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1. The analytical eigenvalue for affine-based dual network model 

We consider that the two end beads of the model do not relax, and thus the effective 

friction coefficient of those is set to be positive infinity, namely  →  in the modified 

SRM, represented by the black solid beads in Figure S1b. In addition, we introduce the 

sticker into the affine network, which has a finite friction coefficient  , shown by the gray 

filled beads in Figure S1b. The hollow bead is the normal segment in strands, whose length is 

2 3n + , where the half chain length between the sticker and the end segment is n . 

On the basis of Theorem I,1 the eigen-polynomial of RZ matrix for affine dual network 

model is ( )QP x , which can be split into two subgraphs Q  and 
iQ  from the location of 

sticker with removing or non-removing the closed path passing, as shown in Figure S1b. The 

eigen-polynomial from graph theory aspect can be written as follows: 

 ( ) ( ) ( )iQ Q i Q
i

P x P x P x= +   (S.1) 

where 2x  − , QP   is the eigen-polynomial of subgraphs by cutting the middle bond, iQ
P  is 

that of subgraphs by removing the closed path passing through the middle bond, i  is the 

bond weighting factor showing the connectivity between beads, i  represents the number of 

closed paths, for example, 1i =  and ( ) ( ) ( )
1 2

i i iQ Q Q
P x P x P x=  in the case of Figure S1b. 
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However, in the expression of matrix operations instead of graph theory, the determinant of 

( )QP x  can be written as the sum of the cofactors of the sticker’s row or column of the matrix 

multiplied by the entries that generate them. By introducing two basic and analytically 

solvable Tshebyshev polynomials ( )np x  and ( )np x , representing the eigen-polynomials of 

RZ matrix for two kinds linear chains shown in Figure S1a, the eigen-polynomial ( )QP x  can 

be expressed as a function of the two basic polynomials.1 
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= −  

  (S.2) 

As a result, we divide the complex eigen-polynomials of dual network model into the product 

of two basic eigen-polynomials 1  and 
2 . Then calculating the eigenvalues is naturally 

transformed into finding the solution of the two basic eigen-polynomials. The polynomial 

( )1 np x = , whose analytic eigenvalues can be calculated directly as 

( )( ) ( )2 2cos 1 , 1,2, ,p p n p n = − + = . The other polynomial 

( ) ( ) ( )2 12 2 2n nx p x p x  − = − + − , which has a non-zero minimum eigenvalue reflecting 

the diffusion motion of stickers. With   in the weighting factors 2cosx =  tends to zero, we 

substitute Tshebyshev polynomials into 
2  and obtain the minimum eigenvalue with the 

Taylor expansion of  . 
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3 3 3 3 1
s

n n n


 


+ + + +
  (S.3) 

Actually, ( )QP x  has another two eigenvalues smaller than s . One is the infinite small 

eigenvalue of end segment that nearly does not relax, and the other is the only one zero 
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eigenvalue 0 0 = , corresponding to the translational diffusion of the entire chain. However, 

the diffusion motion of entire chain has no effect on the rheological properties, and this holds 

true for any topologies in Rouse model.1 Polynomials 
2  can be further simplified when 

2 , 

 ( ) ( ) ( ) ( ) ( )
2

2 12 2 2 2n n nx p x p x x p x


  − = − + −  −   (S.4) 

the general solution in eq (S.4) is consistent with 1 , and the complete polynomials of the 

entire chain can be obtained. 

 ( ) ( ) ( )
2

32 22Q nP x x p x


  −   (S.5) 

Finally, the following eigenvalues of the dual network model based on affine deformation can 

be obtained, which contains 0 0 = , representing the translational diffusion of entire chain, 

0s    for the arched peripheral bead, s  and p  show the slow diffusion motion of stickers 

and the Rouse relaxation of strands, where s  can reduce to the minimum eigenvalues of 

homopolymer chains with 1 = , that is ( )
2

2 1s n  + . 

2. The analytical eigenvalue for phantom-based dual network model 

Based on the affine-based dual network model, we further extend to the phantom-based 

structure in this section. Since we adopt phantom-based structures, the graph theory can 

simplify its Zimm matrix based on the symmetry. According to the topological structures and 

functionality of each segments, the structure of the dual polymer network can be divided into 

several linear structures according to the proved theorem, and thus we can get the analytic 

eigen-polynomial of the entire polymer dual networks, shown in Figure S2.1-3 Following 

Theorem IV, subgraphs can be generally classified into two categories, that is 
( ) ( )

m 1A g B
P x

−
 

and 
( ) ( )1g B

P x
−

, where mg  indicates the maximum generation in the polymer dual network 

model. The final eigen-polynomial can be drawn out as the product of the eigen-polynomials 
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of subgraphs:  

 ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

m 1m

m m m

1
2 11

, 1 1 1
1

g g
g

g A g B g B g B
g

x P x P x P x
  



− −
−

− −−

− − −
=

 =    (S.6) 

Yang et al have proved the above formula can degenerate into many known solutions in 

special cases, which has strong universalities.3 For example, eq (S.6) can reduce to linear 

chain when 2 =  and reduce to starlike chain when 
m 1,  2g =  . Besides, the degeneracy 

of each eigen-polynomial can be obtained in eq (S.6), where 
( ) ( )

m 1A g B
P x

−
 is non-degenerated, 

( ) ( )
m 1g B

P x
−

 is ( )1 − -fold degenerated and 
( ) ( )1g B

P x
−

 is ( )( ) m 1
2 1

g g
  

− − − −
 

-fold 

degenerated. The goal of analytical deduction turns to solving two categories of subgraphs. 

Figure S3 shows critical subgraphs in detail. The weighting factors of bonds and the beads 

has been marked, and the specific eigen-polynomial of each subgraph can be calculated by 

the graph theory like the affine-based dual network model above. The specific eigen-

polynomial of several basic subgraph can be ducted from their structure following Theorem I. 

For example, RP  can be obtained by cutting the bond connecting the sticker, which is written 

as, 

 ( ) ( ) ( ) ( )12 2 2R n n nP p x x p x p x  −= − + −     (S.7) 

where   is the effective friction coefficient. Similarly, SP  and HP  can be expressed from the 

same way. 

 ( ) ( ) ( ) ( ) ( ) ( )2

1 2 12 2S n n n nP x p x x p x p x p x  − − −= − + − −     (S.8) 

 ( ) ( ) ( ) ( )1 1 22 2 2H n n nP p x x p x p x − − −= − + −     (S.9) 

For the subgraph with junction segments, the eigen-polynomial is still calculated within the 

framework of Theorem I by cutting the bond connecting the junction, which is the functions 

of RP , HP  and SP . 
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 ( )2L S HP x P P= + − −   (S.10) 

 ( )2P R SP x P P= + − −   (S.11) 

For the subgraph with peripheral segments arched in the space, the eigen-polynomial is 

obtained by cutting the bond connecting the arched bead, and it can be simplified further 

based on the infinite effective friction coefficient. 

 ( ) ( )2 2B R S RP x P P x P        = − + −  − +   (S.12) 

However, the four general subgraphs have obvious translational symmetry, and their 

analytical eigen-polynomial can be calculated according to Theorem V: 

 ( ) ( ) ( ) 1

11n n

n n S n

Z Z
P x t p P x t p

t t
 −

−

   
= + −   

   
  (S.13) 

 ( ) ( ) ( ) n

L nL n

Z
P x P x t p

t

 
=  

 
  (S.14) 

 ( ) ( ) ( ) n

R nn R

Z
P x P x t p

t

 
=  

 
  (S.15) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1

1 2

1 2

1

1

1

L SL n R n R L n R

n n

P n n

P x P x P P x P

Z Z
P x t p t p

t t





−

+ +

+ +

= − −

    
= −    −     

  (S.16) 

where ( ) ( ) ( ) ( )1P SZ x P x P x= − −  and ( ) ( ) ( ) ( ) ( )( )1 R L P St P x P x P x P x= − − . In our case 

( ) ( ) ( ) ( ) 1R L P SP x P x P x P x− = , and thus 1t = − . With the above four general eigen-

polynomials and six basic polynomials, we can go further to derive the eigen-polynomials of 

the two categories of subgraphs 
( ) ( )

m 1A g B
P x

−
 and 

( ) ( )1g B
P x

−
: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m m m

m m

m m

m m

1 1 2

1 2

1

1

2

2 4 2 4 2

4 2 2
1 1

A g B g B L g B

g R L g R

g g

R P g g

P x x P x P x

x x P x x P x

Z Z
x x P x P x t p t p

t t



 

     

 
  

 

− − −

→

− −

−

−

= + − −

       + − − + − − +
   

      
 = − + + − − +     

− −     

  (S.17) 
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( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

1

1

4 2

                4 2

g B g R

g

R g

P x x P x

Z
x P x t p

t



 

 

→

− −

−

−

  − +

 
 = − +  

 

  (S.18) 

the next step is to find the analytic solutions of eq (S.17) and eq (S.18) through known 

conditions. 

2.1 Analytical solutions for 
( ) ( )1g B

P x
−

 

( )gp Z t  is introduced for dealing with the translational symmetry of subgraphs, which has 

the same form as the Tshebyshev polynomial with the argument calculated from the eigen-

polynomial of the repeating unit. The detail for ( )gp Z t  refer to the work of Yang et al.3 The 

Z t  can be written as a function of ( )np x : 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2

1 2 1

1
2 2 2 2

1

2 2

n n n

n n n n

Z
x p x x p x p x

t

p x x p x p x p x

  


  

−

− − −

= + − − + −  −

 − − + − −   

 (S.19) 

defining 2coshZ t =  , we will have 

 
( )sinh 1

sinh
g

gZ
p

t

+  
= 

 
 (S.20) 

substituting eq (S.20) and eq (S.7) into eq (S.18), the following eigen-polynomials for 

( ) ( )1g B
P x

−
 can be obtained as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

11

1

1

1 2 3

4 2 2 2 2

sinh

sinh

4 2

n n ng B

g

g

P x x p x x p x p x

g
t

x t

   

 

−−

−

−

 = − + − + −  






    = − +   

 (S.21) 

similar to the above results based on the affine deformation, the complex eigen-polynomial is 

divided into the product of three basic eigen-polynomials 1
 , 2

  and 3
 . So, the analytic 

solution is also in three parts. 
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 ( )1 np x =   (S.22) 

 ( ) ( ) ( )2 12 2 2n nx p x p x  −
 = − + −   (S.23) 

 ( )3 sinh sinhg =     (S.24) 

The analytic solution of 1
  is directly obtain as  

 ( )( ) ( )2 2cos 1 , 1,2, ,p p n p n = − + =   (S.25) 

The calculation of non-zero minimum eigenvalue in 
2
  is same as the above derivation, that 

is, substituting 2cosx =  into eq (S.23) and obtaining the non-zero minimum eigenvalue s  

based on the Taylor expansion of  , which is the same as eq (S.3). When 2 , 
2
  can be 

further simplified, and the general solution is consistent with polynomial 1
 . 

 ( ) ( ) ( ) ( ) ( )
2

2 12 2 2 2n n nx p x p x x p x


  −
 = − + −  −   (S.26) 

( )3 sinh sinhg =    only exists in the case of 1g  , and the solution of eigenvalue can be 

obtained directly by ( )sinh 0g = ,  

 ( ), 1,2, , 1ik g k g = = −  (S.27) 

Substituting eq (S.27) into definition 2coshZ t =  , we further have 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2

1 2 1

2cosh

1
2 2 2 2

1

2 2

2cos

n n n

n n n n

Z ik

t g

x p x x p x p x

p x x p x p x p x

k

g



  


  



−

− − −

 
=  

 

= + − − + −  −

 − − + − −   

=

 (S.28) 

eq (S.28) contains the effect of translational symmetry on eigenvalues, and the difference of 

eigenvalues between repeating units lies in ( )cos k g . In the same way, we can obtain ,s k  

with the Taylor expansion of  . 
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 , 2

2 1cos

2 2 2 2
s k

k

g

n n n n


 


    

 
− −  

 
+ + + + +

 (S.29) 

Eq (S.29) also can be further simplified with 2 , 

 ( ) ( ) ( ) ( ) ( )1

1
2 1 0

1
n n nx p x p x p x 


+− + − =  

−
 (S.30) 

the analytic expression for the solution of ( )np x  is obtained as the Tshebyshev polynomial, 

but the ( ) ( ) ( )1 1n np x p x+ + −  term obviously has no analytic solution, which is only 

calculated with assumption of large n . 

 ( ) ( )( ) ( )2 2cos 2 1 2 1 , 1,2, ,p p n p n  = − − + =  (S.31) 

Up to now, we have already obtained all analytical solutions of the subgraph 
( ) ( )1g B

P x
−

. The 

general solution contains ( )2k + -fold p , k -fold p , 1g −  non-zero minimum eigenvalues 

,s k  for repeated unit in the case of 1g   and s  for that of 
( ) ( )0 B

P x . 

2.2 Analytical solutions for 
( ) ( )

m 1A g B
P x

−
 

Subgraph 
( ) ( )

m 1A g B
P x

−
 is a more complex eigen-polynomials, which considers the influence 

of the mid junction. It is essentially a special case of 
( ) ( )1g B

P x
−

 and does not have analytical 

solution intuitively, which need to be simplified further. Assume the maximum generation 

mg  tends to be infinite, the influence of peripheral unit disappears, and 

( ) ( )
m m1g gp Z t p Z t−  . Substituting the approximate equality into the eq (S.17), we can get 

its simplest form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) m m

m m

1

1
4 2 2

1 1

g g

R PA g B g

Z
P x x p x P x P x t t

t

 
  

 

−

−

   
 = − + + − − +    

− −    
(S.32) 

in this case, the solution of eigen-polynomials is reduced to that of ( )
m 1gp Z t− . 



 

9 

 

Similar to the above deviation, the eigenvalues of ( )
m 1gp Z t−  includes three types. One is 

the ,s k  due to the existence of sticker with the argument of mg ,  

 ( )m

, m2

2 1cos

, 1,2, , 1
2 2 2 2

s k

k

g
k g

n n n n


 


    

 
− −  

  = −
+ + + + +

 (S.33) 

another is the general solution obtained above when 2 , which has k -fold p  and k -fold 

p . Moreover, the last solution is the zero eigenvalue that corresponds to the translational 

diffusion of the entire network.  

 3. The strand size and MSD simulations for junctions in network 

The mean square displacement (MSD) ( )2

jg t  is written as 

 ( ) ( ) ( ) ( ) ( ) 
2

2 . . . .0 0j

j c m j c mg t r t t r   = − − −   R R  (S.34) 

where ( )jr t  is the spatial position at time t , and ( ). .c m tR  is the center of mass. In the short 

period, the motion of strands is not constrained by crosslinks, and it will follow Rouse 

dynamics. However, each junction has a maximum MSD based on the connectivity of the 

network, which is predicted by Erman et al. with phantom network structure, 

( ) ( ) ( ) ( )2

2 1 2j

sg t R N  → = − − .4 In our simulation, we mainly focus on the four-fold 

networks, and thus we expect ( ) ( ) ( )2

2 3 8j

sg t R N→ = , which is solid without the 

influence of entanglement. 

We implement six simulations on one strand length sN , and consider the mean square end-

to-end distance of strands on both the time average and the ensemble average ( )2

sR N , 

shown in Figure S4a. As expected, ( )2

s sR N N , which means the strands in networks are 

Gaussian-like. In turn, we observe Rouse dynamics of strands at short time in Figure S4b. 

The prediction without entanglements is present as black dotted lines, which is perfectly 



 

10 

 

consistent with the simulation results. However, the deviation between them becomes 

significantly large with increased sN  due to the uncrossability of chains, even for the strands 

smaller than the melt entanglement length 35eN = .5 The motion will be retarded extremely 

when s eN N  with the increased restrictions on junctions, and their diffusion is expected 

within the spatial regime of the reputation tube diameter.6,7 Thus we have the relation, 

 ( )
1 2 1

2

j

sg t aN
− − −→ =  +  (S.35) 

where a  is a constant, and it is supposed to be ( ) ( )1 2  − −  with the assumption of 

phantom network. The space between junctions become large with increased sN , allowing 

the magnitude of fluctuation becomes larger, and 2−  tends to be zero. However, the MSD 

asymptotically becomes independent of the strand length when 
1 0sN − → , shown in eq (S.35) 

and Figure S3c , and the 2 0.041−   with the entangled networks. The extrapolation result is 

almost exactly the same length as the characteristic displacement of the monomers within the 

tube 220 , which is approximately equal to the ( )22 G eR N , and the above results are 

consistent with that of Grest and Kremer, et al.5,7 

4. The deduction of analytic linear relaxation modulus 

The subgraphs contributions for the overall linear relaxation modulus can be measured by 

its segments number density ( ), g  . For the dual polymer network with the maximum 

generation mg , the total segments can be calculated with 2 2sN n= + , where n  represents the 

half strand length divided by stickers in our model picture. The subgraph eigen polynomial 

( ) ( )1g B
P x

−
 has the number of segments ( ) ( )( ) m 1

1 2 2 2 1
g g

gN g n  
− −

− = − + −  with the 

segments number density  ( ) ( ) ( )
2 1

, 2 1
g

g g   
+  − −

 
, where 2x  −  represents 

weighting factors of segments. However, the segments number density of ( ) ( )
m 1g B

P x
−

 and 



 

11 

 

( ) ( )
m 1A g B

P x
−

 becomes zero with g → , and thus we neglect the influence of those two 

subgraphs for simplifying calculations. The general expression of the linear relaxation 

modulus can be written as the function of eigenvalues, 

( ) ( )
( )

( ) ( ) ( )
m (2 2) 1

,

1 1 1

, , exp 2 exp 2 exp 2
2 2

g g n g

p s k s

g p g k

G t g t t t
n g


     

+ −

= = + =

  
= − + − + −   +   
    (S.36) 

in our model, the relaxation time of the sticker is much longer than that of the subchains, that 

is, the effective friction coefficient   is large. Thus, the minimum eigenvalues s  or ,s k  

have a simplified form. 

 
2

s
n




  (S.37) 

 2

,

2 1cos
2 1 4 1

sin
2

s k

k

g k

n n n g


 

   


     

 
− −  

− − −    = +  
 

 (S.38) 

However, each subgraph owns the translational symmetry with g  periods, and each periodic 

strand owns 2n  segments separated by one sticker. According to the simplified method of 

graph theory, the relaxation behaviors of half strands in one period are different and can be 

split apart as p  term and p  term, that is,  p  with ( )1g + -fold and p  with g -fold. We 

substitute analytic eigenvalues calculated above into eq. (S.36), and obtain the further linear 

relaxation modulus of dual polymer network. 

( ) ( )
( )

( )
( )

( )
( )

( )

max

2 2

1 1 1

1
2

1

2 1
, , 1 exp 8sin 1 exp 8sin

2 2 2 1 2 2 1

2 1 4 1 4
exp 2 sin exp

2

g n n

g p p

g

k

pp
G t g g t g t

n g n n

k
t t

n n g n

 
  

   

    

= = =

−

=

         −
= + − + − −                + + +        

  − − −    
+ − + + −             

  



( )
( )

( )
( )

( )
( )

( )

max
2 22 2

2 2
1 1 1

2 21

2
1

2 1
, 1 exp 8 1 exp 8

2 2 4 1 4 2 1

8 1 2 1 4
exp exp 2 exp

4

g n n

g p p

g

k

pp
g g t g t

n g n n

k
t t t

n n ng

 
 

  

    

= = =

−

=



         −
      = + − + − −         + + +        

     − − − 
+ − − + −      

       

  


 
 

 

(S.39) 
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We should note that the information of translational symmetry disappears with 1g = , and eq 

(S.39) is further reduced by Gauss integration with assumption of large g  and n . 

( ) ( )
( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

max

1 2 1 2
2 2

2

1 2

1 2
2 2

2

1 1 1 2 1
, ,

2 2 42 2 2 2

1 2 1 4
exp 2 exp

2 2 1

2 1 4
exp

2 2 21

g

g

g n g n
G t g

n g t t

g n
t t

n nt

n
t

n t n


  

 

  

   

 

 

=

      + + − +
= +         +     

   − − −  
+ − + −        −      

  − +  
+ + −    +  −  



( )
( )

( ) ( ) ( )

( )

( )

( )

( )

max
1 21 2 1 2

2

2 1 2

2

2

2

1 1 1 2
, exp

2 2 2 2 2 2 2 2

2 4
exp

2 2 21

21
1

2 22 2 1

g

sbR R

g sb

R

R

g g g t
g

n g t t t

t
n t n

n

 
 



 



 



=





  + − −       
= + + −          +          

 −     
+ + −   

+   −   

 −  
= −    + − 



( )

( )

1 21 2 1 2

2 1 2

2

2
exp

2 2
exp

2 2 21

sbR

sb

R

sb

t

t t t

t

n t





 



       
+ + −                

 −    
+ + −    +  −    

(S.40) 

Further written in a more concise form, 

( )
( )

( )

( )

( )

2 1 21 2 1 2

2

2 1 2

2

21 2
, 1 exp

2 22 2 1

2 2
exp

2 2 21

sbR R

sb

R

sb

t
G t

n t t t

t

n t

  




 



   −        
= − + + −             +       −     

 −    
+ + −    +  −    

 (S.41) 
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(a) 

 

(b) 

 

(c) 

Figure S1. Physical pictures of graph theory for dual network model based on affine 

network. (a) Mapping relations between the two basic RZ matrix (left column) and graph 

representation of RZ matrix eigen polynomials (Tshebyshev). (b) The cutting operation of 

graph theory, which is essentially the matrix reduction. (c) the further cutting operation for 

1Q  and 2Q  subgraphs. The effective friction coefficient of two end segments   =  , 
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represented by the solid black bead. The sticker with finite friction coefficient   is shown as 

a gray solid bead, which divides the linear chains into two parts. The open bead is normal 

segment, and all bonds in this model have the same weighting factor 1 = − .   is the 

functional degree of networks, which will change the weighting factors of segments. 

 

Figure S2. Main subgraphs obtained after successive rotational operations applied to our 

dual polymer networks model ( 3g = and 4 = ), and all subgraphs can be divided into two 

categories, 
( ) ( )

max 1A g B
P x

−
 and 

( ) ( )1g B
P x

−
. 
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Figure S3. Subgraphs with linear structures are obtained following Theorem IV, which can 

be classified into six main basic subgraphs (B, H, S, P, L and R), four general subgraphs 

( ( )nP x , 
( ) ( )n R

P x , 
( ) ( )L n

P x  and 
( ) ( )L n R

P x ) and two categories subgraphs (
( ) ( )

max 1A g B
P x

−
 and 

( ) ( )1g B
P x

−
). The general subgraph is the function of six main basic subgraphs, and their 

weighting factors of the bonds and the beads has been marked. 
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(a) (b) 

 

 

(c)  

Figure S4. The strand size and MSD for junctions in the network. (a) The average mean 

square end-to-end distance of strands against the strand length sN . (b) MSD of junctions 

under different strand length and the prediction of its maximum MSD. (c) MSD of junctions 

against the inverse of strand length 
1

sN −
. All simulation results are performed six times and 

then averaged. 
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Figure S5. The stress−strain curves of small deformation with strain rates ranging from 

7 11.5 10 s− −  to 3 15 10 s− − , where 20n = , 1000 = , 10g =  and 4 = . The result from 

permanent network is nearly linear and drawn out by a red dotted line. 
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(a) (b) 

Figure S6. (a) MSDs of normal tracer chains. (b) MSDs of sticky tracer chains. 

 

Table S1. Linear relaxation modulus and the trapping contribution from entanglements with 

strand length sN  from 12 to 50. 

Modulus/ ( )3   12sN =  24sN =  34sN =  50sN =  

Phantom network model  0.035 0.018 0.013 0.009 

Affine network model  0.071 0.035 0.025 0.017 

Modified SRM  0.044 0.023 0.016 0.011 

MD simulations 0.045 0.038 0.041 0.026 

Trapping contribution 0

e NT G  - 0.003 0.016 0.009 

  



 

19 

 

REFERENCE 

1. Yang, Y. Graph Theory of Viscoelastic and Configurational Properties of Gaussian 

Chains. Macromol. Theory Simul. 1998, 7 (5), 521-549. 

2. Yang, Y.; Yu, T. Graph-Theory of Configurational and Viscoelastic Properties of 

Polymers .2. Linear Polymer-Chains Containing Small Copolymer Blocks. Macromol. Chem. 

Phys. 1986, 187 (2), 441-454. 

3. Yang, Y.; Qiu, F.; Zhang, H.; Yang, Y. The Rouse Dynamic Properties of Dendritic 

Chains: A Graph Theoretical Method. Macromolecules 2017, 50 (10), 4007-4021. 

4. Kloczkowski, A.; Mark, J. E.; Erman, B. Chain Dimensions and Fluctuations in Random 

Elastomeric Networks. 1. Phantom Gaussian Networks in the Undeformed State. 

Macromolecules 1989, 22 (3), 1423-1432. 

5. Kremer, K.; Grest, G. S. Dynamics of Entangled Linear Polymer Melts:  A Molecular‐

Dynamics Simulation. J. Chem. Phys. 1990, 92 (8), 5057-5086. 

6. Vilgis, T.; Boue, F. Deformation Dependence of the Form-Factor of a Cross-Linked 

Chain in a Rubber - Entanglement and Orientational Effect. Polymer 1986, 27 (8), 1154-1162. 

7. Duering, E. R.; Kremer, K.; Grest, G. S. Structure and Relaxation of End‐Linked 

Polymer Networks. J. Chem. Phys. 1994, 101 (9), 8169-8192. 

 


