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The modelling of molecular entanglement in polymeric materials is an old problem,
and has evolved gradually over the last 60 years, with two key approaches: the
network model of Green & Tobolsky, and the tube model of Edwards and de Gennes.
We will show that these models can be merged together in a straightforward manner.
The resulting model, called the dual slip-link model, can be handled by computer
simulation, and it can predict the linear and nonlinear rheological behaviours of
linear and star polymers with arbitrary molecular weight distribution.

Keywords: viscoelasticity; entanglement junction; reptation; tube model;
temporary network model; dual slip-link model

1. Introduction

Molecular modelling of entanglement in polymeric materials is an old problem: when
Staudinger (1932) proposed that polymers are long chain-like molecules, he must have
realized that such molecules entangle with each other. The molecular entanglement
is an important problem, as it is closely related to the characteristic property of
polymeric materials, namely, the viscoelasticity.

The unvulcanized rubber which is sold at stationery stores is a soft elastic rub-
bery material, but it is actually a liquid; it can ®ow under constant load and can
be moulded into any shape. Polymeric liquids (the molten state of un-cross-linked
polymers) generally have this property. They behave like an elastic rubber at short
times, while they ®ow like a liquid if they are subjected to a stress for a long time.

Such behaviour can be understood at least qualitatively from the molecular view-
point. A polymeric liquid is made of many chain-like molecules entangling with each
other. When such a material is deformed quickly, each molecule is deformed and gen-
erates a restoring force. This corresponds to the rubbery response for fast deforma-
tion. On the other hand, the restoring force will decrease in time as the deformation
of the molecule relaxes. Due to the molecular entanglement, the relaxation takes an
extremely long time (from seconds to hours). An important objective in physics (and
engineering) is to understand and to predict such behaviour from a knowledge of the
®uid’s molecular structure.

Though the e¬ect of entanglement is easy to understand, theoretical modelling of
entanglement is not so easy, and the modelling of entanglement has some history.

The ­ rst modelling of entanglement was made by Green & Tobolsky (1946), around
10 years after the molecular theory of rubber elasticity was proposed by Kuhn. Green
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& Tobolsky regarded the polymeric liquid as a network of polymers made of `entan-
glement junctions’. Unlike the chemical junctions in rubbers, the entanglement junc-
tions are dynamical, and they are constantly created and destroyed due to random
molecular motion. Green & Tobolsky made assumptions for the creation and destruc-
tion rate for the entanglement junctions, and they derived a rheological constitutive
equation for unvulcanized rubber. Their constitutive equation did not work very well,
as the assumptions they made were too simple, but the theory became the basis of
the subsequent development of the rheological properties of polymeric liquids.

Many modi­ cations have been made to the theory of Green & Tobolsky to make
the resulting constitutive equations agree with experiments (Lodge 1974; Bird et al .
1987). These modi­ cations were useful but, as they were made from phenomeno-
logical view points, the theories did not have much predictive power; for example,
the theories could not predict how the material properties depend on the molecular
weight of polymers.

A new model of entanglement was marked by the celebrated papers of Edwards
(1967) and de Gennes (1971). They proposed that each polymer in the entangled state
can move in a tube-like region which surrounds the polymer. The tube is regarded
as ­ xed in the material, but its shape changes in time as the two ends of the chain
can evacuate the old tube and create a new segment of tube. This model was applied
to the problem of rheology by Doi & Edwards (1978, 1986) and explained many
characteristic features of the viscoelasticity of polymeric liquids with a small number
of parameters. The theory, however, failed in many respects. For example, it failed to
predict the behaviour of the polydisperse system properly, and it gave an incorrect
prediction for the steady shear ®ow: according to the original model, the shear stress
has a maximum as a function of the shear rate.

Various e¬ects have been introduced to resolve these failures. The most important
e¬ect is `constraint release’, which arises from the motion of surrounding polymers
(de Gennes 1976). Doi & Edwards considered that each tube represents the average
constraint imposed by the surrounding polymers, and they assumed that it is ­ xed
in the material. In fact, the tube is a mobile object, since the constraint imposed
by the surrounding polymers will change due to their own motion: a constraint
will disappear if a surrounding polymer goes away. This e¬ect introduces various
modi­ cations in the original tube model, such as `double reptation’ (des Cloizeaux
1988), `dynamical tube dilation’ (especially in star polymers) (Ball & McLeish 1989),
and convective constraint release (Marrucci 1996; Ianniruberto & Marrucci 1996;
Milner et al . 2001). These modi­ cations greatly improved the predictive power of
the theory but, as they are introduced in di¬erent contexts, it gradually became
increasingly di¯ cult to take all e¬ects into account in one framework.

Recently, we formulated the problem of constraint release in a simple model, called
the dual slip-link model (Takimoto et al . 2000). The model takes into account all the
e¬ects discussed above and can handle their cumulative e¬ect in a consistent way.
Here we describe the model and discuss some of its results.

2. Dual slip-link model

Figure 1 shows the conceptual picture of the dual slip-link model. The entanglement
junction is represented by a slip link through which chains can pass freely. This
representation is very much like the classical picture of an `entanglement junction’
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(a) (b)

Figure 1. (a) The dual slip-link model. (b) The dual slip-link model with virtual links.
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Figure 2. Primitive path and slip links.

of Green & Tobolsky. However, the dual slip-link model is a development of the tube
model and is more closely connected to it than the model of Green & Tobolsky.

As has been shown previously by Doi & Edwards (1978), the tube can equivalently
be represented by slip links, by which each chain is con­ ned, but through which it
can slide freely. In their model, however, the slip link con­ nes a single chain and is
an alternative representation of the tube constraints. Therefore, the slip links are
assumed to be created only at either end of the chain and destroyed only when the
chain slides o¬ it. In the dual slip-link model, on the other hand, the slip link con­ nes
a pair of chains. A slip link is destroyed if either of the chains slide o¬ the slip link.
The motivation for considering such a model is to take into account of the e¬ect of
constraint release for many-chain systems.

In the following we shall describe the simplest implementation of this idea. In this
implementation, the slip link does not represents the entanglement junction in real
space such as shown in ­ gure 1a, but represents e¬ective constraints whose statistical
character is determined by the other polymers. A more straightforward implementa-
tion of the dual slip-link model is possible. Masubuchi et al . (2001) regarded the slip
link as an actual link in real space, and they calculated the motion of the position of
the slip-link points together with the reptation of the chains in the system. So far,
however, results of this model have been similar to those described here.

3. Dual slip-link model with virtual links

The present model is based on the description of the tube model. The coformation
of a polymer chain is represented by the primitive path: the set of the line segments
starting from one end of the chain, connecting the neighbouring slip links and ending
at the other end of the chain (see ­ gure 2). The primitive path is represented by the
position vectors of the slip links (r1; r2; : : : ; r ~Z), and the lengths of the line segments
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at both ends are s1 and s2, respectively. The number of slip links ~Z in a chain is
a statistical quantity, and its average in the equilibrium state h ~Zi is equal to the
number of entanglement points Z = M=Me, where M is the molecular weight of the
chain and Me is the entanglement molecular weight of this polymer. The equilibrium
length of the primitive path is Leq = Za, where a is the average distance between
slip links.

In our simulation, many chains are generated in a computer. Each slip link is paired
with its `partner’, which is randomly selected from slip links on other chains as is
shown in ­ gure 1b. These pairings represent binary entanglements among polymer
chains. Each chain moves in its own three-dimensional space. In this model, the
interaction among the chains is taken into account only through the pairing of the
slip links.

At each time-step of the simulation, we carry out the following four operations.

(i) A¯ ne deformation due to ®ow. Each position of the slip links ri is displaced
a¯ nely according to the macroscopic ®ow applied to the sample.

(ii) Change of the contour length of the primitive path. The length L of each
primitive path is updated to L + ¢L by changing the lengths of the tails
s1 and s2 by the same amount, ¢L=2. ¢L is determined from the following
Langevin equation and the time-step ¢t as

dL

dt
= ¡ 1

½ R

(L(t) ¡ Leq ) + g(t) +

µ
dL

dt

¶

a¯ n e

: (3.1)

Here, (dL=dt)a¯ n e is the change of the contour length due to the a¯ ne defor-
mation, g(t) is a random variable representing the contour length ®uctuation,
½ R = ½ eZ

2 is the Rouse relaxation time, and ½ e is the unit of time (the Rouse
relaxation time of a chain whose molecular weight is Me).

(iii) Reptation. Each primitive path is randomly displaced along itself with the
di¬usion coe¯ cient Dc = a2=(3 º 2 ½ eZ). By this operation, either s1 increases
and s2 decreases, or vice versa.

(iv) Constraint renewal. If s1 (or s2) becomes negative by operations (ii) and (iii),
the last slip link on the chain and its partner are removed. If, on the other
hand, s1 (or s2) becomes longer than a, a new slip link is created at the end,
and its partner is created on a randomly selected chain.

For a given con­ guration of the chain, the stress is calculated by

¼ ¬ ­ =
3kBT

a

X

i

¿
ri¬ ri­

jrij

À
; (3.2)

where h ¢ ¢ ¢ i indicates the average for all chains.
A similar stochastic simulation method has been developed by Hua & Schieber

(1998).
These operations are carried out for linear polymers. We have also conducted the

simulation for star polymers. In the case of star polymers, the reptation process is
absent. Hence we skipped operation (iii) and used only operations (i), (ii) and (iv).
Within this model, the number of arms has no e¬ect on the rheology of star polymers.
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Figure 3. Nonlinear relaxation moduli of (a) linear (Z = 20) and (b) star (Za = 10) polymers.
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Figure 4. The damping function of linear and star polymers.

In the following, the stress, time and shear rate are measured in units of Ge, ½ e,
and 1=½ e, respectively. Here, the unit of stress is related to the plateau modulus GN

as Ge = (15=4)GN.

4. Comparison between linear and star polymers

(a) Stress relaxation

Nonlinear stress relaxation moduli G(t; ® ) of linear (Z = 20) and star (Za = 10)
polymers are shown in ­ gure 3. The time-stress decoupling G(t; ® ) = h( ® )G(t) holds
in the long-time region, and the resulting damping function h( ® ) is shown in ­ gure 4.
Although the linear relaxation modulus G(t) is quite di¬erent for linear and star
polymers, the damping function is almost identical for the two polymers. The value
of h( ® ) obtained by our simulation is close to but slightly smaller than that predicted
by the Doi{Edwards theory, because the present simulation takes account of the
constraint release during the retraction of primitive paths to their equilibrium length.

(b) Steady shear ° ow

Figure 5 shows the shear stresses of linear polymers as a function of the shear rate.
Note that the shear stress is a monotonously increasing function of the shear rate.

Phil. Trans. R. Soc. Lond. A (2003)
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Figure 5. Flow curves of linear polymers with various molecular weights.
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Figure 6. Shear viscosities of linear and star polymers. (a) Non-newtonian viscosities: thin lines
with symbols, linear polymers; thick lines, star polymers; (b) zero-shear viscosities.

This indicates that our method correctly takes account of the convective constraint
release process (Marrucci 1996; Ianniruberto & Marrucci 1996). In the shear-rate
range 1=½ d < _® < 1=½ R ( ½ d is the longest relaxation time), the shear stress takes a
constant value independent of the molecular weight. The constant value is ca. 0:10Ge,
which is close to the theoretical value (0.123) of Mead et al . (1978).

Figure 6a shows the steady shear viscosity of linear and star polymers with various
molecular weights. It is seen that, at high shear rate, linear and star polymers have
the same viscosity, which is independent of the molecular weight in this shear-rate
range. This is because, in the shear-rate range 1=½ d < _® < 1=½ R, the dominant relax-
ation mechanism is the convective constraint release, which is a local process equally
e¬ective for linear and star polymers.

Figure 6b shows the zero-shear viscosity ² 0 of linear and star polymers. In the case
of linear polymers, ² 0 is proportional to Z3:5, in good agreement with experiments.
In the case of star polymers, the simulation results for Za > 10 can be ­ tted by
² 0 / exp( ¬ Za) with ¬ ¹ 0:4. This is close to, but still di¬ers signi­ cantly from, the
value of 0:5 predicted by the dynamic-tube-dilation theory of Ball & McLeish (1989).

Phil. Trans. R. Soc. Lond. A (2003)
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Figure 7. Elongational viscosities of monodisperse (a) linear (Z = 20)
and (b) star (Za = 10) polymers.

(c) Elongational viscosity

Figure 7 shows the time development of the elongational viscosity ² +
E (t) when a

uniaxial elongational ®ow is started. Figure 7a shows the result of a monodisperse
linear polymer with Z = 20 entanglement points and ­ gure 7b shows that of a star
polymer with Za = 10 entanglement points per arm. The numbers in the ­ gures are
the dimensionless strain rate _° ½ e. Except for the linear viscosity (the viscosity at the
lowest strain rate), the elongational viscosity for linear and star polymers is quite
similar. Especially, the strain hardening of ² +

E (t) takes place in both polymers only
when the strain rate _° is larger than 1=½ R, where the Rouse relaxation time of these
polymers is ½ R = Z2 ½ e = 4Z2

a ½ e = 400 ½ e.
As it has been seen in this section, the linear viscoelasticity, such as the linear

relaxation modulus G(t), and the zero-shear viscosity ² 0, for linear and star polymers,
are quite di¬erent, because of the absence of reptation in star polymer. On the other
hand, their nonlinear rheological properties, such as the damping function h( ® ), non-
Newtonian viscosity ² ( _® ) or nonlinear elongational viscosity ² +

E (t), are very similar
to each other. This is because they are dominated by the Rouse relaxation and/or
convective constraint release.

5. Dielectric relaxation

The molecular motion of polymers can be studied by dielectric relaxation. In the
case of the type-A linear chain, which has dipole moments along its backbone, the
dielectric relaxation function © (t) can be calculated from the auto-correlation func-
tion hR(t) ¢ R(0)i of the end-to-end vector R. Matsumiya et al . (2000) have the-
oretically shown that, if dynamical tube dilation (Ball & McLeish 1989) is fully
taking place during the relaxation, then the normalized stress relaxation function
g(t) ² G(t)=G(0) and dielectric relaxation function ¿ (t) ² © (t)=© (0) satisfy the rela-
tion g(t) = [ ¿ (t)]2. They have also tested this relation experimentally and found that
the relation actually holds for linear polymers.

To see whether such a relation is satis­ ed in our simulation, we have calculated
g(t) and ¿ (t) for linear polymer (Z = 20). The results are shown in ­ gure 8a. It can
be clearly seen that the calculated g(t) and ¿ (t) satisfy the relation g(t) = [ ¿ (t)]2.

The (normalized) storage and loss moduli G0(!) and G00(!), and the imaginary
part of the dielectric function ° 00(!) are calculated from g(t) and ¿ (t) by Fourier

Phil. Trans. R. Soc. Lond. A (2003)
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Figure 9. Polydisperse polystyrene sample. (a) Molecular weight distribution;
(b) dynamic moduli: symbols, experiment; lines, simulation.

transform. The results are compared with experiments of Matsumiya et al . (2000) in
­ gure 8b. The agreement with the experiments is very good, showing that the e¬ect
of dynamic tube dilation is correctly accounted for in our simulation.

6. Elongational viscosity of polydisperse system

Controlling the elongational viscosity of polymer melts is of great practical impor-
tance in polymer engineering, because it governs the processability of the polymer
in blow and ­ lm moulding. In this section, we apply our model to predict the elon-
gational viscosity of polydisperse samples. The sample we studied is a commercial
polystyrene whose molecular weight distribution is shown in ­ gure 9a. The data
are plotted against Z = M=Me, where the entanglement molecular weight Me of
polystyrene is taken to be 14 500 g mol¡1. About 10 000 chains obeying this molec-
ular weight distribution are used in the simulation. The components of very short
chains (chains shorter than Z = 3) are ignored in the simulation.

Before studying the elongational viscosity, we should determine the two model
parameters ½ e and Ge corresponding to this sample and the measurement tempera-
ture of 160 ¯C. (Strictly speaking, Ge should be related to Me as Ge = (15=4)GN =

Phil. Trans. R. Soc. Lond. A (2003)
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Figure 10. Elongational viscosities of polydisperse polystyrene samples: (a) base sample;
(b) with 1.5 wt % of very high molecular weight component.

3 » RT=Me ¹ 0:6 MPa, but we take Ge as an independent parameter from Me.) To
determine Ge and ½ e, stress relaxation modulus G(t) after small step strain ( ® = 0:5)
is calculated by simulation, and is converted to the dynamic moduli G0(!) and
G00(!) by Fourier transform. By ­ tting G0(!) and G00(!) to the experimental data
of Minegishi et al . (2001), the parameters are determined to be ½ e = 2:2 ms and
Ge = 0:5 MPa. The agreement with the experiments is fairly good, as can be seen in
­ gure 9b.

Uniaxial elongational viscosity of this sample at various strain rates is then calcu-
lated using our simulation and compared with experiments in ­ gure 10a. Although
there are no adjustable parameters, the agreement is very good.

To study the e¬ect of a small amount of very high molecular weight component on
the strain hardening of elongational viscosity, Minegishi et al . (2001) have blended
5 wt % of very long chains (molecular weight of 3220 kg mol¡1, or Z = 222) with
the polystyrene sample. Figure 10b shows the elongational viscosity of the blend,
compared with the prediction of our simulation. The strain hardening is strongly
enhanced by 5 wt % of very long chains, and the enhancement is correctly predicted
by our simulation.

7. Conclusion

The dual slip-link model is a straightforward generalization of the slip-link repre-
sentation of the tube model, but it can also take into account the various e¬ects
discussed previously (double reptation, dynamic tube dilation and convective con-
straint release) in a simple and consistent way. The model can handle polydisperse
systems and can reproduce the linear and nonlinear rheological properties of linear
and star polymers accurately. The simulation program shown here is called Pasta,
and can be downloaded at http://www.octa.jp.

This work was conducted under the governmental project, which has been entrusted to the
Japan Chemical Innovation Institute by the New Energy and Industrial Technology Development
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Organization (NEDO) under METI’ s Program for the Scienti¯c Technology Development for
Industries that Create New Industries.
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Discussion

P.-G. de Gennes (Collµege de France, Paris, France). Your model assumes that all
entanglements are constructed with two chains. Could there be some entanglements
which involve three chains (or more)?

M. Doi. There are entanglements involving three or more chains, but we do not know
how many there are and how important they are in rheological properties. At this
stage, we are trying to go as far as possible with the assumption that entanglements
are binary. By comparing the predictions of this model with experiments in detail,
we can test the validity of this assumption. So far the binary entanglement model
seems be su¯ cient to reproduce experimental results.

R. Magerle (Physikalische Chemie II, Universit�at Bayreuth, Germany). You men-
tioned that your model uses realistic distribution of molecular weights as inputs.
How well does your model describe the behaviour of a set of the same polymer with
di¬erent distribution of molecular weights?

M. Doi. We have demonstrated that the elongational viscosities of polystyrene sam-
ples with di¬erent molecular weight distributions can be described well by a single
set of parameters.

A. N. Semenov (Department of Applied Mathematics, University of Leeds, UK ).
What is the dependence of the total number of entanglements on the shear rate?

M. Doi. The number of entanglements decreases with increasing shear rate (due to
convective constraint release), and the decrease is stronger for longer molecules. We
have not yet analysed the dependence in detail.

D. J. Read (Department of Applied Mathematics, University of Leeds, UK ). How
does the slip-link model relate to the tube model in the nonlinear regime? If slip
links are further apart, does this mean the tube diameter changes? What happens
to the tube diameter?

M. Doi. As mentioned above, the number of slip links decreases by ®ow in the
nonlinear regime. This can be interpreted as an increase in the tube diameter, but
this statement can be misleading since the `tube diameter’ has di¬erent meanings in
di¬erent contexts. We hesitate to make such an interpretation.

M. E. Cates (School of Physics, University of Edinburgh, UK ). Does your model
give a monotonic ®ow curve ¼ ( _® ) or does it give a maximum as predicted by early
entanglement theories? If it is monotonic, it would be interesting to couple your
algorithm to reversible breaking dynamics for chains. This would give a model for
worm-like micelles which appear to have a non-monotonic ®ow curve, unlike conven-
tional polymers.

M. Doi. Our model gives monotonic ®ow curves. It is quite interesting to extend
this model to the worm-like micelles introducing the reversible breaking dynamics.
If the extended model were to show the stress maximum in shear ®ow, it will be
spectacular.

X. H. Zheng (Department of Pure and Applied Physics, Queen’s University, Belfast,
UK ). In the tube model some molecules play the role of tubes and others pass through
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the tubes. What determines the population of these two kinds of molecules? Is it the
free energy of the ensemble that determines the population of these two species?

M. Doi. In our dual slip-link model, all molecules play the role of both the tubes
and the chains reptating in the tubes.
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