simulation box. At
the same time for the CG model, all segments have the same
mass mseg = 1. eqn (21) and (22) need slight modifications for
the hybrid and mean-field models.

In the MC-SCF method, we apply the following equation for
the radius of gyration:

Rg
2 ¼

P
~r

jð~r Þ ~r�~rcmð Þ2P
~r

jð~r Þ ; (23)

where jð~r Þ is the volume fraction of the star at -
r, ~r�~rcmð Þ2 is

the distance between a monomer in -
r and the polymer’s center

of mass. The sum runs over all vectors -
r.

To calculate the center of mass we use:

~rcm ¼

P
~r

~rjð~r ÞP
~r

jð~r Þ : (24)

In the 1D-SCF method, we computed the radius of
gyration with:

Rg
2 ¼

P
~r

~r 2jð~r ÞLð~r ÞP
~r

jð~r ÞLð~r Þ ; (25)

where -
r2 is the distance in lattice units to the center of the

coordinate system (here, it is in the center of the simulation
box), jð~r Þ is a volume density of the star in coordinate -

r, Lð~r Þ is
a number of cells in -

r. The sum runs again from the first layer
to the end of the simulation box.

Different solvent quality conditions are reached differently
in different methods. In the MD case, the interactions between
the monomers are defined by the Lennard-Jones potential.
However, in 1D-SCF and MC-SCF methods, the Flory–Huggins
parameter w is used.

Good solvent quality condition in the CG model can be
reached by tuning e and rcutoff parameters in eqn (1). Particu-
larly, we choose e = s = 1, rcutoff = 21/6s, where s is size of the
particles. By setting such values to the Lennard-Jones potential
we convert the potential to the Weeks–Chandler–Anderson
(WCA) potential, which represents only the repulsive part of
the interaction curve.28 However, by proper settings of e and s
as well as rcutoff we can work in Y and poor solvent quality
conditions.

To apply a Y-solvent condition in the MD method is not
trivial. Indeed, it is not easy to map the Lennard-Jones para-
meters to get truly accurate values of e and rcutoff.29 We consider
to be close to the Y-solvent quality for the following setting: e =
0.34, rcutoff = 2.5s, where s = 1.0.

In order to simulate poor solvent conditions in the MD
method, we fixed rcutoff = 2.5s and e = 0.7. At such parameters,
additionally, to repulsive part of the potential, we have an
attractive part.

Any solvent quality conditions in 1D-SCF and MC-SCF
methods are controlled by the Flory–Huggins parameter w.
In these terms, w = 0.0 refers to good solvent, w = 0.5 refers to
Y-solvent, and w 4 0.5 corresponds to a poor solvent quality
condition. We have used w = 0.0, 0.5, and 1.5 to go from good,
via Y to poor solvent quality.

In order to estimate error bars of the properties of the
system, for each property, the autocorrelation function was
computed. With this function, we can estimate how many
uncorrelated (independent) samples we have overall. Thus, we
can estimate the standard error of the mean by:

serr ¼
sffiffiffi
n
p ;

where s is the sample standard deviation, n is a number of
independent samples.

3.2 Center-to-end distance, Rce

We performed several sets of simulations of one star in a box at
different solvent quality conditions: good solvent quality, where
the repulsion between segments of polymer star is dominant,
poor solvent, where attractive interactions between segments
are dominant, and Y-solvent, where the probability of pair
collisions is zero.

Following the scaling theory,30,31 we plot several master
curves for checking the results from simulations. The scaling
theory predicts dependency of Rce p Ng, where N is the number

Fig. 4 1D-SCF method. The distribution of the ends of the star consisted
of f = 3 arms with length N = 100 monomers. Different colors correspond
to different solvent quality w.
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of segments in an arm, g is a power which goes from g = 0.33 for
poor solvent to g = 0.588 for good solvent.

In Fig. 5 dependencies of center-to-end distance Rce are
shown as a function of the number of segments N in the arm
of the star in different solvent quality conditions.

In Fig. 5a the dependency Rce is shown at good solvent
quality conditions. In agreement with scaling predictions,

all curves obey the scaling law for good solvent condition
g E 0.588. The 1D-SCF is the fastest method and gives the
smallest values for Rce for all lengths of star arms. Indeed,
as it could be expected the MC-SCF method numerically
is in between 1D-SCF and MD methods. By reducing the
number of explicit segments (pink curve), the results for Rce

become closer to the 1D-SCF method and deviate more from
MD. This shows indeed the MC-SCF bridges between mean-
field 1D-SCF and exact’ MD results. It is interesting to see that
relatively few explicit segments are needed to come close to
the MD results.

In Fig. 5b the dependency Rce is shown for the star at
Y-solvent conditions. Under theta conditions it is expected
that the excluded volume effects are minor. Hence it is antici-
pated that the values of Rce are relatively close to each other.
In line with this we see a rather good agreement with the
scaling prediction, g = 0.5 for all methods, and there are small
numerical differences between MC-SCF and MD results. Again
the 1D-SCF underpredicts the value of Rce a bit more.

In Fig. 5c the dependency Rce is shown for the star at poor
solvent conditions. It can be observed, apart from 1D-SCF
method, all methods predict the same result, which is consis-
tent with scaling exponent g = 0.33.

In summary, the hybrid approach at good and theta solvent
quality conditions gives results that are intermediate between
those of the CG and the mean-field models. The differences in
the numerical coefficients are not very large and accounting
for the error bars all models show a satisfactory agreement
one to another and importantly with the scaling predictions.
In other words, by increasing the number of explicit segments
in the MC-SCF hybrid (for sufficiently long arms) we can come
closer to the exact result, but this goes at the expense of
computational efficiency. When computational resources are
limited we may decide to reduce the number of explicit
segments and sacrifice some accuracy or vice versa.

3.3 Radius of gyration, Rg
2

In Fig. 6a dependencies of the radius of gyration are shown
as a function of the number of monomers per arm N for the
MD, the MC-SCF, and the 1D-SCF methods at the good solvent
conditions. We see that all curves obey the scaling prediction of
g E 0.588 as well as Rg

2 E N1.18f 0.41 (our case f = 3 all times)
fitted experimental data.2 Simultaneously, we compared our
results with independent DPD simulations32 (not shown). The
slope of curves is consistent. The estimated error bars for
MC-SCF and MD methods are mostly comparable, only for
the star with N = 200 segments per arm, the MD data looks
undersampled, whereas the MC-SCF does not change the
straight line trend. Mean values of the radius of gyration Rg

2

in the MC-SCF and the 1D-SCF methods remain close to each
other for all set of arm lengths. The MD results stay slightly
higher with respect to other methods.

In Fig. 6b the radius of gyration dependencies are shown for
Y-solvent conditions. The data from the MD and the MC-SCF
methods overlap. However, the 1D-SCF method gives slightly
lower results. Moreover, the MC-SCF method with small number

Fig. 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rce

2h i= b2h i
p

of the star for MD, MC-SCF and 1D-SCF methods,
where bhb2i is averaged bond length in MD and hb2i = 1 for MC-SCF and
1D-SCF. Figure (a) represents data from simulations in a good solvent: MD
parameters e = 1.0, rcutoff = 21/6, MC-SCF and 1D-SCF parameter w = 0.0.
Figure (b) corresponds to Y-solvent: MD parameters e = 0.34, rcutoff = 2.5,
MC-SCF and 1D-SCF parameter w = 0.5. Figure (c) Poor solvent quality
conditions: MD parameters e = 0.7, rcutoff = 2.5, MC-SCF and 1D-SCF
parameter w = 1.5. The number of explicit segments in the MC-SCF
method (green curve) could be calculated by (fN/n) + 1, where f = 3,
n = 20. In MC-SCF with a small number of explicit segments (pink curve),
the number of explicit segments equals 4 in the region N r 80, elsewhere 7.
The shaded area represents the estimated error for the value.
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of explicit segments gives results which represent the 1D-SCF
results, as one would expect. Taking the error bars into account,
all models are in good agreement with each other.

Let us now consider the dependencies Rg
2 at poor solvent

condition, given in Fig. 6c. For all arm lengths we see that the
results for the MD and the MC-SCF (both) methods are in good
correspondence and have slightly lower scaling exponent
(about g = 0.3). The minor numerical differences between
the models are similar to the ones found for theta solvent.

The 1D-SCF method shows an exponent g = 0.33 which is the
value expected from scaling theory.

3.3.1 Polymer density profile. In Fig. 7 we present the
polymer density profile, that is the volume fraction j as a
function of distance from the center of the polymer star for
N = 160 segments per arm.

The polymer density profile at good solvent is shown on the
left hand side of the Fig. 7. The MD and the MC-SCF results
obey the scaling prediction33,34 r�4/3 better than results from
the 1D-SCF method. The 1D-SCF result has the strongest
deviation from the scaling prediction. Simultaneously, we
compared our results with independent simulations (not
shown).2,35 The slope and values were in good agreement.

The polymer density profile at Y-solvent is depicted in the
center of Fig. 7. Apart from the small distances, all methods are
in good agreement one to another. The density profiles obey the
scaling prediction j(r) p r�1 only for small distances from the
center of the polymer star.33,34

On the right hand side of Fig. 7 the polymer density profiles
are presented at poor solvent conditions. The MC-SCF (both)
and the MD methods are in good mutual agreement all values
of r. However, the 1D-SCF does not follow the same trend.
The 1D-SCF method predicts that the star at poor solvent is
collapsed to a higher density and extends less far in the
solution. Clearly, the 1D-SCF underpredicts the fluctuations
(in the interfacial region between the globule and the solvent)
in this case.

3.3.2 Efficiency. In order to give quantitative estimation of
efficiency of the MD and the MC-SCF methods, we provide
estimation of integrated autocorrelation time for Rce values.
In Fig. 8 we present estimation of the lag t as a function
of length of the star arm N, calculated accordingly the
manuscript.36 We provide estimations for different solvent

Fig. 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rg

2
� ��

b2h i
q

of the star for MD, MC-SCF and SCF methods, where
hb2i is averaged bond length in MD and hb2i = 1 for MC-SCF and 1D-SCF.
Figure (a) Good solvent quality condition: MD parameters e = 1.0, rcutoff =
21/6, MC-SCF and 1D-SCF parameter w = 0.0. Figure (b) Y-solvent quality
condition: MD parameters e = 0.34, rcutoff = 2.5, MC-SCF and 1D-SCF
parameter w = 0.5. Figure (c) Poor solvent quality conditions: MD para-
meters e = 0.7, rcutoff = 2.5, MC-SCF and 1D-SCF parameter w = 1.5. The
number of explicit segments in the MC-SCF method could be calculated
by (fN/n) + 1, where f = 3, n = 20. The shaded area represents the
estimated error for the value.

Fig. 7 The polymer density profile j(r) for polymer stars with N = 160 and
f = 3 found by the MC-SCF (green n = 20, pink n = 80), the MD (black) and
the 1D-SCF methods (red). (Left) Good solvent condition: MD parameters
e = 1.0, rcutoff = 21/6, MC-SCF and 1D-SCF parameter w = 0.0. (Center)
Y-solvent condition: MD parameters e = 0.34, rcutoff = 2.5, MC-SCF and
1D-SCF parameter w = 0.5. (Right) Poor solvent condition: MD parameters
e = 0.7, rcutoff = 2.5, MC-SCF and 1D-SCF parameter w = 1.5. The number of
explicit segments in the MC-SCF (green curve) method is 25, for the
MC-SCF method with a small number of explicit segments (pink curve) is 7.
The shaded area represents the estimated error for the value.
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qualities. We can see that the MD method works more efficient
for poor solvent than for other solvent conditions, whereas, the
MC-SCF method gives even smaller lag for all solvent quality
conditions (less than 100 MC-SCF steps).

At good and Y solvent conditions, we can observe that with
increasing segments per arm N the MD method degradates.
Namely, the MD method becomes less efficient with specific
MD step (our case was 150), whereas the MC-SCF slightly
fluctuates around zero slope. However, we need to distinguish
the MC-SCF step and the MD step. The important idea here is
the time restriction for the system (24 h), which leads to the
superiority of one method over another assuming machinery
constrain (the same computational power).

At poor solvent condition, the MC-SCF slightly degradates at
big lengths of star arms. However, the MC-SCF method still has
big gap to the MD best lag.

4 Conclusions

We compared the MC-SCF method based on a combination of
Monte Carlo and the SF-SCF technique with methods based on
purely coarse-grained (MD) and purely mean-field models
(1-gradient SF-SCF). We employed these methods on the polymer
star and we focused on the size characteristics as well as the
polymer density profile of a polymer star. We compared the
predictive abilities of these models at different solvent quality
conditions: good solvent, Y-solvent, and poor solvent.

All models showed consistent results. The MD method
(purely coarse-grained model) is the most ‘exact’ method that
gives reliable results, however it quickly becomes computation-
ally expensive to produce simulation results of proper statistical
quality. The 1D-SCF method (purely mean-field model) is
computationally less expensive in the whole range of solvent
qualities. In all cases, 1-gradient SF-SCF method produced an
underestimation of the properties of the system. The MC-SCF
method, on the one hand, suppresses the effect of the mean-field
approximation by introducing a small number of explicit (CG)

segments and, on the another hand, not as much expensive as the
MD method (within the time and machinery constraints).

We focused on quantities such as the center-to-end distance
Rce, the radius of gyration Rg

2, and the polymer density
profile j(r). These quantities were compared to scaling
predictions2,33,34 and typically they were in line with these.
Within the statistical errors, the various methods were also
consistent with each other. Only minor deviations occurred for
short arm lengths.

We estimated the efficiencies of the methods by estimating
the integrated autocorrelation time t for Rce values. We showed
that the MD method degrades much faster than the MC-SCF
with increasing number of segments per arm N. This proved
that the MC-SCF method is computationally more efficient.

We found that the MC-SCF method with pivot, one-bond
and one-node movements can successfully sample all solvent
conditions. The relatively low number of explicitly simulated
degrees of freedom in the hybrid model makes it more efficient
as compared to the purely CG model (MD). Moreover, by
varying the number of explicitly represented segments in the
hybrid model, the MC-SCF method can be tuned to a suitable
compromise between the detail of the resolution and
computational cost.

Hence, our results demonstrated that the MC-SCF method is
a good trade-off between the efficient 1D-SCF method and the
explicit-particle representation of the MD method. In Y-solvent
condition, results of all methods are in close correspondence.
In good solvent conditions, the MC-SCF method was shown to
be superior to the pure 1D-SCF method. The MC-SCF method
with a necessary and sufficient amount of explicit segments is

numerically closer to ‘exact’ MD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rce

2h i
p

;
ffiffiffiffiffiffiffiffiffiffiffiffi
Rg

2
� �q� �

, and j(r).

At poor solvent, the MC-SCF method was superior additionally to
the MD method too, in terms of generating the (uncorrelated)
samples.

This overall behavior and its tunable inheritance make the
MC-SCF method an interesting option for molecular modeling
of macromolecular systems. The method can easily be extended
to a collection of stars in a solvent, or to end-grafted chains on a
surface (brush).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

AK would like to thank his friend Aleksandr Chudov for
productive discussions at very early stage. AK thanks the second
anonymous reviewer for helpful comments on steady stages of
the manuscript. This work was supported by the Grant
Agency of Charles University (project 318120). This work was
supported by the Czech Science Foundation, grant 17-02411Y.
The access to computing facilities of National Grid Infrastruc-
ture MetaCentrum (LM2015042) and CERIT Scientific Cloud
(LM2015085) is appreciated.

Fig. 8 The estimated integrated autocorrelation time t as a function of
number of segments per arm N. Good solvent condition: MD parameters
e = 1.0, rcutoff = 21/6, MC-SCF parameter w = 0.0. Y-Solvent condition: MD
parameters e = 0.34, rcutoff = 2.5, MC-SCF parameter w = 0.5. Poor solvent
condition: MD parameters e = 0.7, rcutoff = 2.5, MC-SCF parameter w = 1.5.
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23 M. Charlaganov, P. Košovan and F. A. Leermakers, Soft Matter,
2009, 5, 1448–1459.
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