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Abstract Interlocked-ring polymers, also known as polycatenanes, possess an interesting molecular architecture. These polymers are
composed of many interlocked rings in a linear chain. The topological constrain between neighboring rings distinguishes the interlocked-
ring polymer from its linear counterpart. Here we present extensive molecular dynamic simulations on the interlocked-ring polymers and
analyze the static properties of the polymer. By applying external forces to the polymer, we also study the force-extension curves of the
polymer, which provides rich information about the mechanical properties of the interlockedring polymers.
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INTRODUCTION

The properties of polymer materials depend on the molecular
architecture of polymer chains and various interactions be-
tween polymers. Besides the short-range interaction origi-
nated from van der Waals interaction which is present for
simple fluids, the polymer has one distinct interaction stem-
med from the fact that polymer chains cannot pass through
each other without breaking the covalent bonds. This topo-
logical interaction, or entanglement effect, leads to very dif-
ferent dynamics of long-chain linear polymer in compari-
son to that of short-chain counterparts.l''”) One interesting
type of polymers is the ring polymer. Since the ring polymers
are connected head-to-toe and there are no open ends, the
topological interaction is present on the level of individual
rings. There are a number of important polymer architectures
based on the ring polymers: Olympic gel,3-! polyrotaxa-
nes,[®”] and polycatenanes.[¥! Here we focus on the poly-
catenanes, polymers with a linear chain of many interlocked
rings. We will also use the term “interlocked-ring polymers”
in the following part of this article.

Naturally, early studies on interlocked-ring polymers are
mostly based on computer simulations, because it is much
easier to create these complex polymer on computer than in a
laboratory. In one of the early studies on the interlocked-ring
polymers,l] Pakula and Jeszka started their paper by stating,
“This paper is the first of a series of publications that will
present computer-simulated properties of single macro-
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molecules with structures that cannot easily be synthesized
by currently known methods.” Polymer synthesis has since
caught up. Wu et al. recently synthesized the interlocked-
ring polymers successfully.l'% The connectivity in these in-
terlocked-ring polymer has been maintained by both the tra-
ditional covalent bonds that form the individual rings, and
the topological bonds that connect the neighboring ring pairs.
The interlocked-ring architecture presents an important class
of topological interactions. Different from the linear poly-
mer, for which the topological interactions only become im-
portant when the chains are longer than the entanglement
length, the interlocked-ring polymers possess topological in-
teractions between each pair of neighboring rings. This may
lead to new dynamical and mechanical properties of poly-
meric materials.

There are a few simulation studies on interlocked-ring
polymers. Pakula and Jeszka investigated the structure and
dynamics of the interlocked-ring polymer using Monte-Carlo
simulations based on a lattice-model of the polymer.[]
Rauscher et al. used molecular dynamics simulations to
study the dynamical behavior of the interlocked-ring poly-
mers.[!1] Their Rouse-model analysis showed that the dy-
namics of interlocked-ring polymer is significantly slowed
down on the short length scale. Based on these initial works,
here we employ the same polymer model as that in Ref. [11]
to study the mechanical properties of the interlocked-ring
polymers.

In this work, we study the static and mechanical proper-
ties of an isolated interlocked-ring polymer using molecular
dynamics simulations. We systematically vary the size of the
ring and the total number of interlocked rings. We use
Langevin simulations to study the chain conformation in
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equilibrium and under external stretching forces. The re-
mainder of this article is organized as follows: In Section
Simulation Details, we present the simulation model for in-
terlocked-ring polymers and describe simulation protocols.
We present the simulation results about the static and mech-
anical properties of isolated chain in Section Results and
Discussion. Finally, we conclude in Section Conclusions
with a brief summary.

SIMULATION DETAILS

In this section, we introduce the simulation model of inter-
locked-ring polymers and present the detailed simulation
protocols for the measurement of static and mechanical
properties.

We employ a bead-spring model proposed by Kremer and
Grestl!2] to simulate the interlocked-ring polymers. Our sys-
tem contains » polymer rings and each ring is composed of
m beads (or monomers). All beads have the same mass M
and diameter o. Short-range excluded volume interaction
between each pair of beads is modeled using the pure repuls-
ive part of the Lennard-Jones interaction (also known as
Weeks-Chandler-Anderson potentiall!3):

ULi(r) = 48[(%)12‘(3)6+% . r< Vo

0, otherwise

where r is the distance between two beads. The interaction
parameter ¢ and the diameter ¢ characterize the energy and
length scales, respectively. Here the shift of the potential ¢ is
chosen so that the potential equals zero at the cutoff V2.

The neighboring beads in each ring are connected by a fi-
nitely extensible non-linear elastic (FENE) spring to mimic
the covalent bond. This bonded interaction has the form

(M

I 5 r
UrgNg(r) = 2kRO In [1 (R() )} 2)
where 7 is the distance between two neighboring beads, k is
the spring constant, and Ry is the maximum distance between
two beads. The parameters are chosen as k =30&/0> and
Ro=1.50. For these choices, the bond length fluctuates
within the equilibrium bond length ¢, and events of chain
crossing are prohibited.!'?! This is important to maintain the
interlocked structure during the simulations.
The chain stiffness is simulated using a cosine bond-angle
bending potential. This interaction has the form

Ubend(0) = kg(1 +cos 0) 3)

where 6 is the angle between adjacent bonds. The bending
constant ky is an adjustable parameter which controls the
stiffness of the ring polymer. In this work, we have used the
value ky =0.0, 1.5¢, and 10.0¢ to model the flexible, semi-
flexible, and rigid chains, respectively. The corresponding
persistent lengths are 1.2¢, 2.00, and 8.7 6.

In Table 1, we list all simulation variables describing the
interlocked-ring polymers in the system and their corres-
ponding value.

We perform Langevin simulations of the interlocked-ring
polymers, where the solvent is treated implicitly. The effect
of the solvent is incorporated via a viscous environment that

Table 1 Simulation variables and their values

Variable Symbol Value
Number of rings n 10, 20, 50, 100
Number of beads for each ring m 10, 15, 20, 30
Bending constant kg 0.0, 1.5¢, 10.0e

provides a coupling to a thermal bath in the equations of mo-
tions of the beads. The motion of the it bead is expressed as
dzl’l‘
dr?
where M and ¢ are the monomer mass and friction co-
efficient, respectively. The three terms on the right-hand side
of Eq. (4) are the frictional force, the conservative force, and
the random force, respectively. The coefficient in the fri-
ctional force is chosen as &= 0.57"), where r = 6 \/M/¢ is the
time unit of the simulation. The term U is the total potential
energy, including the excluded volume interaction (1), the
FENE bonded interaction (2), and the bending interaction
(3). The gradient of the potential gives the conservative
force. The force f;(¢) refers to a random force experienced by
the bead, which mimicks the effect of thermal motion due to
the surrounding solvents. This random-force term satisfies
the fluctuation-dissipation theorem
(1) -£;(t")) = 06k TEH(t—1') Q)

Thus, the amplitude of the fluctuation is related to the
dissipation term ¢. The temperature of the system is set at
kT = 1.0¢. The time-integration of Eq. (4) is performed us-
ing velocity-Verlet scheme.l'416] A small time step
At =0.0057 is used for all simulations. All simulations are
carried out using the open-source package LAMMPS.l!7]

Eq. (4) implies that we have neglected hydrodynamic in-
teractions. Since we are mostly interested in the static equi-
librium properties of the systems, the negligence of hydro-
dynamics seems reasonable.

We consider the cubic simulation boxes with very large
box sizes to ensure there is no overlap between chains and
their periodic images. We start the simulation with one
single interlocked-ring polymer in the center of the box. The
initial configuration of the chain is carefully chosen so the
topological feature is present. We then perform the Langev-
in dynamics simulation until the system reaches equilibrium.
The equilibration process normally takes 2 x 108 time steps.
After equilibration, we take a snapshot and record the posi-
tion of each bead every 2000 steps in the following 2 x 107
time steps. These trajectories are used to perform a statistic-
al analysis and compute the physical quantities, as presented
in the next section.

To study the mechanical properties of the interlocked-ring
polymer, we also apply external forces to stretch the poly-
mer. We choose one of the beads in the first ring and one in
the last ring randomly, and then apply one pair of the con-
stant forces, same in magnitude but opposite in direction. We
start with small forces and run the simulation for 10 time
steps to reach a steady state. Measurement is performed over
the following 10° time steps. We then increase the external
forces by a small amount and repeat the step again until the
maximum forces are reached.

=—¢vi -V, U+1i(0) “4)
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RESULTS AND DISCUSSION

In this section, we first present the static properties of the
interlocked-ring polymer and then attempt to build a coarse-
grained model of the interlocked-ring polymer based on the
semi-flexible chain model. Finally, we study the mechanical
properties of the interlocked-ring polymer and construct the
force-extension curves.

Static Properties

The global static properties of the interlocked-ring polymer
are characterized by two quantities which relate to the global
size of the polymer. One is the end-to-end distance

R =((r;—rn)) (6)
where r; and ry are the coordinates for the first bead and the
last bead. The total number of beads is denoted by N = m X n.
Since for the ring-polymer, there are no chain ends, here we
choose the first bead and the last bead randomly in the first
ring and the last ring, respectively. The angled brackets in-
dicate the average over time.

The other quantity is the radius of gyration

1 N
Ré = N <;(ri - I'<:0m)2> (7

Here r; is the coordinate of the i bead and reom is the
position of the center-of-mass for the whole molecule.

Fig. 1 shows the end-to-end distance R, and the radius of
gyration R, for the interlocked-ring polymers with different
values of m (number of beads per ring) and n (number of
rings). Most of the data points follow the N°© scaling, which
is the scaling for a linear polymer chain in a good solvent.
The simulation data shows derivation from the good-solvent
scaling at large N number. Possible causes for the deviation
include the local chain swelling and excluded volume ef-
fects. For linear chains, each monomer has a segmental
volume on the order of ¢>. For ring polymers, the chains are
connected to form a closed loop, and it is more likely that
one bead interacts not only with its neighboring beads but
also with other beads that are further away along the chain.
Due to this topological constraint of the ring structure, each
ring has a higher local segmental density. The increased bead
density for ring polymers may cause the interlocked-ring
polymer to be more strongly impacted by the excluded
volume and thus become stiffer than the linear polymer. This
leads to a large scaling factor N* with o > 0.6.

For interlocked-ring polymers, we can also analyze the
size of individual rings. Fig. 2 shows the radius of gyration
for individual rings with different sizes m. All polymers have
the same number of rings n = 100. Here we also show the
results for rings with different bending constants. For flex-
ible rings (kg = 0), the ring size increases as a function of
m%®, which is the same scaling as the whole molecule. When
the bending constant increases, individual ring becomes
more rigid. For rigid rings (kg = 10), the ring size increases
as a function of m', which is the scaling for rod-like poly-
mers.

Coarse-grained Model
In this section, we attempt to develop a coarse-grained model

—a— m=10
100 | m=15

R, (0)

10} P =

—a— m=10
100 |- m=15

; m=20
[ m =30
| — N7

R, (o)

of o

Ll I
100

1000

N

Fig. 1 (a) The end-to-end distance R. and (b) the radius of
gyration Rg for the interlocked-ring polymers with different m
(number of beads per ring) and » (number of rings) values. The total
number of beads N is given by N =m X n.

10
—A— kg =0
ky=2
k=10
0.6
"
S —m
=
en
-5
&
1 L L L L
5 10 50
m
Fig. 2 The radius of gyration Ry for individual rings. Here the

simulation data are shown for different m number of beads per ring
and ks (bending constant).

for the interlocked-ring polymer. For the interlocked-ring
polymer, the connectivity between rings is maintained by the
topological constrains that the neighboring rings are inter-
locked. A convenient choice of the coarse-graining scheme is
to map each ring into one single macro-beads. The position
of the macro-beads is determined by the center-of-mass loca-
tion of the corresponding ring. These coarse-grained macro-
beads are then connected to form a single linear polymer
chain. This procedure is shown schematically in Fig. 3.

https://doi.org/10.1007/s10118-019-2279-z
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Fig.3 A coarse-grained model for the interlocked-ring polymer by
mapping each ring to a single macro-bead

One possible model for the coarse-grained chain is the
worm-like chain model. In the worm-like chain model, one
important quantity is the persistent length L, which charac-
terizes the stiffness of the chain. For a linear chain consist-
ing of N bonds of the same length L,, the length of the chain
is Lo = NL.. We use u; to denote the unit direction at which
the i bond points, i.e., u; = (Ri+1 — R;)/[Ri+1 —R;|, where R;
is the position of the i macro-bead. The angle correction
function is given by

li — jILc
I
where the angled brackets denote the average over all star-
ting position and chain configurations. From the angle corre-
lation function we can then calculate the persistent length.
From the trajectory of the interlocked-ring polymer, we
apply the coarse-graining scheme to map the polymer as a
linear chain of macro-beads. We obtain the bond length L;
by averaging the chain length and configurations at different
time. Fig. 4 shows the average bond length L, of the coarse-
grained chain for different ring sizes. The data are collected
for interlocked-ring polymers with n =100 rings. Here the
bond length L. denotes the averaged bond length between
two neighboring coarse-grained beads, so L, should be com-
parable to the radius-of-gyration of the individual ring. In-
deed, the bond length curve shown in Fig. 4 demonstrates a
similar trend to that of the radius-of-gyration of the ring
(kg = 0 curve in Fig. 2): both curves show a scaling factor of

(u;-u;) =CXP(—

10
[ 0.6

L. (o)

1 L L L P L L L
5 10 50

m

Fig.4 The average bond length L, of the coarse-grained chain as a
function of the ring size m. Here the data correspond to the
interlocked-ring polymers with » = 100 rings and kp = 0

0.6 with respect to the ring size m. This agreement provides
the validation of our coarse-graining scheme.

From the trajectory of the interlocked-ring polymer, we
can calculate the angle correlation function by averaging
different chain configurations over many times. We plot in
Fig. 5 the angle correlation function (cosf) as a function
of An = |i— j|. Here we focus on two representative results.
Fig. 5(a) shows the result for m = 10 and n = 50, a polymer
with relatively small rings. At short distances, the correla-
tion function decays exponentially. At long distances, the
correlation function reduces to around zero. A fit to an expo-
nential function gives the persistent length L, = 2.43L,.

1.0
a —a— m=10,n=50
0.8 exp(—An/2.43)
0.6
S
g 04
0.2
0 ALAL
1 1 1 1
0 10 20 30 40 50
An
&
172]
3
v

An

Fig. 5 The angel correlation function <cos#> for (a) m = 10, n =
50 and (b) m =30, n=50

For polymer composed of large rings, the angle corre-
lation function shows erratic behavior at long distances.
Fig. 5(b) shows the result for m = 30 and n = 50. The angle
correlation function does not decay to zero over a short dis-
tance, and (cosd) remains at a small positive value over the
intermediate distance. This erratic behavior indicates that our
coarse-grained model may not be suitable for the polymer
with large rings. For the interlocked-ring polymer, the con-
nection between rings derives from topological constraint.
There is no fixed point at which two rings are connected, and
the connection can move freely along the rings. This is dif-
ferent from the connection by localized covalent bonds in
linear polymers. Larger rings occupy larger space, and the
nonlocalized connection may cause one ring to influence

https://doi.org/10.1007/s10118-019-2279-z
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other rings farther away along the polymer. This might cause
the non-zero value of the angle correlation function at the in-
termediate distance for large rings.

Force-extension Curves
The mechanical properties of the polymer chains are impor-
tant for their application as advanced materials. Experimen-
tally, the mechanical properties can be probed by applying a
pair of constant forces opposite in directions on two chain
ends. The resulting force-extension curve can provide detai-
led information about the mechanical properties. For exam-
ple, Gaussian chain has a linear force-extension curve
3kgT
F=—5® ©

where F is the external force, (R) is the average end-to-end
distance along the force direction, b is the length of Kuhn
segments, and N is the number of Kuhn segments. The
Gaussian chain behaves similarly to an elastic spring with the
spring coefficient of k = 3kgT/(Nb?).

Another example is the worm-like chain, which has finite
extensibility. The end-to-end distance under stretching is
given by the Langevin function:[!8]

_ Fb\_ksT
(R) = Nb[coth(kBT) b }

For small forces, the term in the square brackets is approxi-
mately Fb/(3kgT), so in this limit, the worm-like chain and
the Gaussian chain model have the same force-extension
relation. For large forces, this term goes like 1 —kgT'/(Fb),
and (R) approaches its maximum value of Nb.

For interlocked-ring polymers, a typical force-extension
curve is shown in Fig. 6(a) for m = 20 and n = 50. The force-

(10)

450

400 -

w
[V
(=)
T
Q
o
(0]
(0]
0]
0]

5 10 15 20 25 30 35 40 45 50

Fig. 6 (a) The force-extension curve for the interlocked-ring
polymer with m = 20 and n = 50. The green and blue curves show
the fitting at small-force and large-force regimes, respectively (see
the main text for details); (b) Snapshots of chain configuration when
the external force is small (top, F' = 5 ¢/0) and large (bottom, F =
50 ¢/0). Only a portion of the chain is shown here.

extension curve shows different behaviors at small and large
external forces. When the external forces are small, the
force-extension curve shows a large slope, indicating a small
spring constant. In the small-force regime, the polymer is
slightly stretched along the force direction. On the ring level,
each ring still has a circular shape and experiences many
different configurations. This is demonstrated in the top of
Fig. 6(b) for F =5¢/c. Only part of the chain is shown for
clarity. Every ring remains in a relaxed state and its length
along the force direction is below the stretching limit.

We quantify the initial force-extension curve by fitting a
linear function in the regime of small forces. In the small
force regime, if the force-extension curve is given by
F = ksman{R), we plot 1/ksmay for different ring sizes and
different numbers of rings in Fig. 7. One may apply the
coarse-grained model in previous section and consider the
whole polymer as linearly connected macro-beads. The aver-
age distance between the neighboring macro-beads is given
by L;. When the external force is small, one may expect the
linear chain is Gaussian. From Eq. (9), the spring constant
would be inversely proportional to the number of rings n and
the averaged bond length L,

1 1
ksmal ~ —— or

nL; ksmart

This is indeed the case shown in Fig. 7. For the same ring
size, the 1/kgman value is linear with respect to the number of
rings n. The slope of the curve is larger for large ring size
(m = 30), which is also consistent with the assumption in Eq.

(11).

~nL; (11)

30

—6—m=15
25 L m=20
m=30

—_
W
T

0 I I I I I I I I
10 20 30 40 50 60 70 80 90 100

n

Fig. 7 The spring constants of force-extension curves at the small-
force region. The value of 1/ksman is plotted as a function of ring
number n, for different ring sizes m.

When the external force is large, the whole polymer is
strongly elongated. Each ring is also strongly stretched along
the force direction and shows a rod-like configuration
(Fig. 6b, bottom). In this case, every bond in the ring poly-
mer is strongly stretched, contributing to the spring const-
ant. This leads to a small slope in the force-tension curve
when the forces are large (Fig. 6a), which corresponds to a
large spring constant. At large extension, the force-exten-
sion curve can be fitted to the extensive worm-like chain
model:[10:19]

https://doi.org/10.1007/s10118-019-2279-z
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(R) =Ly (12)

1- l ]ﬂ + E

2 \j Fl, E
where Loy is the contour length of the interlocked-ring
polymer, [, is the persistent length, and £ is the stretch
modulus. The blue curve in Fig. 6(a) shows a fit of Eq. (12)
for the large-force portion of the force-extension curve. The
fitted curve shows good agreement with the simulation data
at large forces, but deviates at small forces.

We perform the fit analysis for the force-extension curves
obtained from the simulation. Here we focus on the long
chain case n = 100 and we also explore the effect of bending
rigidity. Fig. 8 shows the parameters Lo, [, and £ in Eq. (12)

1400

1200 [

1000 -

800 [

Ly (0)

600 [

200 _/

I I I
200 0

ky=10

3.5
3.0F

251

—o— ky=0

I, (@)

10 ky=10

10 15 20 25 30

800

700 -

600 - =0

500

E (¢lo)

4 -
00 o ky=0

ky=2

300 |
k(.)= 10

200 ) 1 1 1
10 15 20 25 30

m
Fig. 8 Mechanical properties of the interlocked-ring polymer at

large-force regime. The polymer is modeled as an extensive worm-
like chain (12).

by fitting to the simulation results. We plot these parameters
as a function of ring size m and for different values of ky.
The contour length Ly is proportional to the total number of
beads in the polymer, thus for fixed number of rings n, the
contour length Ly shows linear dependency on the ring size
m (Fig. 8a). The persistence length is relatively small, on the
order of 1 o (Fig. 8b). Note this persistent length is different
from the persistent length obtained in the Section Coarse-
grained Model. The former is on the level of individual
beads, while the latter is on the level of individual rings. The
stretching modulus is related to the extensibility of the poly-
mer chain, which is determined by the bonded interactions in
the simulations. Since all the simulations are performed
based on the finite extensible non-linear elastic spring with
the same parameters, one may expect the stretching moduli
are similar for different polymer architectures. The simula-
tion results for the stretching moduli are shown in Fig. 8(c).
Indeed the values are close except for small rings with m =
10. In the model of extensive worm-like chain model, the
contributions from the bending module and the stretching
module are similar, and it is difficult to separate their effect
from the force-extension curves. One possible solution is to
determine one property from a separate analysis. The coarse-
grained model developed in the previous section is our at-
tempt to obtain the bending parameters from the angle cor-
relation functions, but the erratic behavior for large rings
(Fig. 5b) made our attempt difficult. Further studies are re-
quired to clarify different mechanisms in the large force re-
gime.

CONCLUSIONS

We have performed extensive molecular dynamics simu-
lations of one class of polymer with specific topological
interactions: the interlocked-ring polymers. We present the
static properties of the polymer and also attempt to build a
coarse-grained model for the equilibrium properties. The
coarse-grained model seems to work for small ring size but
may not be appropriate for large rings due to their expanded
size. Our focus is on the mechanical properties of the
interlocked-ring polymer. We present the force-extension
curves when the polymer is subjected to a pair of external
stretching forces.
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