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Supplementary Text 1 

Details of simulation methods 

Dissipative Particle Dynamics (DPD) is a coarse-grained molecular dynamics 

(MD) method that employs a momentum-conserving thermostat and soft repulsive 

interactions among beads to represent the clusters of molecules [1-3]. This approach 

allows the simulation of physical phenomena occurring on relatively large temporal 

and spatial scales and has proven to be particularly useful in studying the general 

properties of macromolecular systems [4-7]. Furthermore, the force depends only on 

the difference in bead position and velocity, 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 and 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗, which 

guarantees Galilean invariance [7], 

 

𝑑𝐫𝒊

𝑑𝑡
= 𝐯𝑖                          (S1) 

and  

 

𝑚
𝑑𝐯𝒊

𝑑𝑡
= 𝐟𝑖,                          (S2) 

 

where 𝐫𝑖, 𝐯𝑖 and 𝐟𝑖 are, respectively, the position, velocity and force on the i-th 

bead with mass 𝑚 at time 𝑡. The time evolution of the interacting beads obeys 

Newton’s equations of motion. Espanol and Warren formulate the DPD model in 

terms of a stochastic differential equation [6],   

 

𝑓𝑖 =
𝑑𝐯𝑖

𝑑𝑡
= ∑ 𝐅𝑖𝑗

C
𝑗≠𝑖 + ∑ 𝐅𝑖𝑗

D
𝑗≠𝑖 + ∑ 𝐅𝑖𝑗

R
𝑗≠𝑖 .                   (S3) 

 

The right-hand side of Eq. (S3) amounts to the total force on the bead 𝑖 due to 

pair-wise interactions with other beads in the system via conservative, 𝐅𝑖𝑗
C, dissipative, 

𝐅𝑖𝑗
D, and random, 𝐅𝑖𝑗

R, forces, which vanish beyond an interparticle distance 𝐫𝑖𝑗 = 𝑟𝑐. 

The conservative force is a soft repulsion acting along the line of bead centers and is 

given by 

 

 𝐅𝑖𝑗
C = {

𝛼𝑖𝑗(1 − 𝑟𝑖𝑗 𝑟𝑐)𝒆𝑖𝑗⁄ , 𝑟𝑖𝑗 < 𝑟𝑐

0, 𝑟𝑖𝑗 ≥ 𝑟𝑐,
                (S4) 

 

where 𝛼𝑖𝑗 is a maximum repulsion between beads 𝑖 and 𝑗, and 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗, 𝑟𝑖𝑗 =

|𝐫𝑖𝑗|, 𝐞𝑖𝑗 = 𝐫𝑖𝑗 𝑟𝑖𝑗⁄ . Note that, if species 𝑖 and 𝑗 are fairly compatible, 𝛼𝑖𝑗 = 25. As 

incompatibility between 𝑖 and 𝑗 increases, 𝛼𝑖𝑗 increases. The solvent environment 

is changed by only tuning the interaction parameter 𝛼PS (P denotes the 2D polymer 

and S denotes the solvent) in this letter. The random and dissipative forces constitute 
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the DPD thermostat and are given by 

𝐅𝑖𝑗
D = −𝛾𝜔𝐷(𝑟𝑖𝑗)(𝐯𝑖𝑗 ⋅ 𝒆𝑖𝑗)𝒆𝑖𝑗                     (S5) 

and 

 

𝐅𝑖𝑗
R = 𝜎𝜔𝑅(𝑟𝑖𝑗)𝜁𝑖𝑗𝛥𝑡−1/2𝒆𝑖𝑗,                      (S6) 

 

with 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗 , 𝜁𝑖𝑗  is a symmetric random number with zero mean and unit 

variance. 𝛾 and 𝜎 are coefficients of the dissipative and random forces, which are 

related via the fluctuation-dissipation theorem [4] 

 

𝜎2 = 2𝛾𝑘𝐵𝑇,                            (S7) 

 

where kB is the Boltzmann constant and T is the absolute temperature of the system. 

𝜔𝐷(𝑟𝑖𝑗) and 𝜔𝑅(𝑟𝑖𝑗) are weight functions, defined as [3] 

 

𝜔D(𝑟𝑖𝑗) = [𝜔R(𝑟𝑖𝑗)]2 = {
(1 − 𝑟𝑖𝑗 𝑟𝑐)⁄ 2

, 𝑟𝑖𝑗 < 𝑟𝑐

0, 𝑟𝑖𝑗 ≥ 𝑟𝑐.
           (S8) 

 

These forces are of short-range with a fixed cutoff distance 𝑟𝑐 . Similar to MD 

simulations, DPD can capture the time evolution of a 2D polymer system through the 

numerical integration of the above equations of motion. The bonds between the beads 

in the polymer are described by the harmonic spring potential 

 

𝑈bond(𝑟) =
1

2
𝑘𝑏(𝑟 − 𝑟0)2.                        (S9) 

 

Here 𝑘𝑏 is the bond force constant and 𝑟0 is the equilibrium bond length. 𝑘𝑏 and 

𝑟0 are set to 4.0 and 0.0. 2D polymers are flexible without angle bending potential. 

 

In the standard DPD method, molecules are reduced by combining several atoms 

or groups of atoms into coarse-grained (CG) beads. We use coarse-grained beads to 

form a square network to simulate a single-layer 2D polymer. We then put the 

constructed single-layer 2D polymer and solvent beads S into 3D simulation boxes of 

different sizes to simulate and calculate the radius of gyration (Rg). The minimum size 

of the simulation box should be greater than twice the radius of gyration, and the 

number density ρ of the box is 3. In our simulations, we set the time step Δ𝑡 = 0.04, 

a cutoff distance of 𝑟𝑐 = 1.0, a mass of 𝑚 = 1.0 and a temperature of 𝑘𝐵𝑇 = 1.0.  
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FIG. S1. The fitting relationship between the radius of gyration Rg and the size of 2D 

polymer L for various solvent conditions. (a) The fitting relationship at 𝛼PS = 25, 26 

and 27. (b) The fitting relationship for 𝛼PS ranging from 31 to 35. 
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FIG. S2. The frequency distribution of the radius of gyration Rg when 𝛼PS = 29. (a) 

When 𝛼PS = 29, the frequency distribution of Rg when L value is 36. (b) When 𝛼PS 

= 29, the frequency distribution of Rg when L value is 78. 
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FIG. S3. The relationship of radius of gyration R, the eigenvalues of the radius of 

gyration tensor λ and the size of 2D polymer L. (a) The relationship of Rg and L, at 

different values of 𝛼PS  ranging from 27.1 to 27.5. (b), (c), (d), (e), (f) The 

relationship of the eigenvalues of the radius of gyration tensor and the size of 2D 

polymer, when 𝛼PS = 27.1, 27.2, 27.3, 27.4 and 27.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


