
Chapter 32 - STRUCTURE FACTORS FOR PARTICULATE SYSTEMS 
 
 
Scattering factors from nanostructures consisting primarily of particles (think spheres) in 
a background medium (think solvent) are described here in the case of non-dilute 
systems. The Ornstein-Zernike approach is a suitable way to describe inter-particle 
contributions.  
 
 
1. THE ORNSTEIN-ZERNIKE EQUATION 
 
The radial distribution function for a pair of scattering particles with no internal structure 
separated by a distance r is called g(r). It is the probability of finding a scatterer at radial 
distance r provided that there is a scatterer at the origin. g(r) is related to the inter-particle 
interaction potential U(r) as follows: 
 
  g(r) = exp[-U(r)/kBT] .    (1) 
 
Since the potential of mean-force U(r) contains contributions from many-body 
interactions, it is expanded in terms of binary (wij), ternary (wijk), and higher order 
interactions: 
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ij ...)r(w)r(w     (2) 

 
Note that g(r) is zero for very short distances since two particles cannot occupy the same 
space and is equal to one for large distances since at far enough distance, a particle can be 
located for sure.  
 
Direct interactions between the pair of interacting particles are represented by the direct 
correlation function c(r) whereas interactions through other particles are represented by 
the total correlation function h(r) = g(r) -1.  

 
Figure 1: Direct and indirect inter-particle interactions. 
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The Ornstein-Zernike integral equation (Ornstein-Zernike, 1918; Hansen-McDonald, 
1986) is a relation between the direct correlation function c(r) and the total correlation 
function h(r).  
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VNN =  is the particle number density.  

 
In the Fourier variable space, this equation reads: 
 
 )Q(H )Q(C N)Q(C)Q(H += .    (4)  
 
The inter-particle structure factor is defined as: 
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Note that the Ornstein-Zernike equation contains two unknowns (h(r) and c(r)). It can be 
solved only if another (so called "closure") relation is added. Many of these closure 
relations have been introduced (hypernetted chains, Born-Green, Percus-Yevick, Mean 
Spherical Approximation, etc). Using one such closure relation, numerical solutions of 
the Ornstein-Zernike equation yield realistic inter-particle structure factors. The last two 
closure relations (Percus-Yevick and Mean Spherical Approximation) are discussed here 
because they permit simple analytical solutions to the integral equation.  
 
Three inter-particle interaction potentials can be considered: hard sphere, screened 
Coulomb and square well. The hard sphere potential is used with the Percus-Yevick 
closure relation and the screened Coulomb potential is used with the Mean Spherical 
Approximation.  
 

 
 
Figure 2: Representation of the various inter-particle interaction potentials.   
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2. THE PERCUS-YEVICK APPROXIMATION 
 
The Percus-Yevick approximation (Percus-Yevick, 1958) uses the following closure 
relation in order to solve the Ornstein-Zernike integral equation: 
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Assume the following hard sphere interaction potential between particles: 
 
 0)r(w =  for Dr >      (7) 
 ∞=)r(w  for Dr < . 
 
Here D is the sphere diameter. Solution to the Ornstein-Zernike equation is analytical: 
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The following parameters have been defined: 
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φ is the particle volume fraction ( 6DN 3π=φ ), N  is the density of scattering particles 
and D is the "effective" particle diameter.  
 
The Fourier transform of the direct correlation function can be calculated as: 
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The structure factor for a liquid of structureless particles is given by: 
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Figure 3: Inter-particle structure factor SI(QR) vs QR prediction from the Percus-Yevick 
model (with hard sphere potential) for φ = 0.30. Note that the sphere radius is R = D/2. 
 
The scattering cross section involves the product of the form factor and the structure 
factor: 
 

 )Q(IS)Q(PV2
d

)Q(d
PφρΔ=

Ω
Σ .     (12) 

 
Here Δρ2 is the contrast factor, φ is the volume fraction and VP is the particle volume 
( 3R4V 3

P π= ). Note that in this simple “hard sphere” interaction potential model, the 
sphere diameter that enters in the form factor is taken to be the same as the hard sphere 
radius used in the structure factor.  
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Figure 4: Form factor P(Q) for isolated spheres (infinite dilution limit), and product  
P(Q)SI(Q) for a solution of spheres with a volume fraction of φ = 0.30. The Percus-
Yevick model (hard sphere potential) has been used to model the inter-particle structure 
factor SI(Q).  
 
 
3. THE MEAN SPHERICAL APPROXIMATION 
 
When Coulomb interactions are present, another closure relation to the OZ equation is 
applied; the Mean Spherical Approximation (Hayter-Penfold, 1981). Consider a 
scattering system consisting of macroions (charged positive), counter ions (charged 
negative) and solvent. The Coulomb interaction potential is defined as: 
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The macroion surface interaction potential is given by: 
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The following parameters have been defined: 
 
 ε0: Permittivity of free vacuum 
 ε: Dielectric constant 
 D: Macroion diameter 
 κ : Debye-Huckel inverse screening length 
 zm: Macroion electric charge (number of electrons). 
 
The Debye-Huckel screening parameter (inverse length) squared is expressed as follows: 
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Here e is the electron charge, zme is the macroion charge, N  is the macroion number 
density (number per unit volume) and kBT is the sample temperature in absolute units.  
 
Dimensionless parameters are defined: 
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Along with the following contact potential (for r = 2D) as: 
 
 ( ) 2

00kexp εψβπε=−γ .     (17) 
 
The Mean Spherical Approximation (MSA) closure relation to the Ornstein-Zernike 
equation is given by: 
 
 )r(U)r(c β−=   for r > D    (18) 
 1)r(h −=   for r < D. 
 
Note that the limiting case for which 0→γ  or ∞→k  yields the Percus-Yevick result.  
 
The MSA closure is used to solve for c(r): 
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The structure factor is obtained as: 
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The macroion volume fraction 6DN 3π=φ  has been expressed in terms of the macroion 
number density N . The forward scattering limit is given by SI(0) = -1/A.  
 
Note that expressions for the constants A, B, C, and F are too lengthy to reproduce here. 
They can be found in the original publication (Hayter-Penfold, 1981). F is the solution of 
a 4th power polynomial equation.  
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Figure 5:  Variation of the structure factor SI(Q) obtained from the MSA for a spherical 
macroion diameter of D = 40 Å, macroion charge of zm = 20 electrons, a volume fraction 
of φ = 0.01 and at T = 25 oC.  The dielectric constant ε = 78 is for D2O at 25 oC.  
 
 
4. THE RANDOM PHASE APPROXIMATION 
 
Consider now particles with internal structure or polymers made out of spherical 
monomeric units. Note that spheres are assumed to fill the particles or replace the 
monomers in polymers. The Random Phase Approximation (RPA) provides another 
closure relation used to solve the OZ equation. The RPA assumes that 

Tk)r(w)r(c B−= . Note that within the RPA, different notation is used for interaction 
potentials. By convention, these are called w(r) for polymers and U(r) for particulate 
systems.  
 
The intra-particle contributions are included in the Ornstein-Zernike equation as follows 
(in Fourier space): 
 
 )Q(HN)Q(C)Q(S)Q(S)Q(C)Q(S)Q(H 000 += .  (22) 
 
Along with the RPA closure relation: 
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This closure is reminiscent of the MSA closure relation for r > σ. Note the following 
relations for particles with internal structure (or polymers with spherical monomers): 
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It follows that: 
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This is the Random Phase Approximation result obtained for compressible polymer 
mixtures. The scattering cross section is given by: 
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Note that this approach can be extended to the multi-component case by changing the 
various structure factors to matrices.  
 
The scattering factor for polymer mixtures S(Q) and the structure factor for particulate 
systems SI(Q) are related by the relationship: 
 
 )Q(S)Q(PV)Q(S I111φ= .     (27) 
 
Here φ1, V1 and P1(Q) are the volume fraction, polymer volume and form factor for 
polymer component 1. Recall that within the incompressible RPA, the structure factor 
SI(Q) is given by:  
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The scattering factor S(Q) is therefore proportional to φ1φ2 as it should. 
 



Note also that the mean field approximation does not model the local interactions 
properly for inter-particle inter-distances smaller than particle sizes since packing effects 
on thermodynamics and phase separation are neglected. For this reason, the g(r) obtained 
from such a mean field approach does not show realistic oscillations for the neighboring 
coordination shells. The appeal of this approach, however, is that it gives simple 
analytical results. 
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QUESTIONS 
 
1. Does a numerical solution to the Ornstein-Zernike integral equation (with a realistic 
closure relation) describe local packing adequately? How about a mean field analytical 
solution (using the mean spherical approximation)? 
2. Can the scattering cross section for a concentrated solution of particles (colloidal 
suspension for example) be described as the product of a single-particle and an inter-
particle structure factors? 
3. Name the closure relation that yields an analytical solution to the OZ integral equation 
in the case of hard sphere interaction potential.  
4. What approach gives the most realistic solution to the Ornstein-Zernike equation? 
5. What is the Mean Spherical Approximation (so called MSA)? What systems are well 
described by the MSA? 
6. Are the Random Phase Approximation (used to describe polymer systems) and the 
Ornstein-Zernike equation (used to describe particulate systems) related at all?  
 
 
ANSWERS 
 
1. A numerical solution to the Ornstein-Zernike integral equation along with a realistic 
closure relation describes local packing well. A mean field analytical solution is too 
simplistic and yields correct overall trends but incorrect local packing information.  



2. The scattering cross section for a concentrated solution of particles can be described as 
the product of a single-particle and an inter-particle structure factors provided that the 
particles are not elongated (i.e., are isotropic).  
3. The Percus-Yevick closure relation yields a simple analytical solution to the OZ 
integral equation for the hard sphere interaction potential.  
4. A numerical solution to the Ornstein-Zernike equation along with one of the closure 
relations gives more realistic results than highly approximated analytical solutions.  
5. The Mean Spherical Approximation (MSA) is a closure relation used to solve the 
Ornstein-Zernike equation. Charged systems are well described by the MSA since 
Coulomb interactions are included. The MSA yields analytical (albeit lengthy) results.  
6. The Random Phase Approximation (used to describe polymer systems) is a mean-field 
closure relation to the Ornstein-Zernike equation. The RPA closure is a simplified form 
of the MSA closure.  
 


