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Estimating the viscoelastic moduli
of complex fluids using the generalized
Stokes—Einstein equation

Abstract We obtain the linear visco-
elastic shear moduli of complex fluids
from the time-dependent mean square
displacement, (Ar?(¢)), of thermally-
driven colloidal spheres suspended in
the fluid using a generalized Stokes—
Einstein (GSE) equation. Different
representations of the GSE equation
can be used to obtain the viscoelastic
spectrum, G(s), in the Laplace fre-
quency domain, the complex shear
modulus, G*(w), in the Fourier fre-
quency domain, and the stress relax-
ation modulus, G,(?), in the time
domain. Because trapezoid integra-
tion (s domain) or the Fast Fourier
Transform (w domain) of (Ar?(¢))

known only over a finite temporal
interval can lead to errors which result
in unphysical behavior of the moduli
near the frequency extremes, we esti-
mate the transforms algebraically by
describing (Ar?(¢)) as a local power
law. If the logarithmic slope of
(Ar*(t)) can be accurately deter-
mined, these estimates generally per-
form well at the frequency extremes.
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Introduction

The thermally-driven random motion of colloidal
spheres suspended in a complex fluid can be very
different than the diffusive Brownian motion of similar
spheres suspended in a purely viscous fluid. In general,
complex fluids contain colloidal structures which par-
tially store and partially dissipate energy when deformed
by a perturbative shear; thus they are viscoelastic
materials. As the elasticity of the complex fluid becomes
significant, spheres suspended within the fluid may
exhibit subdiffusive motion or may even be locally
bound. For some complex fluids, such as glasses, the
colloidal structures giving rise to the elasticity may be
able to slowly relax, and the spheres may eventually be
able to escape. By establishing the relationship which
connects the average microscopic motion of the spheres
to the macroscopic viscoelastic response of the complex
fluid, one can exploit a variety of experimental tech-
niques for measuring this average motion in order to

obtain the linear shear rheology of the complex fluid.
This strategy offers several advantages. First, no exter-
nal shear must be applied because equilibrium thermal
excitations drive the motion of the spheres at all
frequencies, so only linear rheological behavior can be
probed. Second, because the colloidal spheres are very
small, their inertia can usually be neglected, and the
viscoelasticity of the complex fluid can be measured at
high frequencies.

A phenomenological generalized Stokes—FEinstein
(GSE) equation has been proposed for obtaining the
macroscopic viscoelastic shear moduli of complex fluids
from measurements of the ensemble-averaged motion of
the spheres (Mason and Weitz 1995, Mason et al. 1997).
This GSE equation is based upon the assumption that
the complex fluid can be treated as a continuum around
a sphere, or equivalently, that the length scales of the
colloidal structures giving rise to the elasticity are
smaller than the size of the sphere. It also assumes that
the Stokes relation for viscous fluids can be extended
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to describe the viscoelastic drag on a sphere at all
frequencies. This GSE equation has been tested by
comparing moduli obtained from Diffusing Wave Spec-
troscopy (DWS) measurements (Weitz and Pine 1992)
of the mean square displacement, (Ar*(¢)), of spheres
within concentrated emulsions, glassy hard sphere
suspensions, and polymer solutions (Mason and Weitz
1995), with moduli obtained using mechanical rheo-
metry. These DWS measurements have demonstrated
that the moduli can be determined over an extensive
frequency range, as many as nine decades, and at
frequencies much larger than those typically accessible
using mechanical rheometers limited by inertia.

In the original test of the GSE equation, the
viscoelastic spectrum, G(s), where s is the Laplace
frequency, has been used to represent the frequency-
dependent viscoelastic modulus (Mason et al. 1997).
Although G(s) is a concise representation, it is not a
standard representation, so analytic continuation of a
functional form used to fit G(s) has been used to
determine the complex shear modulus, G*(w) = G(iw)
(Bird et al. 1977). For physically motivated forms, this
procedure yields G*(w) which agrees well with mechan-
ical measurements. However, this procedure is not
theoretically precise because analytic continuation is
not stable for all imaginable forms (e.g. to oscillations of
the form ecosks where ¢ is small and & is large). In
particular, the previously used forms have been pur-
posely chosen to avoid such instabilities.

We address this problem by deriving an analytic
Fourier-domain representation of the GSE equation for
G*(). In principle, this Fourier-domain representation
eliminates the need to analytically continue from the
Laplace to the Fourier domain using a fit to a functional
form describing G(s). However, in practice, the numer-
ical implementation of the GSE equation to discretely-
sampled data for (Ar?(¢)) known over a limited range of
times can introduce significant errors in both G(s) and
G*(w) near the frequency extremes. To avoid these
errors, we derive algebraic estimates for G(s) and G*(w)
based on a local power law expansion of (Ar?(¢)). We
also present a similar method for estimating the time-
domain stress relaxation modulus, G,(f). To demon-
strate their utility, we calculate the viscoelastic moduli
of a concentrated monodisperse emulsion from a DWS
measurement of (Ar*(¢)) of the droplets and compare
these results with mechanical measurements.

Representations of the generalized Stokes—Einstein
equation

Because there are many ways of representing linear
viscoelasticity (Bird et al. 1977) and the average motion
of the spheres, there can be many different equivalent
expressions of the GSE equation. In this section, we

present several different representations and show how
they can be applied to the limiting cases of spheres
diffusing in a viscous fluid and harmonically bound
Brownian spheres in a viscous fluid.

All representations of linear viscoelasticity for an
isotropic material can be recast into a single scalar
function, such as G,(¢), the temporal relaxation of the
stress due to a small applied step strain after normalizing
by the strain amplitude. Equivalently, G(s) can be found
from G,(¢): G(s) =s L{G.(t)}, where ZL{G.(1)} =
G,(s) = [,°di G.(f)e™ is the unilateral Laplace
transform of G,(¢#) (Oppenheim et al. 1983). An alter-
native frequency-domain representation is: G*(w) =
inF{G,(t)}, where the unilateral complex Fourier
transform of G.(¢r) is:  F{G.()} =G (w) =
Jo di G.(t)e™™" (Bird et al. 1977). The real and imag-
inary parts of G*(w) = G'(w) + iG"(w) define the stor-
age modulus and loss modulus, respectively. Because
both G'(w) and G"(w) arise from G,(¢), they are not
independent functions but are interconnected through
the Kramers-Kronig relations (Chaikin and Lubensky
1996). No additional information about the viscoelas-
ticity is gained by using G*(w) instead of G(s) because
both represent G,(¢).

Assuming that the local viscoelastic modulus around
a sphere is the same as the macroscopic viscoelastic
modulus, then G(s) can be calculated from the unilateral
Laplace transform of (Ar?(¢)) using the GSE equation:

G(s) —% : (1)

where kg is Boltzmann’s constant, 7 is the temperature,
and ais the sphere’s radius. Equation (1) has been derived
(Mason et al. 1997) by calculating the ensemble-averaged
velocity autocorrelation function resulting from a gener-
alized Langevin equation which describes the motion of
the sphere in an incompressible isotropic viscoelastic
medium using a local memory function, consistent with
energy equipartition and the fluctuation-dissipation the-
orem. Since the solution of the exact flow field for an
arbitrary viscoelastic fluid around the sphere is unknown,
the Stokes relation for a purely viscous fluid with noslip
boundary conditions at the sphere’s surface has been
assumed to be valid at all frequencies. The sphere’s inertia
has also been neglected; this is an excellent approximation
for frequencies less than the characteristic inertia-friction
frequency of 6man/m, where 7 is the fluid viscosity and m is
the sphere’s mass. For a one-micron sphere in water, this
corresponds to about 107 Hz.

In the Appendix, we present an equivalent derivation
of the GSE equation in the Fourier domain:

B kgT 2)
- maioF J (A2 (1)}

In retrospect, Eq. (2) could have been found from
Eq. (1) by substituting s = iw and identifying G*(w) =

G*(w)




373

G(s = iw). Physically, Eq. (2) implies that if there are no
driving forces acting on the spheres, the logarithmic
slope of (Ar*(¢)) must lie between one, corresponding to
diffusive motion, and zero, corresponding to elastic
confinement. This implies that |G*(w)| cannot diverge in
the limit @ — 0. Conversely, as o — oo, |G*(w)| may
grow with a logarithmic slope of at most unity, reflecting
a high frequency viscosity.

Alternatively, the time-dependent diffusion coeffi-

cient, D(t) = (1/6)d(Ar(¢))/dt, can be used to represent
the dverage motion of the spheres. Using
i0F W { (A (1)} = F o {d(Ar( /dt} (the initial condi-

tion can be neglected since <Ar (0)) =0), the complex
viscoelastic modulus becomes:

kgT
6raD*(w) 3)

Provided (Ar*(¢)) is sufficiently smooth for the time-
derivative to be accurately evaluated, the Fourier
transform can be computed. In principle, once G*(w)
or G(s) have been found, G,(f) can be determined
through inverse transformation.

To illustrate these equations, we first consider spheres
which diffuse in a purely viscous fluid: (Ar?(¢)) = 6D,
where D is the diffusion coefficient. Using Eq. (3),
we find the viscoelastic spectrum rises linearly with
s: G(s) = [kgT/(6maD)]s. Alternatively, using Eq. (4),
G*(w) is purely imaginary, G*(w) = i[kzT/(6maD)]w
Both forms characterize a viscous fluid, G(s) =#5s or
G*(w) = inw, where 5 is the macroscopic shear viscosity
of the fluid. In either case, the Stokes—Finstein equation
is recovered: n = kgT/(6naD). Inverse transformation
yields G,(¢) = nd(t), where 6(¢) is the Dirac delta
function, so the stress relaxation modulus exhibits no
elastic memory as expected.

Next, we consider a simple viscoelastic material
comprised of harmonically bound spheres in a viscous
fluid. The thermally-excited spheres may be imagined as
being connected to harmonic springs which are un-
stretched on average. An ensemble-averaged solution of
the equation of motion yields:

(A (1)) = ro[1 — exp(~t/tp)] (4)
2

where rj is the saturation value of the mean square
displacement at long times and tp = ry>/6D is the
diffusion time constant of the confined spheres (Xue
et al. 1992) Using Eq. (3) and (4), we find G(s) =
(ksT /marg®)[1 + tps], or equivalently:

G(o) =

G*(w) =

(ks T /mar®)[1 + itpw] . (5)

The storage modulus dominates at low frequencies,
reflecting the elasticity of the springs, and is independent
of frequency: G'(w) = Gy = kT /mary?. The loss modu-
lus dominates at high frequencies, reflecting the dissipa-
tion of the viscous fluid, and rises linearly with

w: G"(w) = nw = (kgT /6maD)w, with a viscosity which
obeys the Stokes—FEinstein equation. Inverse transfor-
mation yields: G,(¢) = n6(¢) + Gy, where the delta func-
tion term describes the high frequency vicosity and a
constant term describes the low frequency elasticity.

Estimation method for the GSE equation

Because data for (Ar*(¢)) are are generally known at
discrete times over a limited temporal range, computa-
tions of transforms to the frequency domain may
introduce errors in the moduli. For instance, to imple-
ment the Laplace transform numerically, it is simple to
select a particular frequency s, multiply (Ar?(z)) by a
decaying exponential, and integrate over time using the
trapezoid rule. While this method may be very accurate
well inside the frequency extremes, it introduces errors
near the frequency extremes due to the truncation of the
data set (Marple Jr. 1987). Similar truncation errors near
the frequency extremes also occur when the Fast Fourier
Transform (FFT) is applied (Marple Jr. 1987).

In contrast to these methods, we estimate the
transforms algebraically by expanding (Ar*(¢)) locally
around the frequency of interest, s, using a power law
and retaining the leading term:

(AP (1)) ~ (AP (1/5) (st)™) (6)

where (Ar?(1/s)) is the magnitude of (Ar?(¢)) at t = 1/s
and

dIn(Ar2(1))

“8) = {7

(7)

t=1/s

is the power law exponent describing the logarithmic
slope of (Ar?(t)) at t=1/s. For thermally-driven
spheres, this slope must lie between zero, corresponding
to elastic confinement, and one corresponding to viscous
diffusion. Evaluation of the Laplace transform of the
power law leads to: s(AP(s)) ~ (Ar*(1/s))T[1 + a(s)],
where I' is the gamma function. This expression
implicitly assumes that contributions to the transform
integral from the behavior of (Ar?(¢)) at times much
different (logarithmically) than 1/s can be effectively
neglected. Substituting into Eq. (1), we find:

_ kT
Gl8) ™ AT T (dIn (A2 (7 O)/dno]|

where the gamma functlon is well represented by:
[l + o] ~ 0.457(1 +a)* = 1.36(1 + o) + 1.90 for this
range of o and represents at most a 12% correction.
Overall, the approximation given by Eq. (8) is worst
where the slope of (Ar?(¢)) varies most rapidly and the
power law representation is an oversimplification.
However, the maximum deviation for physical (Ar?(z))

(3)
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is small, less than about fifteen percent from the exact
result in the worst-case scenario at the knee in (Ar?(¢))
for an harmonically bound sphere.

An analogous procedure in the Fourier domain can
be used to obtain an estimate for G*(w). Expanding
(Ar*(t)) around t = 1/ yields: (Ar?(t)) =~ (Ar’(1/w))
(wt)*®) with o defined as before. Evaluation of the
Fourier transform leads to the relation:

ioF J (AP (1)} = (A (1/w))T[1 + a(w)]i @ . (9)

Substitution into Eq. (2) and the use of Euler’s equation
results in:

G'(0) = |G* ()| cos(na(w)/2) | (10)
G"(0) = |G ()] sin(na()/2) (1)
where

G ()] ~ T (12)

~ ra(Ar2(1] o)1 + a(w)]

These equations provide a useful physical interpreta-
tion of the moduli in terms of (Ar?(¢)). When the sphere
moves diffusively, a approaches one and G” dominates,
whereas when the sphere is confined by the elastic
structures of the complex fluid, o approaches zero, and
G’ dominates. When « approaches zero over a large
temporal range, the estimate for the dominant G’ will be
excellent, whereas the estimate for the weaker G” will
degrade in quality. Conversely, when o approaches one
over a large temporal range, the estimate for the
dominant G” will be excellent, whereas the estimate for
the weaker G’ will degrade. For an harmonically bound
sphere, the maximum error in the moduli at w corre-
sponding to the knee in (Ar?(¢)) is about 15%.

Given G(s), G.(t) can also be estimated using local
power law expansion: G(s) ~ G(1/t) (st)ﬁ(t), where f(¢) is
the logarithmic derivative of G(s):f(¢) = dIn G(s)/dIns
at frequency s = 1/¢. Evaluation of the inverse trans-
form of G(s)/s gives: G.(t) = G(1/t)/T[1 — p(¢)], valid
only for < 1 where convergence is guaranteed. Since
viscoelastic fluids may have an asymptotic high frequen-
cy viscosity with =1, it is necessary to add a delta
function term by hand to completely specify G, (¢):

Gr(1) = G(1/1)/T[1 = B(6)] + nsc0(2) (13)
where 7., = lim, .., dG(s)/ds is the high frequency
viscosity. For physical G(s),0 < <1, over which
I/T[1 = p] is well represented by: 1/T[l —f]=
1.033f + 0.404p% — 0.4394>. Using both Egs. (8) and
(13), G.(t) can be directly estimated from (Ar?(t)).

Application of the estimation method

To demonstrate utility of the new estimation methods,
we extract the Laplace and Fourier domain moduli from

(Ar*(t)) for a monodisperse concentrated emulsion
having a =0.53 um at a droplet volume fraction of
¢ = 0.65, measured using transmission DWS as de-
scribed in (Mason et al. 1997). At such large ¢, the
droplets pack into a disordered structure and are weakly
deformed. Such concentrated emulsions can exhibit a
low frequency elastic plateau in the storage modulus due
to energy storage by additional deformation of the
droplet interfaces by an applied shear. However, when
performing DWS, we do not apply a shear because we
measure the thermally-driven (Ar?(f)) of the droplets
(no additional probe spheres have been introduced) and
obtain the viscoelastic moduli at equilibrium using the
GSE equation.

The data (Ar?(¢)), shown in Fig. 1, are logarithmi-
cally spaced and extend over seven orders of magnitude
in time. At the earliest times, (Ar?(¢)) rises diffusively,
then becomes subdiffusive at later times, and eventually
saturates to a plateau at long times. For the very longest
times, there is a slight rise from the plateau. These trends
indicate that, on average, a given droplet diffuses for
short times over small length scales, but is prevented
from diffusing very far by the cage of neighboring
droplets surrounding it. The final upturn suggests that
some rearrangement of the colloidal droplet structure is
occuring. Since the data are logarithmically spaced and
cover a large dynamic range in time, a simple application
of the FFT is precluded, so we use the estimation
method instead.

We compare the viscoelastic spectrum for the
concentrated emulsion obtained by direct numerical
integration (solid line) and the algebraic estimate of
Eq. (8) (solid circles) in Fig. 2. The logarithmic
derivative of (Ar*(¢)) has been evaluated discretely
using simple differences and smoothing over two
neighboring values to reduce scatter. Overall, the short
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Fig. 1 The measured time-dependent mean square displacement,
(Ar?(1)), of concentrated monodisperse emulsion droplets having
radius @ = 0.53 um at a volume fraction of ¢ = 0.65
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Fig. 2 The frequency-dependent viscoelastic spectrum, G(s), for the
concentrated emulsion obtained from (Ar?(¢)) shown in Fig. 1. The
Laplace transform has been computed using numerical integration
(solid line) and also the algebraic estimate for the generalized Stokes—
Einstein equation given in Eq. (8) (solid circles)

time diffusion leads to a high frequency viscous rise,
and the long time saturation leads to a low frequency
plateau modulus. However, the truncation errors
introduced by the numerical integration are large at
low frequencies, whereas the estimate using Eq. (8)
provides a reliable result there. Moreover, in the
intermediate frequency region, the numerical integra-
tion is only slightly more precise than Eq. (8). This
example shows that although both analysis procedures
introduce errors, overall the algebraic estimate per-
forms better than numerical integration, especially near
the frequency extremes.

Moving to the Fourier frequency domain, we plot
the storage moduli (solid symbols) and loss moduli
(open symbols) obtained using the estimates given in
Egs. (10) and (11) (circles) and measured using a
mechanical rheometer at a fixed strain amplitude of
y = 0.02 (large diamonds) in Fig. 3. At low frequencies,
the GSE estimates exhibit a dominant plateau in G'(w)
and a minimum in G”(w). The magnitude of the plateau
is in excellent agreement with the mechanical measure-
ments. Although the estimate does qualitatively capture
the minimum in G”, it falls roughly a factor of three
lower than the mechanical measurements at the mini-
mum. This difference may result partly from the
approximation inherent in Eq. (11) and partly from
the finite y at which the mechanical measurement has
been made. In addition to capturing the low frequency
behavior, the DWS measurements for the moduli
extend to much higher frequencies. The estimated
moduli and crossover frequency are also in good
agreement with an earlier result of analytic continuation
obtained by fitting G(s) to a functional form and taking

N/-\ T 1 L L] T 1

5 109t ;
&

g,

T 10*} .
— G’

3 I
S 103l |
™ 10 .

. G" &

) L0000

= 102F = ]
@ 0;';55 1 L L L L

107! 10! 103 10°
TG

Fig. 3 The frequency-dependent storage modulus, G'(w), (solid
symbols) and loss modulus, G”(w), (open symbols) for the concen-
trated emulsion obtained from (Ar?(¢)) in Fig. 1 using the estimates
for the generalized Stokes—Einstein equation, Egs. (10) and (11) (small
circles), and by mechanical measurements (large diamonds)

real and imaginary parts respectively (Mason et al.
1997), confirming that previous results have not been
biased away from the frequency extremes by the choice
of the functional form.

From the estimated viscoelastic spectrum shown in
Fig. 2, we employ Eq. (13) to calculate G,(¢) for the
concentrated emulsion. The results for ¢ > 0 are shown
in Fig. 4, where the high frequency viscous contribu-
tion, 7,,0(¢), where ., = 0.33 P, is not shown in the

10° —
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Fig. 4 The time-dependent stress relaxation modulus, G,(¢), for the
concentrated emulsion estimated from G(s) in Fig. 2 using Eq. (13)
(points). Using this estimate as an initial guess, the exact G,(¢) is
found by iteratively forward transforming, comparing with G(s), and
correcting G,(¢) (solid line). Not shown is the short time contribution
given by n,,0(¢), where 1., = 0.33 P is the high frequency viscosity

107



376

plot. At the earliest times, G,(¢) decays until it reaches a
plateau, reflecting the saturation in (Ar?(¢)). The early-
time scatter in G,(¢) is due to the imprecision in the
difference between the high frequency logarithmic slope
of G(s) and the perfectly viscous rise #,s. By forward
transforming the estimated G,(¢), comparing this with
G(s) obtained by trapezoid integration away from the
frequency extremes, and updating G,(¢) using the error,
we have developed an iterative method which converges
to a precise G.(¢) (solid line). It differs only slightly
from the algebraic estimate, demonstrating its good
accuracy even when the corrective procedure is not
applied.

Discussion

The GSE equation provides a powerful way to deter-
mine the linear viscoelasticity of a complex fluid from
the equilibrium motion of colloidal spheres suspended
within the fluid. It can be recast in many different
equivalent representations, all of which are consistent
with energy equipartition and the fluctuation-dissipation
theorem. However, the essential physics underlying the
GSE equation remains the same, regardless of whether
the motion is represented by the mean square displace-
ment, the time-dependent diffusion coefficient, or the
autocorrelation function of position, and whether the
viscoelasticity is represented by the viscoelastic spec-
trum, the complex shear modulus, the creep compliance,
or the complex shear viscosity. As an additional
illustration, we have derived a Nyquist representation
for the GSE equation relating the complex shear
modulus and the power spectrum of the autocorrelation
function of position in the Appendix. This demonstrates
the equivalence of the two different approaches for
extracting microscopic viscoelasticity from single parti-
cle tracking measurements in Gittes et al. (1997) and
Mason et al. (1997).

In handling real data over a finite range of time, it can
be important to minimize the truncation errors which
can lead to unphysical behavior of the moduli at the
frequency extremes. The algebraic estimation method,
based on a local power law expansion, provides much
better values for the moduli at the frequency extremes, at
the cost of small errors introduced where the logarithmic
slope of (Ar?(¢)) varies rapidly. It also can be imple-
mented when time-sampled data are logarithmically
spaced, as we have demonstrated with the concentrated
emulsion. Finally, the estimation method is also faster
than the FFT.

Because the Laplace-domain viscoelastic spectrum
captures both the elastic storage modulus and dissipative
loss modulus in only one function of frequency, it is a
compact and useful representation. Indeed, theories of
G,(t) developed from microscopic models could be

Laplace transformed using Eq. (1) in order to make a
direct comparison with measurements of G(s). Using
G(s) rather than G,(¢) also offers the advantage that the
cumbersome delta-function contribution to G,(¢), rep-
resenting the high frequency viscosity, can be eliminated
in favor of the more physical high frequency viscous rise
in G(s).

In this paper, we have focused on estimating the
various representations for the moduli of materials
probed by the thermally-excited motion of spheres.
Alternatively, one may consider the various representa-
tions of the GSE equation in terms of a material’s
compliance, J. The linear creep compliance, J(¢), is a
representation of viscoelasticity that contains the same
information as the previously discussed moduli. Since
the Laplace transform of the creep compliance is

J = (sG)f1 (Bird et al. 1977), then Eq. (1) also implies

that J(¢) can be obtained directly from the mean square
displacement without either estimation or transforma-
tion (Petka et al. 1998): J(1) = (na®(Ar*(¢))) /(ksT). 1f
the complex frequency-dependent creep compliance is
desired, it can be obtained by Fourier transforming this
expression for J(z).

Since the mean square displacement of thermally-
driven spheres can be obtained from many different
types of experiments, numerous applications of the GSE
equation and estimation methods can be imagined. In
principle, the moduli could also be obtained from real-
space microscopic measurements of the motion of
colloidal spheres in complex fluids. Alternatively, at a
molecular level, it may be possible for NMR techniques
to provide the (Ar*(¢)) of probe molecules from which
the viscoelastic moduli may be obtained. Although the
validity of the continuum approximation is not certain if
the probe molecules are the same size as the others, as
the example of the concentrated emulsion has shown,
the GSE equation can yield surprisingly good results
even when the droplets function both as the probe
spheres and the caging structures which give rise to the
elasticity.

While the GSE equation has proven to be very useful
for probing the viscoelastic properties of complex fluids,
it is based upon several approximations. Exploring how
the continuum approximation breaks down when the
particle size becomes smaller than the characteristic
length scales giving rise to the elasticity of the complex
fluid is an interesting future direction at both theoretical
and experimental levels. Considering how spatial aniso-
tropies in the viscoelastic moduli around the sphere
could affect its motion in three-dimensions may provide
a basis for obtaining the moduli of ordered or shear-
oriented complex fluids. An additional theoretical chal-
lenge is understanding how the flow field of a viscoelastic
complex fluid around a sphere deviates from Stokes flow
over a wide range of frequencies. The solution to this
problem could lead to a refinement of the GSE equation.
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Conclusion

The linear macroscopic viscoelastic moduli of a complex
fluid can be determined from the microscopic motion of
colloidal spheres suspended within the fluid using a
frequency-dependent generalization of the classic
Stokes—Einstein equation. Many equivalent representa-
tions for the GSE equation exist, but all can be
ultimately recast into the forms presented in this paper.
Because a naive numerical application of the GSE
equation to discretely sampled data for (Ar?(¢)) over a
finite range of times can lead to artifacts in the reported
moduli, we have introduced algebraic expressions for
estimating the linear moduli in frequency and time
domains based on a local power law approximation of
(Ar(t)). These estimates are simple to implement, fast,
perform well at the frequency extremes, and can be
applied to (Ar?(¢)) sampled logarithmically over many
decades in time. Overall, they may be preferable to
discrete transform methods which can introduce trun-
cation errors in the moduli at the frequency extremes.
In the future, it may be possible to introduce
correction terms to this estimation method that depend
upon higher order logarithmic derivatives of (Ar?(¢)), by
analogy to the discussion contained in Ferry (1980). For
example, we anticipate that the error in the estimates
where the slope of (Ar?(¢)) changes most rapidly could
be corrected using a more complicated formula for the
estimate that includes the logarithmic curvature of

(Ar (D).
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Appendix

We present an abbreviated derivation of the generalized
Stokes—Einstein equation in the Fourier frequency
domain which follows an earlier derivation in the
Laplace frequency domain. The reader may consult
Mason et al. (1997) for a detailed discussion. Using this
result, the GSE equation can be alternatively re-
expressed as a Nyquist formula that has been recently
proposed by Gittes et al. (1997) to interpret particle
tracking experiments.

The motion of a single neutrally-bouyant sphere in
one dimension can be described using a generalized
Langevin equation (Hansen and McDonald 1986):

!
mile) = ful) = [ arele=O)ete) | (14
0
where m and v(¢) are the sphere’s mass and velocity, the
dot denotes the time derivative, and ((¢) is a causal
memory function which describes the local viscoelastic

response of the isotropic, incompressible complex fluid.
The convolution integral allows for energy stored in the
fluid to be returned to the sphere at a later time. The
Gaussian random force, fg (), incorporates both instan-
taneous and reactive stochastic forces, and therefore
differs from the white spectrum of a viscous fluid.
Causality guarantees that the distribution of random
forces in entirely decoupled from the past distribution
of velocities:

(O)/r(1) =0, (15)

where the angle brackets denote an ensemble average.
Equipartition of thermal energy sets the value of the
instantaneous average square velocity:

m{v()o(t)) = ksT . (16)

The relationship between the velocity of the sphere and
the local memory function is most conveniently ex-
pressed in the frequency domain. Because {(¢) is causal,
meaning {(t) =0 for 7 < 0+, the limits of integration
for the convolution term can be changed from (0, ¢)
to (0,00). Unilateral Fourier transformation and the
convolution theorem then imply:

e _ Jr(@) +mu(0)
v(w) = (o) +iom (17)

where initial conditions for the velocity have been
retained. To calculate the transform of the velocity
autocorrelation function, we multiply Eq. (17) by v(0)
and ensemble average:

(0(0)v*(w)) = kgT /" (@) + icwm] . (18)

This is formally equivalent to multiplying Eq. (14) by
v(0) and then transforming. Equation (18) has been
simplified using energy equipartition (Eq. 16) and the
absence of correlation of the random force with the
initial velocity (Eq. 15). Solving for the local memory
function, we find:

() = ksT/{0(0)v" () , (19)

where the initial term has been dropped. For colloidal
spheres, this is a good approximation at low .
Equation (19) can be expressed in terms of the unilateral
Fourier transform of the mean square displacement in
three dimensions for w > 0 using the identity:

F (AP ()} = [6/ (i)} 7 { (0(0)0(1))} (20)
so that the memory function becomes:
(@) = 6ksT /[(i0)* 7 { (AP (1))}] . (21)

This equation is also consistent with the fluctuation-
dissipation theorem, which requires that the transform
of the autocorrelation function of fg also be propor-
tional to the local memory function:

Fu{{(fr(0)fr (1)} = ks T () (22)
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To obtain the macroscopic complex modulus, we
assume that the complex fluid can be treated as a
continuum around the sphere. This is strictly valid when
the length scales of the structures giving rise to the
elasticity are much smaller than the sphere’s radius, a.
Since the exact solution of the flow field for an arbitrary
complex fluid surrounding a moving sphere is unknown,
we assume that the Stokes relation (with stick boundary
conditions) for the drag of a purely viscous fluid can be
used to determine the complex viscosity, n*(w), over all
frequencies:

" (w) =" (w)/6na .
From this, the complex shear modulus can be calculated
using G*(w) = ion*(w):

kgT
ra(io)F {{(Ar2(1))}

(23)

G'(w) = (24)

valid for w > 0. This equation represents a generaliza-
tion of the Stokes—FEinstein equation in the Fourier
domain consistent with the conventions of standard
rheology. If (Ar?(¢)) is known and its complex Fourier
transform can be precisely evaluated, then the storage
and loss moduli can be directly extracted as the real and
imaginary parts of Eq. (24).

An alternative expression for Eq. (24) can also be
found using the bilateral Fourier transform (Oppenheim
et al. 1983), defined as:

o0

Fo (AR (0)} = / A (25)

—00

To make bilateral transformation feasible, we assume
(Ar(t)) is even. This implies that the bilateral transform
can be decomposed into a sum of conjugate unilateral
transforms:

Zo{(Ar(0)} = Zu (AP ()} + 7 (A2 (0)} . (26)

where the dagger denotes the complex conjugate. By
solving Eq. (24) for #,{(Ar*(¢))} and substituting into
Eq. (26), we find:

2T G'()

mao |G (w)|®

Fo{(Ar (1)} = (27)
where the minus sign is consistent with our conventions.
The Nyquist formula of Eq. (27) is an alternative
expression of the GSE equation using a bilateral Fourier
transform. For o # 0, the Weiner-Khintchine theorem
(Chaikin and Lubensky 1996) implies:

Fo{(x(0)x(0)} = Fu{(Ar (1))} (28)
for the transformed autocorrelation function of posi-
tion, (x(0)x(z)), so neglecting the phase, the power
spectrum of position is:

2kgT G'(w)
Z 4 {x(0)x = . 29
O = s (29)

This Nyquist representation can be less convenient than
Eq. (24) because G'(w) and G"(w) cannot be directly
obtained without the aid of an additional integral
equation given by the Kramers—Kronig relations. In
fact, by substituting the Kramers—Kronig relations into
Eq. (29), and solving for G'(w) and G”(w), one can
obtain Eq. (24).
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