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Effects of molecular crowding and confinement
on the spatial organization of a biopolymer

Chanil Jeon,a Youngkyun Jung*b and Bae-Yeun Ha*ac

A chain molecule can be entropically collapsed in a crowded medium in a free or confined space.

Here, we present a unified view of how molecular crowding collapses a flexible polymer in three

distinct spaces: free, cylindrical, and (two-dimensional) slit-like. Despite their seeming disparities, a few

general features characterize all these cases, even though the fc-dependence of chain compaction

differs between the two cases: a 4 ac and a o ac, where fc is the volume fraction of crowders, a is

the monomer size, and ac is the crowder size. For a 4 ac (applicable to a coarse-grained model of

bacterial chromosomes), chain size depends on the ratio afc/ac, and ‘‘full’’ compaction occurs

universally at afc/ac E 1; for ac 4 a (relevant for protein folding), it is controlled by fc alone and

crowding has a modest effect on chain size in a cellular environment (fc E 0.3). Also for a typical

parameter range of biological relevance, molecular crowding can be viewed as effectively reducing the

solvent quality, independent of confinement.

1 Introduction

Molecular crowding is a key factor in governing several biological
processes, including chromosome organization, gene regula-
tion, protein folding/aggregation, molecular reactions, and cell
growth.1–12 In particular, it has emerged as a dominant player
in organizing bacterial chromosomes,5–8 in a way that is desir-
able for their functions (e.g., accessibility of genes to proteins
and clustering of active-transcription sites).10,11 Conceptually, the
entropy of crowders favors the compaction of a chain molecule.6–8

As illustrated in Fig. 1, molecular crowding induces entropic
(depletion) forces between monomers,13–15 responsible for
chain collapse.

Thanks to recent efforts, several key features of chain
collapse by molecular crowding have begun to emerge.8,16–20

For instance, a computational approach has shown the inter-
play between crowder size and density in collapsing a flexible
chain in a cylindrical space.16 The compaction in this case
appears to be continuous, similar to a corresponding unconfined
case.17,18 More recently, the interdependence of chain length
and compaction has been discussed.20 For stiff chains like
DNA molecules, however, the geometry of a confined space can
dictate the nature of compaction: abrupt in a cylindrical space

but continuous in a free or two-dimensional slit-like space.19

E. coli chromosomes trapped in cylindrical channels were
shown to undergo a similar abrupt transition by molecular
crowding, as suggested by a coexistence of extended and
collapsed states.8 As pointed out,21 the origin of abruptness
in this case8 may differ from that in DNA collapse.19 How the
structural heterogeneity of the chromosome is implicated in its
compaction is not yet clear (see Fig. 2). As discussed later,
molecular crowding will collapse a heterogeneous chain non-
uniformly with a collapsed section coexisting with more loosely
organized sections, similar to what was seen in the E. coli
chromosome experiments8 (see Section 4).

Ironically, the problem of a ‘‘simple’’ (bead-spring) polymer
in a crowded medium is deceptively simple but remains to
be further explored. Indeed, a number of basic questions will
have to be answered. For instance, how does confinement
modify the way a polymer responds to molecular crowding?
In the earlier observation of abrupt vs. continuous DNA
compaction,19 crowders (polymeric ones) initially elongate
DNA molecules in a cylindrical space by effectively reducing
the cylinder diameter, even though at high concentrations they
eventually collapse the DNA along the long axis of the
cylinder.19 This makes the compaction more cooperative or
abrupt (only in a cylindrical space). However, this behavior has
not been seen with flexible chains.16 Is molecular crowding
intrinsically sensitive to the geometry of a confined space? Or
do there exist general features of molecular crowding, indepen-
dent of crowder details or the geometry of a confined space?
Finally, can molecular crowding be mimicked correctly by
effectively reducing the solvent quality?
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Here, we characterize molecular crowding in three distinct
spaces: free, cylindrical, and (two-dimensional) slit-like. To this
end, we combine molecular dynamics (MD) simulations and
theoretical arguments. A flexible polymer is a ‘‘cleaner’’ system
in the sense that it does not experience initial elongation seen
with DNA.16,21 In an effort to present a more complete picture,
we will explore a wide range of parameters. Let a and ac denote
the size of monomers and crowders, respectively. In our simu-
lations, ac ranges between 0.2a and 20a, and the number of
monomers can be as large as N = 2000.†

The small-ac case (a 4 ac) may represent a coarse-grained
model of the bacterial chromosome,16–18 in which each mono-
mer represents a ‘structural unit’ or ‘topological domain,’
inside which supercoiled DNA is stabilized by proteins6–8 (see
Fig. 1(a)).‡ (Each monomer represents many DNA segments
and bound proteins. As a result, the notion of chain persistence
is less relevant for the chromosome than for the DNA.) Another
example is the section of chromosomes decorated with RNA

polymerases,10,11 as schematically described by spheres in cyan
in Fig. 2 (for simplicity, topological complexities such as multi-
fork or ‘‘branched-donut’’22 are not shown). The large-a case
is also relevant when one wishes to weigh various cellular
components as crowders. For instance, inorganic ions (much
smaller than typical monomers) outnumber any other species
in the intracellular space of E. coli, excluding water molecules.23,24

How significant are their crowding effects in organizing a
biopolymer? On the other hand, the large-ac case (ac 4 a)
includes such examples as RNA and protein chains in cells3 or
polymers in a colloidal solution.15,25–27 Related problems are
polymers in porous or disordered media.28

Indeed, we find that a number of general features char-
acterize the flexible-chain collapse, even though the depen-
dence of chain compaction on fc (volume fraction of crowders)
differs between the two cases: a 4 ac and a o ac (see Fig. 1(a)).§
If a 4 ac, in all three spaces (free, cylindrical, and slit-like),
molecular crowding depends on the ratio afc/ac; also ‘‘full’’
compaction by molecular crowding occurs universally at
afc/ac E 1, independent of any other details such as the
geometry of a confined space; beyond this, molecular crowding
will not condense the chain much further. As a result, smaller
crowders collapse chain molecules better (for a given fc value)
as discussed earlier.¶ 16

When molecular crowding is considered as reducing effec-
tively the solvent quality for the case a 4 ac, there also exists a
general relationship between afc/ac and the effective excluded
volume u of monomers. This implies that the action of mole-
cular crowding is local and insensitive to the geometry of a
confined space. This is intuitively obvious, since each mono-
mer can be surrounded by several small crowders. Any pair of
monomers will experience similar depletion forces, as assumed
in the effective-solvent picture. Accordingly, molecular crowding

Fig. 1 Physical origin of depletion forces (a), and chain collapse by depletion forces (b) and (c). (a) Association of monomers in dark blue, resulting in a
partial overlap of depletion layers, is favored by the entropy of crowders, i.e., spheres in grey. The two cases are compared: a 4 ac (left) and a o ac (right),
where a is the monomer size and ac the crowder size. If a 4 ac, a monomer can be surrounded by several crowders. Depletion forces can be safely
considered as reducing the excluded volume u of monomers. In both cases, the resulting depletion forces will collapse the chain molecule as indicated in
(b). The chain-enveloping volume (dashed or solid line in magenta) is permeable (b) or impermeable to crowders (c). The dependence of R on fc will be
different between (b) and (c). In (b), the action of depletion forces is expected to be (more) local; but in (c), it will reflect the shape of the chain (thus the
geometry of a confined space).

Fig. 2 Schematics of the E. coli chromosome. Ribosomal RNA (rRNA)
operons (big spheres in cyan) are mostly concentrated near oriC. Molecular
crowding can influence both the global and local organization of a hetero-
geneous polymer such as the E. coli chromosome. For simplicity, topol-
ogical complexities (e.g., multi-fork or ‘‘branched-donut’’22) are not shown.

† Note that it is practically impossible to explore a parameter space wide enough
to cover both the protein and colloid limits: Rg 4 ac and Rg o ac, respectively,
where Rg is the radius of gyration. Here we focus our attention on the Rg 4 ac,
which can be easily realized in a biological context.
‡ More realistically one may choose ac { a E 100 nm. One has to include 10
millions of crowders, several times the number of proteins in a cell so as to see
the gradual compaction of a chain from its unperturbed size. As it turns out, for
a 4 ac, what is important is the combination: afc/ac (fc the volume fraction of
crowders). This gives us some freedom in choosing the values of ac.

§ Here we focus our attention on single polymers in a crowded medium and will
not consider the so called colloid limit, where colloids are larger than polymer
sizes. This limit is more meaningful at nonzero concentrations of polymers15,25,27

and deserves separate considerations.
¶ Because of its biological complexity, the relevance of this finding to the
bacterial chromosome is not so obvious; see Section 3 for additional details.
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does not reflect the shape of the polymer (or confinement). Also
this view favors the physical picture in Fig. 1(b) over that in
Fig. 1(c). Crowders can reside in the chain-occupying region in
Fig. 1(b) but not in Fig. 1(c); in the latter, crowding effects will
reflect the size or shape of the polymer and thus the geometry
of the confined space.

In contrast, for ac 4 a, chain compaction is almost insensitive to
ac, as long as fc is fixed, implying that large crowders are all ‘‘equal.’’
As a result, molecular crowding is controlled only by fc and is less
effective for a given fc value, compared to the corresponding a 4 ac-
case; for a biologically-relevant range of fc (fc B 30%), we note that
it has a modest effect on chain conformations even for a long chain
consisting of 2000 monomers, in accord with recent studies.12,20

Because of their biological complexity, this finding is not so
conclusive for the folding of proteins. We focus our attention on
clarifying the general features of molecule crowding (see ref. 3 and
12 for recent discussions on the role of molecular crowding in
protein folding and function). Nevertheless, the effective-solvent
picture remains applicable in a parameter space of biological
interest; for the parameter ranges used in our simulations, it works
well unless ac Z 20a (see footnote †) as long as the chain is
sufficiently long, i.e., Rg c ac, where Rg is the radius of gyration.8

This paper is organized as follows. Section 2 outlines the
simulation procedures. In Section 3, we first present simulation
results for chain compaction and develop theoretical argu-
ments to understand chain compaction in the long-chain limit.

2 Simulations

In our simulations, all particles (monomers and crowders)
interact with each other through a truncated-shifted Lennard-
Jones (LJ) potential given by29,30

UðrÞ ¼
ULJðrÞ �ULJ rcð Þ for ro rc

0 otherwise

(
; (1)

where ULJ(r) is the conventional LJ potential:

ULJðrÞ ¼ 4e
sij

r

� �12
� sij

r

� �6� �
: (2)

Here, r is the center-to-center distance between particles, and sij

and e represent the range and the strength of the LJ potential. The
subscripts i and j are used to distinguish between monomers and
crowders: s11 = a, s22 = ac, and s12 = (a + ac)/2 (i.e., the closest
center-to-center distance between a monomer and a crowder).

Note that U(r) in eqn (1) is a computationally-efficient
version of ULJ in eqn (2), since it is truncated at rc. It is
continuous at a cutoff radius rc, as it should be. In our explicit-
crowder simulations, the cutoff distance rc is set to 21/6sij.
The resulting U(r) is repulsive for all r values and is often

referred to as the Weeks–Chandler–Andersen (WCA) potential.33 In
all simulations, we use e as energy units. The confining wall is
realized by assuming that a monomer or a crowder is repelled by its
‘‘image’’ at the wall via the truncated-shifted LJ potential in eqn (1).
The inner surface formed by these image spheres defines D, i.e., the
cylinder diameter Dcyl or the slit gap Dslit; for instance, Dcyl is the
closest face-to-face distance between two image spheres on
the opposite clock positions. As in recent experimental studies,8

we discouraged chain adsorption by choosing the strength of
this repulsion to be five times e for monomer–monomer inter-
actions (see ref. 16 for various scenarios for chain adsorption vs.
compaction). However, the driving force for chain adsorption
may differ between the experimental and our polymer-crowder
systems; in the latter, molecular crowding will be responsible.16

Monomers are strung together into a chain via the finite
extensible nonlinear elastic (FENE) potential between two con-
secutive monomers,34,35

VðrÞ ¼ �1
2
k0r

2
0 ln 1� r

r0

� �2
" #

: (3)

The spring constant is set to k0 = 30e/a2 and the range of the
potential is set to r0 = 1.5a.

To mimic molecular crowding in our effective-medium picture,
we allow the excluded volume u to vary from �a3 to a3. It suffices
to use rc = {21/6, 2.5, N}a and to vary e as e - e0, = {0.01, . . ., 10}e.

The velocity Verlet method is used to integrate the Newton’s
equation of motion. The mass of the monomers and crowders is
chosen as the mass unit. The units of length, energy, and time of

our simulation are a, e, and t0 ¼ a
ffiffiffiffiffiffiffiffi
m=e

p
, respectively. The

simulation time step dt is set to 0.002t0 for a 4 ac or 0.005t0

otherwise. The Langevin thermostat is employed with a damping
constant 0.1t�1

0 to keep the temperature at T = 1.0e/kB, where kB

is the Boltzmann constant. (For physics grounds, the choices of
m and the damping constant are not very important in our work
because it does not affect equilibrium quantities.)

The entire system is enclosed in a box (e.g., a cube in the
bulk and a cylindrical box for a cylindrically confined chain) of
some large volume, typically as large as three times its chain
size, and periodic boundary conditions are used at the box
surface (in all directions in the bulk case and in the long-
itudinal directions in the slit and cylinder cases).

Initially, the polymer is organized in a helical shape (this does
not influence equilibrium quantities) but crowders are distributed
randomly. After chain equilibration, we run our simulation for
5 � 107 time steps and obtain data every 1000 steps. We repeat
the entire simulation eight times with different random choices
of chain conformations and crowder distributions. Ensemble
averages are obtained as a time average within each run, which
is then averaged over different simulations.

3 Results
3.1 Chain compaction for the case a 4 ac

Following the simulation procedure outlined in Section 2, we
computed various relevant quantities. Let us first consider the

8 On physics grounds, one can argue that its applicability is questionable in the
so-called colloid limit ac 4 Rg or for sufficiently large values ac and fc. In the
latter case, the spatial correlation between crowders becomes important.31,32 This
effect may not be captured systematically in a single excluded-volume parameter
of monomers and the effective-solvent picture shows a poor description of
crowding effects.
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case a 4 ac. Fig. 3 displays our results for chain compaction in
three different spaces: ‘‘free’’ or bulk, two-dimensional ‘‘slit-like,’’
and ‘‘open-cylindrical.’’ In all graphs, the normalized chain size
R/R0 is plotted against the ratio afc/ac, where R0 = R(fc = 0). For
the free and slit-like spaces, the radius of gyration Rg measures
the chain size, i.e., R = Rg. If rn is the position vector of monomer
n (n = 1, 2, . . ., N), RCM ¼ 1

N

P
n rn is the position of its center of

mass. In a free space, Rg
2 ¼ 1

N

P
n rn � RCMð Þ2. In a slit-like space,

rn and RCM should be understood as the projection onto a plane
parallel with the slit. In a cylindrical space, the farthermost
distance is used for R.36

In our simulations for a 4 ac, we chose the parameters as
follows: N = 50 for the free space, N = 80 for the confined spaces,
and the slit gap Dslit = 5a, and the cylinder diameter Dcyl = 7a.
For simplicity, we will drop the subscripts ‘‘slit’’ and ‘‘cyl.’’ As
described in Section 2, D refers to the inner surface formed by
wall particles. Also we used several choices of ac as indicated in
the legend: ac = 0.3, 0.4, 0.5a for the bulk, ac = 0.2, 0.3, 0.4, 0.5a
for the slit geometry, and ac = 0.2, 0.3, 0.4a for the cylindrical
space. For N = 50, the radius of gyration of the chain is given by
Rg E 5a (fc = 0). A related quantity is the so-called Flory radius:
RF E 1.1 � N3/5a E 12a (N = 50), which is larger than the
corresponding Rg.37 It is worth noting that the degree of
confinement is often expressed in terms of RF/D (see ref. 37
and 38 and references therein). With our parameter choices,

this ratio is larger or appreciably larger than one. This means
that confinement is moderately strong or strong.

A number of general features characterize our results (solid
lines with various symbols) in Fig. 3. (See Section 3.4 below for
our discussion on how R depends on N.) In all cases, R/R0 is a
function of afc/ac; it decreases continuously as afc/ac increases
from afc/ac = 0, but it reaches its minimum at afc/ac E 1.2.
While the origin of this non-monotonicity is not entirely clear,
one possibility is a kinetic effect.17 At this high volume fraction
of crowders, the collapsed chain tends to get kinetically trapped
in a local free-energy minimum, similar to what was observed
for a cylindrically-confined chain.** 16 In this case, our effective-
solvent result, described by the dashed line in magenta (see
below for details), will offer an alternative picture, in which R/R0

becomes nearly flat beyond afc/ac E 1.2. In this work, this is
referred to as ‘‘full compaction’’ by molecular crowding.

Fig. 3 Compaction of a flexible polymer by molecular crowding in three different spaces: free or bulk, slit-like, and cylindrical. In all graphs, the
normalized chain size R/R0 is plotted against the ratio afc/ac; R0 is the equilibrium chain size in the absence of crowders. For the free and slit-like spaces,
R is chosen to be the radius of gyration; for the latter case, it is measured in the directions parallel with the slit. In the cylindrical space, the farthermost
distance is used for R. We have chosen N = 50 for the free space and N = 80 for the confined spaces as well as Dslit = 5a and Dcyl = 7a, and used
several choices of ac as indicated in the legend (the subscript ‘slit’ or ‘cyl’ will be omitted for simplicity). A general feature emerges from our results
described by solid lines with various symbols: in all cases, R/R0 is a function of afc/ac only, independent of the geometry or the presence of a confined
space or of the choices of ac. This suggests that the depletion forces between monomers can be considered as reducing the solvent quality in an
‘‘effective-solvent’’ picture. To test this, we establish a ‘‘universal’’ relationship between afc/ac in the explicit-crowder case and the effective excluded
volume u in an equivalent implicit picture (see Fig. 4). The dashed line, based on this relationship, fits the curves well. This justifies the effective-solvent
picture and suggests that the action of depletion forces between monomers is local and does not reflect the presence of confinement, as assumed
in an implicit-solvent picture. In all explicit-crowder cases (lines with various symbols), there appears to be a local minimum in R/R0 for afc/ac E 1.2.
At this high volume fraction of crowders, the collapsed chain tends to get kinetically trapped in a local free-energy minimum, depending on
its initial conformation. The effective-solvent result (dashed line in magenta) becomes nearly flat beyond afc/ac E 1.2. This is referred to as full
compaction, beyond which crowding does not condense the chain much further in both the explicit and implicit cases. (Error bars are shown for a few
representative curves.)

** Recently, a non-monotonic reduction of chain size with increasing fc was
observed in theoretical studies in which crowders were implicitly taken into
account.39 Earlier, it was shown theoretically that correlations among polymeric
crowders are responsible for reentrant-like swelling at high crowder volume
fractions.31,32 In more recent simulations with hard-sphere crowders20 and
experiments with polymeric crowders,19 however, such a behavior was not
observed. Furthermore, this non-monotonic dependence does not appear to be
a general feature of chain compaction. This is not reflected in some curves in
Fig. 3 and in our results in Fig. 5(b).
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The observation that R/R0 is a function of afc/ac has a
number of consequences. First, this shows the interplay between
fc and ac: doubling fc is equivalent to halving ac in all cases (see
ref. 16 for a cylindrically-confined case). Second, it suggests that
the action of depletion forces is local and does not reflect
confinement, as assumed in an effective-solvent picture, in
which molecular crowding is viewed as reducing the excluded
volume u. For a 4 ac, a monomer pair can be surrounded by
several crowders, as illustrated in Fig. 1(a). Any pair will experi-
ence the same or similar depletion forces. This is desired for the
effective-solvent picture and is responsible for the local nature of
depletion forces as seen in Fig. 3.

A related point is that crowders can reside in the chain-
occupying region as illustrated in Fig. 1(b). Even though this
alone will not necessarily justify the effective-solvent picture, it
is required. If the chain-occupying region is impermeable to
crowders (see Fig. 1(c)), the action of crowding will reflect chain
shape and the geometry of a confined space. This will invalidate
the effective-solvent picture.

To test our effective-solvent picture further, we establish
a ‘‘universal’’ relationship between afc/ac in the explicit-
crowder case and the excluded volume u in an equivalent
implicit picture (see Fig. 4 for details). The dashed line in
Fig. 3, based on this relationship, fits the curves well. This
justifies the effective-solvent picture. As a result, depletion
forces are local and do not intrinsically reflect the presence
of confinement.

How can the explicit-crowder case map onto an equivalent
effective-solvent case, in which the solvent quality determines
the excluded volume u? Obviously, increasing fc should
amount to decreasing the excluded volume u and eventually
making u negative. To map out a relationship between fc and u,

first note that u is related to the monomer–monomer inter-
action U(r) via the formula

u ¼
ð1
0

1� e�UðrÞ=kBT
h i

d3r: (4)

In our considerations, U(r) coincides either with the modified
LJ potential in eqn (1) or the original LJ potential ULJ in eqn (2).
The reference excluded volume u0 E a3 (athermal) corresponds
to the choice rc = 21/6a. Recall that with rc = 21/6a the LJ potential
becomes the WCA and that we set T = 1.0e, as discussed in
Section 2. Note that this u0 characterizes our explicit-crowder
simulations.

As an intermediate step, we first examine how the chain size
R varies with u in the absence of crowders. For this, we
essentially repeated our simulations in Fig. 3 without crowders;
the effect of molecular crowding is implicitly taken into account
by adjusting e and rc (see Section 2), which in turn influences
U(r) and u. The graph in Fig. 4(a) summaries the resulting R/R0

against u/u0 in an unconfined (left) or slit-like space (right). As
expected, the chain collapses as u is reduced.

We establish a relationship between u/u0 and afc/ac by
comparing chain compaction in Fig. 4(a) and in Fig. 3. For
this, we find the right combination (u/u0,afc/ac), at which R/R0

is the same in both graphs, and plot u/u0 as a function of afc/ac.
The resulting relationship for free and slit-like spaces is shown
in Fig. 4(b). Consistent with our expectation that crowding
effects are local, the two sets of data (squares and circles for
free and slit-like spaces, respectively) collapse onto each other;
The solid line in magenta is the fitting curve given by

u
u0
¼ 1þ b1

afc

ac

� �
þ b2

afc

ac

� �2

þb3
afc

ac

� �3

: (5)

Fig. 4 Mapping the explicit-crowder case onto an equivalent implicit-solvent case: the crowder volume fraction fc vs. the excluded volume u of
monomers. The parameter u is related to the monomer–monomer interaction U(r) via u ¼

Ð1
0 1� exp �UðrÞ=kBT½ �f gd3r. In our simulation, U(r) coincides

with the LJ potential in eqn (1), which is completely specified in terms of e and rc, or with ULJ(r) in eqn (2). The reference excluded volume u0 corresponds
to the choice rc = 21/6a. Note that this u0 characterizes our explicit-crowder simulations. (a) Normalized chain size R/R0 as a function of u/u0. As an
intermediate step toward relating u to fc, we first examine how the chain size varies with u. For this, we essentially repeated our simulations in Fig. 3
without crowders; the effect of molecular crowding is implicitly taken into account by adjusting e and rc, which in turn influences U(r) and u. The resulting
R/R0 is plotted against u/u0 in the graph for free (left) and slit-like spaces (right). As expected, the chain collapses as u is reduced. (b) Normalized excluded
volume u/u0 vs. afc/ac. A relationship between u/u0 and afc/ac is established by comparing chain compaction in (a) and that in Fig. 3. In the resulting graph
displayed in (b), free and slit-like spaces are represented by blue squares and red circles respectively; note that the two sets of data collapse onto each
other. The solid line in magenta is the fitting curve: u/u0 = 1 + b1(afc/ac) + b2(afc/ac)2 + b3(afc/ac)3. The fitting parameters b1, b2, and b3 are to be chosen
for the best fit to the explicit-crowder data. Obviously, b1 o 0, meaning that the solvent quality becomes poorer as afc/ac increases. The discrepancy
between the fitting curve and the data for afc/ac 4 1.0 can be attributed to the truncation of the u series beyond the cubic term.
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The fitting parameters b1, b2, and b3 are to be chosen for
the best fit to the explicit-crower data: b1 = �1.60, b2 = 2.92,
and b3 = �2.65.

For a later convenience, eqn (5) can be recast in a more
general form as

u
u0
¼ 1� a1fc þ a2fc

2 � a3fc
3; (6)

where ai = |bi|(a/ac)i 4 0 for a 4 ac. As evidenced in Section 3.2,
for ac Z a, R/R0 becomes independent of ac for a given value of
fc and is controlled by fc alone. In this case, ai ¼ const ¼ Oð1Þ.
On physics grounds, one can argue that ai 4 0 as in the case
a 4 ac. In principle, one can determine the functional form
of ai, i.e., ai(fc,ac,a), which remains valid for both a 4 ac and
a o ac. However, we note that this is practically challenging.
Nevertheless, the physical picture is obvious, except for a E ac.
We will use eqn (6) as a general mapping relationship between
u and fc. See Fig. 5(b) for the estimate of ai (= |ci|) for ac = 4a.

In eqn (5), u- u0 as ac - 0 for a given rc E fc/ac
3 (the number

density of crowders); in this limit, fc - 0. To understand the
physical origin of this behavior, note that the depletion free-
energy gain for two monomers in contact with each other
(Fig. 1(a)) can be approximated as†† 13

DFdep

kBT
¼ fc

3a

2ac
þ 1

� �
þ O fc

2
	 


� 3

2

afc

ac
: (7)

Here the second equality holds for 3a/2ac c 1. The free energy in
eqn (7) vanishes if we take ac - 0 while holding rc fixed, similarly
to what eqn (5) implies. This can be absorbed into the excluded

volume as u = u0(1 � afc/ac) after a numerical prefactor is
dropped. This is aligned with eqn (5) up to the linear order in fc.

The good agreement between the data and the fitting curve
in Fig. 4(b) justifies the effective-solvent picture in eqn (5).
A similar picture has been employed.40 By integrating out the
degrees of freedom associated with crowders at the Gaussian
level, an effective excluded volume was obtained. If numerical
prefactors are dropped, in our notation, it reads

u ¼ u0 � rc
aþ acð Þ6

1þ ac3rc
: (8)

Alternatively, one can use a virial expansion of the free energy of
our crowder–polymer system.41

While eqn (8) captures correctly molecular crowding as
reducing the solvent quality, it does not lead to the aforemen-
tioned limiting behavior, but it rather indicates u/u0 - 1� a3rc,
as ac - 0 for a fixed rc value. If taken literally, this behavior has
an unexpected consequence: in the bacterial cell, depletion
forces between ‘‘big monomers’’ (i.e., a 4 ac) would be domi-
nated by any species with the largest rc. This is distinct
from what we would expect from eqn (5), which can be written
as u/u0 E 1 � aac

2rc - 1 in this limit (after dropping numerical
prefactors). This means that crowding effects induced by small
ions will be insignificant for chain compaction.

The discrepancy between eqn (5) and (8) can be attributed to the
neglect of chain connectivity in mean-field type approaches. For
instance, these approaches put two consecutive monomers and two
distant ones along the contour on equal footing. This is an artifact
arising from the neglect of chain connectivity or monomer–mono-
mer correlations. More systematic theoretical treatments will be
desirable toward reconciling between eqn (5) and (8).

It will be useful to discuss the ac-dependence of u in some
context. For instance, a typical E. coli cell contains about 108

Fig. 5 (a) Comparison of small- and large-N cases for a wide range of ac values (i.e., 0.3a r ac r 20a) (bulk). (Left) N = 50 and ac = 0.3, 0.5, . . ., 4a and
(right) N = 2000 and ac = 4, 6, . . ., 20a. (left) As ac increases from ac = 0.3a, molecular crowding becomes less effective and eventually insensitive to ac

beyond ac E a for a fixed value of fc. For ac Z a, it has a marginal effect on R for the entire range of fc values shown. If ac Z a, the insensitivity of R/R0 to
ac persists for N = 2000 (right). Chain compaction is more pronounced for larger N; for the same fc and ac (4a), R/R0 is smaller for N = 2000 (right).
However, even in this large N case, chain compaction is moderate (i.e., R/R0 E 0.8) for the biologically-relevant fc range: fc E 0.3. Also note that the
curve for ac = 20a deviates somewhat from others, which tend to collapse onto each other. This implies that the effective-solvent picture is a cruder
approximation for ac = 20a compaction to the smaller-ac cases. (b) Normalized excluded volume u/u0 against fc for ac 4 a. The same color scheme is
used here to distinguish various ac values as in the corresponding R–fc graph (the one on the right) in (a). The dashed line is a fitting curve given by u/u0 =
1 + c1fc + c2fc

2 + c3fc
3 with c1 = �5.04, c2 = 11.9, and c3 = �11.4; for this, data points describing ac = 20a is excluded. (Error bars are shown for a few

representative curves.)

†† As noted earlier,16 this is valid at the level of two-body interactions, since it is
obtained for two monomers, excluding two consecutive ones, while others are
ignored. The physical picture depicted in Fig. 1 becomes inaccurate if the
overlapped (i.e., shaded) region falls on a monomer nearby. In this sense, DFdep

works better for the case a 4 ac than for ac 4 a.
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inorganic ions and 3 � 106 proteins.23,24 Excluding water
molecules, inorganic ions outnumber any other species in the
cytoplasm. Eqn (5) and (8) measure different species very
differently. For the purpose of our discussion, it suffices to
compare ac

2rc or rc values between small ions (ac E 0.2 nm)
and proteins (ac E 5 nm).23 If we treat all of them as crowders
even though some of them are bound to some other molecules
(e.g., membranes and DNA), we have

ac
2rc � Vcell

�
ð0:2Þ2 � 108 nm2 ¼ 4� 106 nm2 ðsmall ionsÞ

52 � 3� 106 nm2 ¼ 75� 106 nm2 ðproteinsÞ

(
;

(9)

where Vcell is the cell volume.
According to this analysis based on eqn (5), small ions

would not contribute significantly to crowding even though
they outnumber proteins. An opposite conclusion will be
reached if we compare rc values following the limiting behavior
of u/u0 discussed below eqn (8): small ions will be the major
crowder type.

If we repeated the analysis in eqn (9) for water, we would arrive
at the conclusion that water is the most significant crowder.
However, the general findings in Fig. 3 may not be applicable
to closely-packed crowders, e.g., water. For a practical purpose,
the ‘‘collective’’ effect of water on a chain molecule can be
taken into account via the excluded volume of each monomer u.
In an athermal solvent, u = u0 = a3, but more generally, u o u0.42

This allows one to focus on other crowders.
Our general findings in Fig. 3 should be used with caution

for understanding the spatial organization of bacterial chromo-
somes, which are organized into many structural units or
topological domains (see ref. 6–8 and references therein). In a
number of studies, the structural unit is coarse-grained into a
monomer, as shown in Fig. 1(a).16–18 In some studies, the effects
of DNA-bound proteins can be approximately mimicked by cross-
linking8,43 or a harmonic potential between monomers.44 The
interaction between two harmonically-constrained linear poly-
mers in a crowded medium is less attractive for smaller
crowders for a given fc value.44 This ‘unusual size depen-
dence’44 appears to be opposite to what we would expect from
eqn (7). However, what is unclear is how a cross-linked polymer
or a long polymer formed by many of the harmonically-
collapsed polymeric subunits responds to crowders (e.g., the
dependence of R/R0 on ac). Importantly, the degree of compac-
tion is non-uniform along the chromosome and can be domi-
nated by the stronger attraction between big monomers (e.g., big
spheres in cyan in Fig. 2), which include many DNA segments
and bound biomolecules such as RNA polymerases10,11 (see also
ref. 45–47). These big monomers are much larger than typical
crowders.10,11 As a result, the ac-dependence of crowding effects
as suggested in Fig. 3 will be reflected better than that indicated
by a homogeneous polymer model whether cross-linked or
harmonically constrained.

It has been known for some time that polyvalent counterions
can condense highly-charged biomolecules such as DNA into

tightly organized bundles; they induce attraction between
otherwise-repelling backbone charges.48 The required counter-
ion concentration depends on a few parameters including
the surface charge density of polyions and ion sizes.49 DNA
bundling is, however, an electrostatic phenomenon and
does not seem to be implicated in bacterial chromosome
organization.50 In the bacterial cell, the concentration of these
ions required for bundling may not be reached; they primarily
reduce the backbone charge density of DNA. Nevertheless, the
observation that small ions do not contribute significantly to
crowding (see eqn (9)) allows one to focus on their electrostatic
effects.48,49

3.2 Chain compaction for the case ac 4 a

So far we have focused on the case a 4 ac. Will the physical
pictures discussed earlier remain applicable to the case ac 4 a?
In this case, it is increasingly computationally demanding to
simulate a confined polymer. The value of D has to be at least
several times larger than the bigger of a and ac. This means that
a larger N value is required for a larger ac value, possibly except
in the bulk case. Also crowding effects are less significant for
ac 4 a, as evidenced below. For strong compaction, fc has to
be as large as fc = 0.5–0.6. In this high volume fraction,
(cylindrical) confinement can induce wall-layering of hard spheres
(e.g., monomers and crowders).36,51 Accordingly, simulation
details can enter into the picture of crowding, even though
their consequences may not be biologically meaningful. Here,
we focus on the bulk case and comment on the relevance
of an effective-solvent picture for confined cases at the end of
this subsection.

Fig. 5(a) summarizes our results for R/R0 obtained with
various parameter choices and in the absence of confinement:
(left) N = 50 and ac = 0.3, 0.4, 0.5, . . ., 4a and (right) N = 2000 and
ac = 4, 6, . . ., 20a. Recall Rg E 5a for N = 50 and note that Rg E
46a for N = 2000 (in a free space in the absence of crowders).

As shown in the left graph in Fig. 5(a), for N = 50, as ac

increases from ac = 0.3a, molecular crowding becomes less
effective and eventually insensitive to ac beyond ac E a. In other
words, R/R0 for a given N value is controlled by fc alone. This is
a natural consequence of Fdep in eqn (7) in the limit ac c a.
For ac Z a, it has a moderate effect on R for the entire range of
fc shown, up to fc = 0.6.

The graph on the right in Fig. 5(a) shows R/R0 obtained with
N = 2000 and relatively large values of ac (Z4a). The insensi-
tivity of R/R0 to ac (Za), shown in the left graph, persists for
N = 2000 (right). Also note that the curves for ac r 10a tend to
collapse onto each other, but the curve for ac = 20a deviates
somewhat from those for ac r 10a. This implies that the
effective-solvent picture is a cruder approximation for ac = 20a,
compared to the smaller-ac cases. But the results in Fig. 5(a) are
not so conclusive about this.

To further unravel the effective-solvent picture, especially for
the case ac 4 a, we calculated the internal distances between
monomers defined as h|ri � rj|

2i1/2 and presented our results
in the Appendix (Fig. 8). Consistent with our discussion above,
the effective-solvent picture works well except in the highly
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asymmetrical case ac Z 20a. On average, intracellular crowders
are about 5 nm in size23,24 and can generally be considered as
reducing the solvent quality for chain molecules.

The general trend observed in the Appendix is paralleled by
the results in Fig. 5(b), where the effective excluded volume u is
related to fc for a range of ac values. The black dashed line is a
fit to the data points excluding those representing ac = 20a,
given by u/u0 = 1 + c1fc + c2fc

2 + c3fc
3 with c1 = �5.04, c2 = 11.9,

and c3 = �11.4. In contrast to the case a 4 ac in Fig. 4(b), this
graph shows how the effective solvent picture may break down
for sufficiently large ac values. Indeed the ac = 20a-curve in (b)
appears to deviate more noticeably from others and the dashed
line. This compares favorably with the graph on the right in
Fig. 5(a) and our discussions in the Appendix.

Earlier, we noted that chain compaction is more pro-
nounced for larger N. This is also reflected in Fig. 5; for the
same fc and ac (4a), R/R0 is smaller for N = 2000 (b). However,
even in this large-N case, chain compaction is somewhat
modest (i.e., R/R0 E 0.7–0.8) for the biologically-relevant fc

range: fc E 0.3a (see ref. 20 for a similar observation). If taken
literally, this seems to imply that the effect of crowding is not so
significant in collapsing a protein chain, since it belongs to the
large-ac case, in which molecular crowding has a marginal
effect. While this is generally consistent with a recent review12

(see Fig. 3), it is beyond the scope of this work to further clarify
the role of crowding in organizing a protein chain (see ref. 3 and
relevant references therein).

Even though the results in Fig. 5 were obtained for a polymer
in a free space, the general picture (i.e., R/R0 as a function of
fc for ac Z a) remains applicable to other spaces, similar to
what Fig. 3 suggests. Unless ac c a, the effective-solvent picture
works and the chain response to molecular crowding will not
reflect confinement.

To what extent will the general findings in Fig. 5 remain
relevant for a confined chain? Conversely speaking, under what
conditions will they become less relevant for a cylindrically-
confined chain? An obvious example is the preferential posi-
tioning of crowders in the vicinity of the cylindrical wall in
some range of fc, as was seen with DNA compaction.19 A key
determinant here is the large correlation length of stiff DNA
molecules. As a result, crowders have easy access to a layer of
some thickness from the wall, which is comparable to this
length, effectively reducing the cylinder diameter, more so for a
larger correlation length. Understandably, this was not seen
with flexible polymers trapped in a cylindrical space crowded
with small crowders, i.e., a 4 ac.36 One may argue that this
trend will persist for ac 4 a, since for a given ac value, the
correlation length is relatively small. Another potential source
for the breakdown of the effective-solvent picture is chain
adsorption induced by crowding,16 which can invalidate the
local picture of depletion forces as assumed in the effective-
solvent picture, not only for ac 4 ac but also for a o ac.

As long as chain adsorption and wall-layering are discour-
aged, we believe that the effective-solvent picture remains valid
except in a highly asymmetrical case: ac c a or ac 4 Rg. This is
consistent with our view that crowding effects are intrinsically

local possibly except for ac c a or ac 4 Rg. In practice, the
cylindrical wall can be passivated so as to prevent chain
adsorption;8 also for a typical fc range in a cell, wall-layering
will not be easily observed. Importantly, in a biological context,
the large-ac case includes proteins and RNA. The typical size of
these biopolymers even in a coil-like structure is much smaller
than the cell diameter B1 mm. As a result, their structure will not
reflect sensitively confinement effects. For a practical purpose,
they can be treated as bulk systems. Finally, crowding effects can
alter protein functions even though they alone would not change
protein size much (see ref. 3, 12 and 20 and references therein).

3.3 Spatial distribution of monomers and crowders

As noted earlier in Section 3.1, what underlies the effective
solvent picture and the locality of depletion forces is the ability
of crowers to reside in the chain-occupying region so as to
maintain chemical equilibrium across the boundary between
this region and the outer crowder-rich region (Fig. 1(b)). To
probe this in a quantitative way, we have examined the spatial
distribution of monomers and crowders. For a reason similar to
that described at the end of the last subsection, we have
focused our attention on the bulk case. For a 4 ac, confine-
ment does not alter molecular crowding up to full compaction
(Fig. 3); on the other hand, biopolymers belonging to the large-
ac case will show bulk-like behavior.

Fig. 6 summarizes our results obtained for a few combina-
tions of ac and N: (a) ac = 0.4a and N = 50, (b) ac = 4a and
N = 2000, and (c) ac = 20a and N = 2000. What is plotted in each
graph is the volume fraction fi(r) of monomers and crowders, as
a function of r, i.e., the longitudinal distance from the center of
mass of the polymer, where the subscript i = ‘m’ or ‘c’ refers to
monomers or crowders, respectively. For visual clarity, we have
normalized fc(r) as fc(r)/fc(r = N) and fm(r) as fm(r)/fm(r = 0).

First, each graph suggests the coexistence of monomer-rich
and crowder-rich phases. Crowders become depleted from the
chain-occupying region as fc increases. This is a natural
consequence of chain collapse induced by molecular crowding.
Consistent with our expectation, the chain-occupying region is
more permeable to crowders for smaller ac values. For this,
compare the two cases ac = 4a (b) and ac = 20a (c); also note that
the fc(r) decreases by about 20% inside the chain-occupying
region even for the largest value of fc used in (a): afc/ac = 0.95
(the dashed curve in blue). In general, the results in Fig. 6 are
aligned well with Fig. 1(b) even for ac = 20a, i.e., when the
effective-solvent approach becomes a poor approximation;
while the curve representing ac = 20a and fc = 0.5 (the blue
dashed line in (c)) appears to be an exception, it may not bear
much biological relevance. For a larger ac value, the ‘‘caging’’ or
confining effect of crowders becomes more pronounced and
the general picture suggested by Fig. 6 will not hold any longer.

3.4 Large-N limit

So far, we have used a fixed value of N for each case. Our results
are not conclusive for the N-dependence of chain collapse,
especially for large N. It is important to note that this does
not mean that the chain response to molecular crowding varies

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
5 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
IN

C
IN

N
A

T
I 

on
 2

/2
2/

20
25

 1
1:

59
:2

6 
A

M
. 

View Article Online

https://doi.org/10.1039/c6sm01184e


9444 | Soft Matter, 2016, 12, 9436--9450 This journal is©The Royal Society of Chemistry 2016

with N. Instead, it indicates that the effect of self-avoidance on
chain size depends on N, as is also the case for chain collapse in
poor solvents.52 In other words, while u is independent of N,
R/R0 generally depends on N. Our implicit-crowder or effective-
solvent picture offers a theoretically-feasible framework for
examining systematically the N- or D-dependence, which will
complement the results in Fig. 3.

In the effective-solvent picture, u given in eqn (5) is the only
parameter that controls the monomer–monomer interaction.
The degree of chain swelling or compaction is often expressed
in terms of X2 = hR2i/hR2(u = 0)i. If d is understood as referring
to the geometry of a confined space, i.e., d = 1 for cylindrical
confinement, one can derive a meanfield equation for X for any
d (1 r d r 3). It proves to be useful to introduce X E (u/u0)N2�d/2

and Y = wa�6N3�d (with w (40) as the three-body parameter) in
a quasi d-dimensional space. In an athermal solvent without
crowders, u = u0 E a3. On the other hand, w E a6, which is
roughly independent of T.53

After numerical prefactors are dropped, the free energy of a
polymer in a quasi d-dimensional space, which produces the
expected equilibrium chain size, can be written as

Fd

kBT
� X2 � lnX2 þ X

D=að Þ3�dXd
þ Y

D=að Þ6�2dX2d
: (10)

See ref. 53 and 54 for a polymer in d dimension; for confined
polymers, a similar free energy can be found in ref. 55. Free
energy minimization leads to

Xdþ2 � Xd ¼ X

D=að Þ3�d
þ Y

D=að Þ6�2d
X�d : (11)

This equation can be analyzed for the unknown X as a function
of X.

It is worth commenting on the applicability or limitation of
eqn (10). In all spaces, it yields the expected scaling result for
equilibrium R. For u 4 0, one can correctly view the confined
chain as a linear string of blobs of size D each and construct
a renormalized Flory free energy,56,57 which has a different
D-dependence. However, it leads to the same equilibrium R as
eqn (10) does: R B Na(D/a)�2/3 for d = 1, for instance. In our
consideration below, we will focus on R with u varying from a
positive to negative value and analyze eqn (11) for various cases.

3.4.1 In a free space. For d = 3, Y is N-independent. In this
case, the N-dependence of X solely arises from X B N1/2. One
may view X as a function of uN1/2:

X ¼ f
u
u0
N1=2

� �
: (12)

This can be converted into

R

R0
¼ N�1=10f

u
u0
N1=2

� �
: (13)

Recall that R0 = R(fc = 0).
Eqn (13) can be readily analyzed in the large-N limit.

Let f0 be the fc value at which u = 0. For fc o f0, we require
that R E aN3/5; for fc 4 f0, R E aN1/3. This line of reasoning
leads to

For fc o f0, R/R0 is N-independent, but for fc 4 f0, it is
smaller for larger N and decays as N�4/15. This is consistent
with the expected scaling behavior: R(fc 4 f0) B N1/3 for a
collapsed chain.

We can extend this analysis to examine the N-dependence of
fc at which the transition to a collapsed state occurs. Recall
that X B (u/u0)N1/2 for d = 3. It is this combination that enters
into eqn (11). As N increases, the effect of two-body attractions

Fig. 6 Molecular crowding vs. spatial organization of monomers and crowders in a free space. Each graph displays the volume fraction fi(r) of
monomers and crowders with i = ‘m’ (monomer) or ‘c’ (crowder) as a function of r, i.e., the longitudinal distance from the center of mass of the polymer,
for ac = 0.4a (a), ac = 4a (b), and ac = 20a (c). For visual clarity, fc(r) is normalized as fc(r)/fc(r = N) and fm(r) as fm(r)/fm(r = 0). The results in this graph
suggest the coexistence of monomer-rich and crowder-rich phases. They also support the picture in Fig. 1(b) that the chain-occupying region is
permeable to crowders even for ac = 20a, i.e., even when the effective-solvent approach becomes a poor approximation.

R

R0
�

u=u0ð Þ1=5� 1� a1fcð Þ1=5� 1� a1fc=5; fc of0

N�1=10; fc ¼ f0

N�4=15 u0=jujð Þ1=3� N�4=15 1� a1fc þ a2fc
2 � a3fc

3
�� ���1=3; fc 4f0

8>>>><
>>>>:

: (14)
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can be more easily felt. As a result, in the limit N - N, chain
compaction occurs within a narrow range: Dfc E N�1/2 - 0
(see ref. 58 for a similar issue for chain collapse in a poor
solvent). The chain collapse condition becomes fc E f0 (e.g.,
afc/ac E 0.9 for a 4 ac). However, we note that this analogy has
to be taken with caution unless a c ac. For N = 50, for instance,
crowding effects in the case ac 4 a become moderately impor-
tant only beyond fc E 0.5–0.6 (Fig. 5(a)). Potential kinetic
effects involved at this high range of fc will make it difficult
to draw a definite conclusion on the N-dependence of chain
compaction. Nevertheless, the results in eqn (14) are expected
to be asymptotically correct for long chains in equilibrium.

In contrast, if we assume that the chain-enveloping volume
is ‘‘impermeable’’ to crowders (Fig. 1(c)), for a large-fc range,
the chain can be considered as strongly confined inside a
spherical shell of radius R. Under strong confinement, it can
be viewed as forming a semidilute solution.42,59 Pressure
balance between the two sub-regions, chain-occupying and
crowder-occupying, will determine the chain size as

fc

ac3
þ O fc

2
	 


� 1

a3
a3N

R3

� �9=4

: (15)

Up to O fcð Þ, this leads to

R

R0
� N�4=15

ac

afc
1=3

� �4=9

: (16)

In fc dependence, this is distinct from the third line of
equations in eqn (14).

Based on the results in this subsection, especially eqn (14),
we have mapped out a diagram describing the behavior of R
as a function of N for varying degrees of compaction. Fig. 7(a)
summarizes our results in a log–log plot for the free-space
case. The grey arrow indicates the increasing direction of fc.

Here, the numbers like 3/5, 1/2, and 1/3 denote distinct scaling
regimes: self-avoiding walk, random walk, and collapsed, respec-
tively. Also xT = a4/u is the ‘thermal blob’ size and gT E a6/u2 is the
corresponding contour distance in units of a.42

Testing the diagram in Fig. 7 numerically is computationally
inaccessible at present, because of a large parameter space
crowders present in the desired long-chain limit. We content
ourselves by offering the underlying physics: the diagram in
Fig. 7(a), based on our effective-solvent picture, is essentially
the same as that for a polymer in various solvents.52

It is worth emphasizing that the onset condition for chain
compaction becomes N-independent in the limit N c 1, i.e.,
fc E f0 except in the highly asymmetrical case ac c a (see
Section 3.2 for relevant discussions for ac Z a). This can be
contrasted against what the physical picture in Fig. 1(c) predicts.
Similar to a spherically-confined chain,59 the fate of the chain in
Fig. 1(c) will always be in a collapse state in the limit N -N. This
is not supported by Fig. 1(b) and eqn (14).

Also note that the N-dependence of R for fc Z f0 in eqn (14)
will be different for other spaces. This does not arise from any
interdependence between molecular crowding and the geometry
of a space. It rather reflects the way a chain molecule collapses
when the monomer–monomer interaction becomes attractive, as
indicated by eqn (11). In all cases, molecular crowding reduces u
according to eqn (5). We discuss other spaces below.

3.4.2 In a cylindrical space. For a cylindrically-confined
space, eqn (11) implies that R B N for large N, independent of
the value or sign of u. In this case, the parameter Y B N2

increases rapidly with N. As a result, the three-body term (the
last term) in eqn (11) is felt more strongly. This is responsible
for the stretching of the chain. This case can be contrasted
against an ‘‘ideal’’ chain under cylindrical confinement, for
which R = aN1/2.42,52 Can this behavior be realized in the
cylindrically-confined case?

Fig. 7 Diagram of chain collapse in a log–log plot of R against N in three different spaces: free (a), cylindrical (b), and slit-like spaces (c). Here, the
numbers like 3/5, 1/2, and 1/3 denote distinct scaling regimes: self-avoiding walk, random walk, and collapsed, respectively. Also, xT is the thermal
blob size and gT is the corresponding contour distance in units of a; x is the blob size inside which self-avoidance is unscreened and g E (x/a)5/3. Each
diagram shows how R varies with N as fc increases; the grey arrow indicates the increasing direction of fc. Note that the diagram in (a) is essentially
the same as for a chain in various solvents.52 There are both similarities and differences among the diagrams. The common regions are shaded inside
which the chain does not feel confinement in (b) and (c); outside the region, confinement or the geometry of a confined space modifies chain statistics.
This is responsible for the differences. It is worth noting that these diagrams are valid for both a 4 ac and ac Z a, except for the highly asymmetrical
case ac c a.
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It can be shown that the ideal-chain behavior R = aN1/2 holds
for some range of N. If this behavior is assumed, the monomer
density r B N/RD2 B N1/2/D2a. This diverges as N - N. So
does the three body interaction. This implies that the ideal
chain behavior remains valid for some range of N. Eqn (11) can
be readily solved for large N: for u = 0, the free-energy minimum
occurs at R B Na2/D; for u o 0, R B Na(u0/|u|)(a/D)2.

If we now try R = aN1/2 with u = 0 in eqn (10) and set the last
term to unity, we find N B D2/a2 � N1. Also the corresponding

physical distance is R1 B D. In summary, R ¼ a
ffiffiffiffi
N
p

for N o N1

and R B a2N/D for N 4 N1.
The result R B Na(u0/|u|)(a/D)2 for u o 0 is valid for some

large N. For small N, we have R B N1/3a(u0/|u|)1/3. If we use
this in the last two terms in eqn (10) and balance them, we find
N B D3|u|/a6 � N2, corresponding to a physical distance
R2 B D. This means that R B N1/3a(u0/|u|)1/3 for N o N2 and
R B Na(u0/|u|)(a/D)2 for N 4 N2.

In summary, for N - N, we find

R

R0
�

u=u0ð Þ1=3� 1�a1fcð Þ1=3� 1�a1fc=3; fcof0

ða=DÞ1=3; fc¼f0

ða=DÞ4=3u0
�
uj j� ða=DÞ4=3 1�a1fcþa2fc

2�a3fc
3

�� ���1; fc4f0

8>>>><
>>>>:

:

(17)

These results are essentially identical to the results for the
better known problem of a polymer brush in various solvents,
as long as D is interpreted as the spacing between two adjacent
grafting points.60,61

In contrast, if we balance the pressures between the chain-
occupying and chain-free regions for large fc, as in eqn (15), we
arrive at

R

R0
� a

D

� �4=3 ac

afc
1=3

� �4=3

: (18)

The D or N dependence of this result is the same as that of
eqn (17) for fc 4 f0. But they differ from each other in fc or ac

dependence.
Fig. 7(b) shows a diagram in which R is plotted against N in

a log–log plot in a cylindrical space. Here, the numbers 1, 3/5,
1/2, and 1/3 denote distinct scaling regimes: linear, self-avoiding
walk, random walk, and collapsed, respectively. The emergence
of the linear regime is unique to the cylindrical case.38,42,52 Note
that the shaded region in the diagram in Fig. 7(b) is essentially
identical to the better known one in Fig. 7(a). Cylindrical
confinement, however, modifies the diagram in (b) beyond D,

as expected for a linearly-organized chain under cylindrical
confinement.42,52

3.4.3 In a slit-like space. Eqn (11) can be analyzed for a
chain trapped inside a slit-like space: R B N3/4a(a/D)1/4 � R0 for
u = u0 (i.e., fc = 0). More realistically, one can view the confined
chain as a string of blobs of size x each, inside which self-
avoidance is unscreened; g E (x/a)5/3 is the number of steps to
travel a distance x.42,59 Nevertheless the more sophisticated free
energy based on this picture reproduces the same scaling result
for R,52,57 even though it has a different D dependence.

For u = 0, analysis of eqn (11) leads to R B N1/2a for N o N1�
D2/a2 and R B N2/3a(a/D)1/3 for N 4 N1. When N = N1, the forth
(three-body) term is comparable to the first one in eqn (11).

On the other hand, for u o 0, we find R B N1/3a(u0/|u|)1/3 for

N o N2 � (D/a)3|u|/u0 and R � N1=2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4= uj jD

p
for N 4 N2. The

last two terms in eqn (10) are comparable if N = N2.
In the limit N - N, these results can be summarized as

In contrast, a pressure-balance relation leads to

R

R0
� a

D

� �1=4
N�1=4

ac

afc
1=3

� �2=3

: (20)

It differs from the result for the case fc 4 f0 in eqn (19) in fc

dependence.
Fig. 7(c) shows chain collapse in a log–log plot of R against N

in a slit-like space. The numbers like 3/5, 3/4, 1/2, and 1/3 denote
distinct scaling regimes: self-avoiding walk, two-dimensional
self-avoiding walk, random walk, and collapsed, respectively.
The emergence of the 2/3-regime is unique to this case.

As a final remark in this subsection (Section 3.4), we wish to
mention that as long as the effective-solvent picture remains
applicable as demonstrated in Fig. 4(b) and 5(b), the diagrams in
Fig. 7 remain valid whether a 4 ac or a o ac. Also recall that the
effect of biological confinement is insignificant (or less significant)
for proteins and RNA, which belong to the large-ac case. This
means that they lie in some subspace inside the rectangle formed
by R = D and N = N2 in the diagrams in Fig. 7(b) and (c). In this
subspace, these two diagrams are essentially identical to the
corresponding diagram in the bulk (a). This may justify the neglect
of confinement in our consideration of the large ac case.

4 Conclusions

In conclusion, we have obtained a number of general relations
characterizing the spatial organization of a biopolymer in a
crowded medium. They have been useful for acquiring a deeper
understanding of crowding effects in biomolecular organization
in a cellular space. For a 4 ac, our polymer may be considered as
a coarse-grained model of bacterial chromosomes.16,17 In this

R

R0
�

u=u0ð Þ1=4� 1� a1fcð Þ1=4� 1� a1fc=4; fc of0

ða=DÞ1=12N�1=12; fc ¼ f0

ða=DÞ1=4 u0= uj jð Þ1=2N�1=4 � ða=DÞ1=4N�1=4 1� a1fc þ a2fc
2 � a3fc

3
�� ���1=2; fc 4f0

8>>>><
>>>>:

: (19)
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case, molecular crowding depends on the ratio afc/ac in three
distinct spaces: free, cylindrical, and slit-like spaces.

As ac increases from a value smaller than a, molecular
crowding becomes less effective for a given fc value and
depends on fc only beyond ac E a. If taken together, this means
that if ac 4 a the full compaction condition reads fc E 1 (or
fc E 0.55 more accurately even for N = 2000) and may not be
easily realized at a biologically-relevant fc range.

A good example of the large-ac case is protein folding in a
crowded, cellular environment. While our simulation results
imply that crowding in this case has moderate effects, a real
protein is not simply beads on a string as assumed in our
considerations. What is unclear is how depletion forces and
other interactions orchestrate in folding a protein chain into
its biologically-active structure. Obviously, they become more
important in organizing higher order structures, e.g., protein
aggregates.12

We have also shown to what extent crowding effects can be
mimicked by adjusting the solvent quality or the excluded
volume of monomers. The effective-solvent picture works well
whether a 4 ac or a o ac, except in the highly asymmetric case
ac c a. A polymer solution mixed with micron-size colloids
belongs to the ac c a-case.15,25–27 Understandably, the
effective-solvent picture, in which the presence of crowders
renormalizes the monomer–monomer interactions, will break
down in this limit.

Our results suggest that molecular crowding is insensitive to
the geometry or presence of a confined space, possibly except
for ac c a. The effect of molecular crowding is local, similar
to that of solvent. However, it does not necessarily contradict
the recent finding that the way the DNA molecules respond to

crowding is different between different spaces: bulk, slit-like,
and cylindrical.19 For stiff chains, the spatial organization of
crowders in response to the chains is implicated in the way they
respond to crowding. In this sense, the difference is not an intrinsic
one but arises from the preferential distribution of crowders near
the cylindrical wall below the onset of chain collapse.19

More realistically, a heterogeneous polymer can be considered
as a coarse-grained model of bacterial chromosomes organized
with various proteins. A dominant source for chain heterogeneity
is rRNA polymerases concentrated in several designated sites
along the chromosome, i.e., rRNA operons.9,10,45–47 At the crudest
but non-trivial level, chain heterogeneity can be mimicked
by introducing small and big monomers10 with the latter
representing transcription-active sites (Fig. 2). How the result-
ing heterogeneity and crowding are intertwined in a confined
space has not been well understood beyond a recent attempt,
which was focused on analyzing the clustering tendency of big
monomers via looping in a free space,10 but can be further
unraveled. A related point is that chain heterogeneity can be
responsible for the coexistence of condensed and extended
phases observed with E. coli chromosomes.8 A computational
approach along the line of what is illustrated in Fig. 2 will
be useful.

Appendix

In this Appendix, we test further the effective-solvent picture,
especially for the case ac 4 a. To this end, we consider the
internal distances of monomers at i and j defined as h|ri� rj|

2i1/2.
Fig. 8 shows the internal distance for N = 50 (a) and N = 2000 (b).

Fig. 8 Internal distance for N = 50 (a) and N = 2000 (b), and the validity of the effective-solvent picture. (a) For the parameters chosen for the cyan
curves (e.g., ac = 4a and fc = 0.5), the collapsed regime does not emerge; there is a crossover from the self-avoiding to random walk regimes. The curves
in magenta, both solid and dashed, show a collapsed regime described by a straight line with a slope 1/3. In both cases, there is a good agreement
between the explicit-crowder and implicit cases. (b) For ac = 4a (curves in magenta), the explicit (solid) and implicit (dashed) curves collapse onto each
other. In contrast, for ac = 20a, the two cases (solid and dashed) deviate appreciably from each other. This means that the effective-solvent picture
does not work well for the highly symmetrical case ac/a c 1. For ac = 4a and for the solid curve for ac = 20a, three distinct regimes emerge: self-
avoiding, random walk, and collapsed regimes at short, intermediate, and large scale ranges of |i–j|, respectively. Superimposed is a dashed line in
magenta, obtained for N = 1000 and ac = 20a (explicit crowders). The onset of chain collapse in this case coincides with that shown in the cyan curve.
This implies that depletion forces are local even for ac = 20a, even though the effective solvent picture is inaccurate; the chain-occupying region is still
permeable to crowders.
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In each graph, we compare the explicit-crowder and effective-
solvent pictures: solid and dashed lines, respectively.

First in Fig. 8(a) (N = 50 in the bulk), we compare the two
pictures for a few combinations of ac (ac = 0.3a, 4a) and fc. For
the cyan curves, the chain is only weakly compressed, but for
the magenta curve, it is compressed strongly, as marked by the
emergence of the collapsed regime. The agreement between the
two pictures is generally good. For ac = 0.3a and afc/ac = 1.07
(strongly collapsed), the two sets of results (explicit and implicit)
deviate somewhat from each other for |i–j| r 10. Note that chain
statistics at short-length scales is model-dependent. Nevertheless
the discrepancy is still insignificant.

The graph Fig. 8(b) represents a much longer chain, i.e.,
N = 2000. For ac = 4a, the explicit (solid) and effective-solvent
(dashed) curves collapse onto each other. To obtain the effective-
solvent or implicit curves, u was adjusted so that the resulting
R/R0 would match the corresponding explicit-crowder result as in
Fig. 4. In contrast, for ac = 20a, the two cases (solid and dashed)
deviate appreciably from each other. This means that the
effective-solvent picture does not work well for the highly sym-
metrical case ac/a c 1. (This includes the case ac 4 Rg. See the
footnote† for relevant discussion.) For ac = 4a (both explicit and
implicit) and for the solid curve for ac = 20a, three distinct
regimes emerge to characterize the local structure of the chain:
self-avoiding, random walk, and collapsed regimes at short,
intermediate, and large scale ranges of |i–j|, respectively. This
is consistent with Fig. 7, except for |i–j| r 10. As noted above,
chain statistics is model dependent for sufficiently small |i–j|.
The bead-spring chain used in our simulations is not perfectly
flexible, as often assumed in an ‘‘idealized’’ theoretical model,
e.g., a freely-jointed chain with self-avoidance. This delays the
emergence of the random-walk regime in Fig. 8(b).

Also superimposed is a dashed line in tangerine obtained
for N = 1000 and with explicit crowders of size ac = 20a each.
Comparing it with the corresponding case for N = 2000, one
can conclude that the onset of the collapsed regime marked
by the vertical arrow in grey is the same for the two choices of
N: N = 1000 and N = 2000. This is aligned with the picture that
the chain-occupying region is permeable to crowders and
suggests that molecular crowding is local, even though the
effective-solvent picture does not work well for ac = 20a. The
local picture will eventually break down for sufficiently large
ac/a values. This is most obvious when ac 4 Rg. In this case,
Fig. 1(b) is not applicable anymore.
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