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P R O C .  P H Y S .  SOC.,  1967, V O L .  91.  P R I N T E D  I N  G R E A T  B R I T A I N  

Statistical mechanics with topological constraints : I 

S. F. EDWARDS 
Department of Theoretical Physics, University of Manchester 
MS.  receaved 15th March 1967 

Abstract. The entropy of very long flexible molecules in the presence of topological 
constraints is studied, and a formula deduced which needs the probability that a 
random walk will have a particular topological specification. Examples are solved, 
including a plane random walk sweeping out a given angle around a point in the 
plane which is generalized to three dimensions including the passage of a random 
walk past many lines in space, and the probability that a random walk will penetrate 
through or become multiply entangled with a closed ring. 

1. Introduction 
There exist several substances such as rubber, glass and polymerized materials, whose 

molecules possess topological relationships to one another, and these relationships are 
either permanent, or survive long enough to be considered permanent in the calculation of 
thermodynamic properties. Such relationships raise two problems: firstly, they require 
some modification of the formulae of statistical mechanics which normally have the absence 
of suchconstraints implicitly built into them, and, secondly, the topological constraints them- 
selves need to be translated into explicit and useful mathematical forms. The  full problem 
of calculating, say, the equation of state of a glass, which will contain elastic constants 
depending on the way the various silica chains are linked up, is a very difficult problem 
or rather series of problems for different conditions. In this paper, therefore, the very 
simplest problems having the topological specification as their key ingredient will be 
studied. 

Let us consider for example an ensemble of N perfectly flexible long molecules with fixed 
end points lying in  the plane of the paper. Let us consider a rod at right angles to the 
plane, meeting it at R. This will divide, once and for all, the ensemble into chains specified 
by whether they lie ‘above’ or ‘below’ R or encircle it once from above, or once from below, 
and so on. This specification will lead to a free energy (obtained explicitly below) which 
is a function of R. For small R it will be shown that 

Figure 1. 

where 0: will be obtained, and thus Hooke’s law is established for this system and the 
elastic constants calculated. 

Similar problems can be studied in three dimensions, for example a long polymer 
molecule whose ends are fixed and which encounters a ring. If the molecule is completely 
flexible and so delineates a random walk in space, what are the relative probabilities of the 
three paths shown? Clearly an analogous idealized elasticity problem can be constructed 
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in this case from the probabilities which are obtained in 5 4, but the constraints in three 
dimensions need reference to self-effects, i.e. to knot; this is considered in a second paper 
(to be published). 

Figure 2. 

2. The entropy of a constrained system 

other than its end points will have g(R,, R,, L,  1) different configurations, where 
Taking the system of figure 1, in two dimensions a single chain with no constraints 

go being the total number of configurations without any constraints, L the total length and 
1 the length of the freely hinged individual molecules. Now let us consider the obstacle 
R put in place when an ensemble of N molecules is present. The different configurations 
of the string can be categorized in this way. Let us take R as origin and take r(s) as the 
intrinsic equation of the molecule, and let us define d = (x j -yx) / (x2+y2) .  By integration 8 
will be the normal polar coordinate modulo 2n, but it is these 2 ~ ’ s  that categorize the 

configuration. Thus, if R,RRz is 0 (0 < n), 
A 

or 
1 dds = 0 + 2 m  (n 2 0) ‘above’ 

d ds = 0 - 2n(n + 1) (n  2 0) ‘below’. 

One can define the probability that a random walk in L/l steps commencing at R, and 
ending at Rz will generate these angles by pn+ and pn- ,  so that 

and 

These will be evaluated in the next section, but let us suppose they have been obtained. 
Then at the instant of time when R is inserted it is supposed that the system is completely 
random and so there will be Npn+ molecules trapped in the condition specified by +, n 
and so on. The number of configurations remaining to this molecule isg,pn+ so its entropy 
is K log(gop,+). The total entropy of the system is then 

pn+(R,, Rz, R ,  L,  1).  
Let R be now moved to a new position R’; the partition of N amongst the +, - , n is 
unchanged, but the number of configurations permitted to a particular chain lying in one 
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of the topological classes will be changed to @,+(RI, R,, R', L, I ) .  Hence the entropy 
becomes 

S = KN log go + K N  2 [Pn ' (R)  log(pn' (R'))  +Pn-(R) log{pn-(R')}] (2.6) 
n 

If quite generally one uses p ,  for the initial probabilities in some topology T, and p,' for 
the current probability and A S  for the change in entropy due to the change 

in terms of the free energy 

A F =  -NKTzpTlog 
T 

It should be noted that 

= o  
and 

a a  @T aPT 

aR' aR rp T P T  aR aR 
= - NKT-  C p T ' + N ~ T  2 - - - 

aPT aPT 

T P T  aR aR 
= N K T ~ - - - -  (2.10) 

forms which conform to one's general expectation. There may be constraints much more 
general than that described by a single coordinate R, so the general formula for infinitesimal 
changes is 

(2.11) 

Kow the p,+, p a -  will be calculated explicitly to show how it goes. 

3. The point constraint in a plane 

probability is represented by 
I t  is convenient to use the Weiner representation of the random walk in which the 

p(R,, R,, L ,  I) = Jlr j exp( - f s: i2(s) ds) 6r 

where the integral is taken over all paths r(s) such that r(0) = RI,  r(L) = R,, and the 
normalization JV is so arranged that Jp(R,, R,, L, 1)  d2R2 = 1. Now let usconsider apply- 
ing the constraint that 

L x j - y x  
ds = 8 

which has the correct form foi 

p o d $  = p .  s:, (3.4) 
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I t  is convenient to introduce 
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1 
A(r) = - ( y ,  -x) 

x2 + y2 

and the representation 

Then 
CC 

p 9. =“j 27r - m  dhexp(iX8) 1 Srexp [ - - I L  0 (P + ilhA . i‘) ds), (3 4 
At this point a well-known identification of these integrals used in quantum mechanics 
by Feynman will be employed. If L(r, P) is a Lagrangian and H(p, Y) the corresponding 
Hamiltonian, then if 

(3.7) 

the integral taken between limits r’ = r(O), r = r(i), p satisfies the differential equation 

( i f i :+~( i f i i ,  r))p(r, r’; t ,  t‘) = S(t-t’)a(r-r‘) (3 4 

(the Schrodinger equation). Translated into our present problem, the simple random 
walk Weiner integral becomes Fick’s equation 

- - - v2 p = S(L)6(r - r‘) 
(a; : 1 

When the new term is added, the ‘Lagrangian’ 

i‘2 
- + ihlA . t 
I 

(3.9) 

(3.10) 

has the form appropriate to a charged particle moving in a field of ‘vector potential’ A. 

L = + m P + - t .  A (3.11) 

Now when 
1 

C 

Performing the translation, one finds 

[” - aL 4 ar 
-ihA(r))2]@(r, r‘, L )  = S(r-r’)a(L), 

(3.12) 

(3.13) 

This result can of course be obtained directly from the Weiner integral also. Multiplying 
this out, in polar coordinates about R, 

or if 

-+--+- a2 1 a 1 ( a  --+zh )211P = S ( Y - r ‘ )  8(+-4’)S(L) (3.14) 
ar2 Y ar r2 a+ ( Y r  ‘)1’2 

(3.16) 
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Putting Rl = r ,  R2 = r’, the solution to this equation is given in terms of Bessel functions: 

(3.17) 

where 

Thus 

By writing X+m i. h and employing the identity 
m m 

2 exp{zm(e-B)} = 277 2 6(1$-8+2nn) (3.19) 

one finds that 8 must take the values + 2nn as is obvious from the diagram, and in terms 
of the previous notation 

m = - x  n =  - m 

pn* = dh exp[ih{e h 2~(n+$)-n}]I ,>,~ [ exp (- R1’CR’2)). (3.20) s Ll 

This result has been obtained by a different method by Ito and McKean (1965). It is of 
interest to take the integral a stage further by using the representation of I by a contour 
integral 

Ili.r(a) = 1 dw exp(a coshw- [h[zu) 
C 

(3.22) 

where C consists of the imaginary axis from -in to +in and the lines iV+real positive, 
-in+ real positive, i.e. 

1 “  + -- 1 exp( - a cosh x - IXlx){exp(z lh(n)  - exp( - z I A ~ v ) )  dx .  
277 0 

(3.22) 

The first integral can be performed over h and contains 6{.Yw-~-2n(n++)-a}, where 
in > 9 w  > --in. T h u s  it contributes only to n = 0 and gives 

poi = P- - + ( n L l ) - l e x p ( -  (R1-R2)2)  J^,“ exp(---(coshx-1) 2Rl& 
2 Ll L1 

(3 -23) [ (R1i:2)2 1 sa e ~ p { - 2 R ~ R ~ ’ L - ~ ( c o s h x - l ) }  (n  # 0) pn* = ( ~ L l ) - l  exp - ~ -  - l a  0 

] (3.24) 
4 f (2n+ 1 ) ~ - n  - [ 

+ k ( 2 n + l ) V + n  

x 2 +  {+ (2n+ I ) V + ~ } ~  x2 + {+ (2n+ 1 ) n - ~ } ~  
(3.25) 
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Asymptotic forms can be obtained 

RlR2 B Ll 

exp(-(R,-R2)2/1L} 
TLl P,+ = 

4 +n, L - t o  
exp{ - (R1 - R2)’-/Ll) 1 1 1. (3.26) 

7rL1 Pa’ = 

Having thepn* explicitly now permits the calculation of the elastic constants of the system, 
but the calculation has not been taken further, since it is a very idealized system. 

4. Some generalizations 
The results of $ 3  can be put this way. To enquire about the topological effect of field 

curves upon a random flight one needs to work out the magnetic field of a uniform current 
flowing along the fixed curves (disregarding of course the physical constants like e,  c) 
and then solve the diffusibn equation modified by the addition of iA3 times this field in the 
role of a vector potential, where j labels the different curves. From the solution of this 
diffusion equation the probabilities can be deduced. To give some examples let us consider 
a set of lines in space (the two-dimensional case worked through in detail above is the 
case of the line being perpendicular to the plane and meeting it at R). The angle swept 
out by the curve r(s) around the line g(7) = d + v B  (7 in ( -  CO, CO)) is 

where 

A = curl - S?,l 
(A has the form of the Biot and Savart magnetic$eld, though it appears in (4.3) and (4.4) 
below as a vector potential). Thus, if a value 9, is ascribed to the Ith line, one has the 
Weiner integral with 1138(9-, - Jk.A3), i.e. an exponent 

3 -1 k2 ds+ i 2 A, k . A, ds 
21 3 

so that, if A = X3A,A,, one must solve 

[A - (: -A12)p(r,r’; L) = 8(L)8(r-r’), 

(4.3) 

(4.4) 

This is no longer soluble analytically, but one can still go directly’to asymptotic forms and 
develop appropriate approximations should this problem develop any useful applications. 

Another interesting case is that of a closed curve, where again a well-defined topological 
invariant can be produced. In figure 2 the curve misses altogether, goes round once, and 
goes straight respectively. By using Stokes theorem one has that 

where g ( ~ )  is the closed curve and 4 is the value for one of the paths, say the one which 
misses altogether. Again, defining A by 

(4.6) 
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the development proceeds as before. For a circular ring the analysis can be taken further 
by the use of toroidal coordinates 

x = csinh U cos 4 (cosh U- cos 0) - l  

z = csinB(coshu-cosO)-'. 
y = c sinh n sin 4 (cosh U-cos 0 ) - l  (4.7) 

It is the angle 0 which will be swept out by different paths in amounts differing by h n .  
The field A can be expressed in terms of complete elliptical integrals of the first and second 
kind, and a formula analogous to (3.24) deduced. Again it does not seem worth while to 
write out all the details, but asymptotic forms can be deduced. 

Well-defined topologies are only possible relative to closed curves, or curves extending 
to infinity, but the cases of physical interest do effectively have this property. 

5. Conclusions 
The examples given above illustrate the formulae of 5 2, and in two dimensions exhaust 

the problem, except inasmuch as the ordering of entanglements around different points is 
ignored. But in three dimensions, although the procedure outlined solves the problems in 
:he form posed, there are other entanglement possibilities. For example the two cases of 
figure 3 both have the same A relative to the line, but the first is entangled with the line 
by virtue of being entangled with itself. The analysis so far has ignored this possibility, 
which is clearly related to the entanglement of two random path molecules. This is closely 
related to the ordering problem in two dimensions. This problem is solved in a subsequent 
paper. 

Figure 3. 
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