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1. Activation energy from experimental shift factors  

 The experimental shift factor data and other information employed in this study are shown 

in Fig. S1 and Table S1. The temperature-dependent shift factors 𝑎!(𝜙) at different NP loadings 

are obtained from literature linear viscoelastic measurements. The corresponding activation energy 

is then obtained from the relation ln '"!($)
"!,#

( = &'($)
($

*)
!
− )

!%&'
,	, where 𝑎!,+ is the pure polymer 

melt shift factor. For PVAc, the dielectric shift factors 𝑎!,+(𝜙) were used (per the original work	

of	Cheng and coworkers  [1]) to characterize the polymer matrix dynamics at finite loading in the 

PNC. Since 𝑎!,+(𝜙) barely changes with loading [1,2] and agrees with the rheological shift factor 

of pure polymers, different choices of  𝑎!,+ have no significant effect on the resulting Δ𝐸(𝜙) as 

demonstrated in set of Fig. S1(a).  

 For the experimental systems studied with different values of 𝑀, and 𝐷 listed in Table S1, 

the ratios 2𝑅-/𝐷  and 𝑅../𝐷  are close to or larger than unity and there is no obvious 𝑀, 

dependence of Δ𝐸 (Fig. 4).  
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Table S1. Characteristics of the experimental silica NP-based PNCs: polymer molecular 
weight (𝑀,), radius of gyration (𝑅-), average end-to-end distance (𝑅.. ≈ √6𝑅- assuming ideal 
linear chains), and NP diameter (𝐷).  
 

 

 

Polymer Mw (g/mol) Rg (nm) Ree (nm) D (nm) 2Rg/D Ree/D 

PVAc [1] 40k 5.6 13.7 14 0.8 0.99 

PMMA [3] 49k 5.7 13.8 15 0.76 0.92 

92k 7.7 19.0 15 1.0 1.3 

P2VP [2,4] 
38k 4.6 11.3 18 0.5 0.63 

105k 7.7 18.9 14 1.1 1.4 

554k 17.8 43.6 14 2.5 3.1 

FIG. S1. Rheological shift factors plotted versus 1000/𝑇 in a log-linear form for different 
silica-based PNCs (PVAc [1], PMMA [2] and P2VP [3,4]) with linear fits employed to extract 
Δ𝐸. Inset of (a) shows the comparison between activation energies extracted using a finite 
loading dielectric shift factor 𝑎!/ and that using the pure polymer melt rheological shift factor 
𝑎!,+0  as the polymer subsystem time scale in the PNC. 
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2. Correlation between activation energy and interparticle distance 

Figure S2 tests the phenomenologically proposed Δ𝐸~〈ℎ123〉45  relation for the three 

experimental PNCs studied in this work [1–4], and also compares this form against our theoretical 

calculations. The mean surface-to-surface interparticle distance is calculated based on an idealized 

uniform NP spatial distribution, 〈ℎ123〉 = 2𝑅[(𝜙RCP/𝜙))/7 − 1]. Clearly the phenomenological 

relation Δ𝐸~〈ℎ123〉45  is a consequence of a different physical picture (uniform NP dispersion 

combined with the de Gennes scaling result for a polymer liquid between two flat and 

nonadsorbing surfaces [5]) than the basis of our theory. Nevertheless, a reasonably good linear 

relation is found for both the experimental data (though less so for PMMA) and numerical 

theoretical results. This agreement with our theory is surprising (seemingly accidental) since our 

underlying physical idea is the activation barrier is controlled by tightly bridged NPs at all loadings 

in strongly attractive PNCs. The realistic nonrandom NP microstructure is embedded in our 

dynamical description via PRISM theory, in contrast to the random mixing scenario. Moreover, a 

closer examination reveals bigger deviations from the Δ𝐸~〈ℎ123〉45  relation at low loadings 

(larger 〈ℎ123〉 values) compared to both the theoretical predictions and the limited experimental 

data.   

Other measures of the characteristic interparticle distance have been discussed in the 

literature. For example [6], 〈ℎ83〉 =
9()*+
:,-

= 5;()4$)
<$

 , which is close to, but slightly smaller than, 

〈ℎ123〉. Fig. S2(c) shows similar level of agreements between Δ𝐸~〈ℎ83〉45 and experiments and 

theory calculations. Alternatively, if one adopts the mean nearest-neighbor (shortest) distance 

computed with the highly simplified hard sphere fluid model as the key dynamical length scale (as 

suggested in Ref. [2,7]) one has:  〈ℎ=.>?〉 = 2𝑅 ∫ 𝑑𝑥𝑒
./0(23.)5678298:.(73.)56;82932;.;(682)<

2867
@
) . This 
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predicts much smaller 〈ℎ=.>?〉 values than does 〈ℎ123〉 defined above (as expected). The resulting 

Δ𝐸~〈ℎ=.>?〉45 relation is modestly inferior to that using 〈ℎ123〉 or 〈ℎ83〉, as shown in Fig. S2(d).  

 

 

FIG. S2.  Activation energies Δ𝐸 in thermal energy units as a function of inverse square mean 
surface-to-surface distance for an ideal uniform dispersion of nanoparticles, 〈ℎ123〉, in units of 
the NP diameter (𝐷) for: (a) experimental and (b) theoretical PNC systems with different polymer 
chemistries and 𝛽𝜖A= values, respectively. All Δ𝐸 data are the same as in Fig. 4 of the main text. 
Lines are linear fits. Panels (c) and (d) are analogous to (a) but for two alternative measures of 
the interparticle spacing: (c) a geometric estimation from the total polymer volume to total NP 
surface area ratio 〈ℎBC〉, and nearest surface-to-surface distance 〈ℎ=.>?〉	based on a hard-sphere 
fluid model. Their relations to 〈ℎ123〉 are shown in the insets. 
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3. Comparison of nanoparticle pair structure in PNCs and hard-sphere fluids 

 The nanoparticle pair correlation function, 𝑔==(𝑟) , and corresponding cumulative 

coordination number, 𝑍(𝑟), obtained using PRISM theory with the modified MV closure [8,9]  are 

shown for our PNC model (with 𝛽𝜖A= = 5) at two NP packing fractions in Fig. S3 and contrasted 

with the corresponding pure hard-sphere (HS) fluid model results. One sees very different local 

structures since the HS fluid does not have polymer-mediated bridging coordination shells. In 

addition, given 𝑔(𝑟) ≈ 1 beyond the hard core diameter in HS fluids at the rather low PNC 

packing fractions studied, one can approximate 𝑍(𝑟) = 8𝜙 L3 *D=->
E
, + 3 *D=->

E
,
5
+ *D=->

E
,
7
O ≈

24𝜙 *D=->
E
,  for 𝑑123/𝐷 ≪ 1, where 𝑑123 ≡ 𝑟 − 𝐷. This formula captures quite well the almost 

linear behavior determined numerically in the insets of Fig. S3. One implication of this analytic 
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FIG. S3.  Nanoparticle pair correlation function for the PNC model with 𝛽𝜖A= = 5 (solid 
red) and for a hard-sphere fluid (dashed black) at NP packing fractions of (a) 𝜙 = 0.16, (b) 
𝜙 = 0.27. Inset shows the corresponding cumulative NP coordination numbers. Note the 
many qualitative differences between the hard sphere model (polymer matrix modeled as a 
vacuum, only repulsive inter-NP interactions) and the PNC mixture PRISM theory results. 
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result is the size ratio dependence of the percolation threshold estimation for an ideal uniform 

system is 𝜙F ∝ 𝐷/𝜎, roughly consistent with the HS case shown in the inset of Fig. 2(b).  

4. Competing bridging configurations and average PMF barrier 

At high NP loadings, two tight bridging states, 𝑠) and 𝑠5, are predicted by PRISM theory 

to coexist corresponding to two minima of the PMF, 𝛽𝑊nn(𝑟), at NP inter-surface separations of 

~ 1 and 2 segment diameters. Fig. S4 shows examples of the contribution of each tight bridging 

FIG. S4. Examples of the nanoparticle PMF at the highest 𝜙 studied for (a) 𝛽𝜖A= = 3 and (b) 
𝛽𝜖A= = 5. PMF barriers Δ𝑤) and Δ𝑤5 associated with two tight bridging states are indicated.  
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FIG. S5. Contribution of two tight bridging states (𝑠)and 𝑠5) to (a) total NP tight bridge 
coordination number, (b) average PMF barrier, and (c) activation barrier as a function of  
𝜙 for 𝛽𝜖A= = 5 and 𝐷/𝜎 = 10. 
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state to the NP bridging coordination number, average PMF barrier, and total activation barrier as 

a function of 𝜙 for 𝛽𝜖pn = 5 and 𝐷/𝜎 = 10. For 𝜙 < 0.25, the contribution of the 𝑠)  state is 

negligible. At higher 𝜙, there is a redistribution of NPs between the states 𝑠) and 𝑠5, where the 

increase of 𝑛B with 𝜙 slows down for the latter. The resulting total 𝑛B computed as the sum of 

these two contributions grows in a smoother manner. The PMF barrier in general decreases with 

𝜙 for both bridging states. Many-body effects render the PMF profile rather complicated at high 

NP loading, and hence a weakly non-monotonic 𝜙  dependence of the barrier emerges that is 

associated with the 𝑠5  state. Fig. S4 also shows typical examples of the local PMF barrier 

associated with different bridging states, 𝛥𝑤) and 𝛥𝑤5, for various 𝛽𝜖pn at the highest NP loading. 

The average 𝛥𝑤  is obtained from the individual barriers weighted by the corresponding 

coordination number as discussed in the main text (see Fig. S5).  

FIG. S6. Fit parameters for (a) NP bridge coordination number 𝑛/ and (b) total NP “contact 
value” 𝑔F,GHG = 𝑔==(𝑟)) + 𝑔==(𝑟)) as a function of 𝛽𝜖A= . Here 𝑔==(𝑟)) and 𝑔==(𝑟5) correspond 
to the two tight bridging peaks of 𝑔==(𝑟) shown in Fig. 2. 
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5. Fits of numerical calculations     

   Solely for the convenience of having an analytic representation, we fit our numerical results 

for the NP tight bridge coordination number as a function of 𝜙 for each 𝛽𝜖pn  to an exponential 

form 𝑛B(𝜙) = 𝐴𝜙𝑒I$ . Similarly, we fit the 𝜙-dependent NP pair correlation function “contact 

value” (height of local maximum of 𝑔==(𝑟) that quantifies the strength of a tight bridging state, or 

sum of the two maxima if two tight bridging states coexist) to the form 𝑔c,tot(𝜙) = 𝐴′𝑒IJ$. Fig. 

S6 shows the fit parameters 𝐴 and 𝐵 and 𝐴′ and 𝐵′ as a function of 𝛽𝜖pn. In both cases, 𝐴 and 𝐴′ 

are almost independent of 𝛽𝜖pn, while 𝐵 and 𝐵′ increases linearly with 𝛽𝜖pn with similar slope.  

Comparison of a power law versus an exponential fit to our numerical theoretical results 

for 𝛽𝛥𝐸 is also shown in Fig. S7. Both fits are two-parameter representations. We view the power 

law as modestly inferior from a practical fitting accuracy perspective, and also because its 

nonanalytic nature is conceptually not valid at lower NP concentrations.  
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FIG. S7. Comparison between power law (dashed) and exponential (solid) fits of 
the numerical theoretical results for the collapsed theoretical barrier 𝛽Δ𝐸/𝜆 at 
𝛽𝜖A= = 3 (green), 4 (orange), 5 (magenta), 6 (blue) and 6.8 (black). 
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6. Thermodynamic measures of interfacial cohesion strength  

The absolute magnitude of the PNC melt cohesive energy density (CED) for the studied 

model can be calculated as:  

CED = 4𝜋𝜌=𝜌A ∫ 𝑑𝑟	𝑟5	𝑔A=(𝑟)|𝑢A=(𝑟)|
@
+ ,                                      (S1) 

where 𝑔A=(𝑟) is the NP-monomer pair correlation function obtained from PRISM theory, 𝜌= (𝜌A) 

is the NP (monomer) number density, and 𝑢A=(𝑟) is the bare NP-bead attractive pair potential. 

Similarly, the absolute value of the cohesive energy per monomer is given by 

𝑢FHK = 4𝜋𝜌= ∫ 𝑑𝑟	𝑟5	𝑔A=(𝑟)|𝑢A=(𝑟)|
@
+ .                                      (S2) 

The resulting volume or monomer-based cohesive energies are shown in Fig. S8 for different 𝛽𝜖A= 

values as a function of NP loading. The 𝜖A=-normalized data roughly collapse as one would expect 

from a mean-field interfacial structure approximation (𝑔A=(𝑟) = 1), with larger deviations at 

higher loading. Importantly, both are qualitatively different from both our predictions for Δ𝐸 and 

FIG. S8. Cohesive energy (a) per unit volume (CED) and (b) per monomer (𝑢FHK ), each 
normalized by the bare interfacial attraction strength 𝜖A= , as a function of NP loading for 
different values of 𝛽𝜖A=. Insets show the unnormalized absolute values. 
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from experiment, where Δ𝐸  grows in a much stronger and more nonlinear (upwardly curved) 

manner with NP loading and 𝛽𝜖A=. This supports our argument that the activated NP dilational 

motion is what is relevant to understanding the dynamic shift factor rather than simple equilibrium 

energetic aspects of the “adsorbed polymer layer”.  

7. Scaling factors for collapse of the 𝜷𝜟𝑬 calculations 

  The 𝛽𝜖A=-dependent scaling factor, 𝜆 = 𝛥𝐸(𝛽𝜖pn)/𝛥𝐸(𝛽𝜖pn,0), employed for constructing 

the master curve of the total activation energy in the inset of Fig. 3(c) is shown in Fig. S9. We find 

a good fit of our numerical theoretical results using the empirical form: 𝜆 = 0.16[(𝜖pn/𝜖pn,0)7.<7 −

1] + 1, with the reference state 𝛽𝜖pn,0 = 3, which ensures 𝜆 = 1 when 𝜖pn/𝜖pn,0 = 1.  

 

 

 

FIG. S9. Scaling factor 𝜆 = 𝛥𝐸(𝛽𝜖pn)/𝛥𝐸(𝛽𝜖pn,0) for data collapse of the theoretical 𝛽Δ𝐸 
results at different 𝛽𝜖A=. Solid curve is the empirical fit  𝜆 = 0.16[(𝜖pn/𝜖pn,0)7.<7 − 1] +
1. 
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