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Abstract

Polyelectrolytes are polymers carrying either positively or negatively charged ionizable groups. The properties of these

polymers in solutions and at charged surfaces depend on the fraction of dissociated ionic groups, solvent quality for polymer

backbone, solution dielectric constant, salt concentration, and polymer–substrate interactions. In this review, we summarize the

current development of theoretical models describing properties of polyelectrolyte solutions and adsorption of charged

polymers at surfaces and interfaces. We discuss in detail the conformational properties of polyelectrolyte chains in dilute and

semidilute solutions, the phenomenon of counterion condensation, the necklace structure of polyelectrolytes in poor solvent

conditions for polymer backbone, the dynamics of polyelectrolyte solutions, the surface overcharging by adsorbed

polyelectrolytes and its implication for assembled polyelectrolyte multilayers.
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1. What are polyelectrolytes?

Polyelectrolytes are polymers with ionizable

groups [1–7]. In polar solvents such as water, these

groups can dissociate, leaving charges on polymer

chains and releasing counterions in solution.

Examples of polyelectrolytes include polystyrene

sulfonate, polyacrylic and polymethacrylic acids and

their salts, DNA and other polyacids and polybases

(see Fig. 1).

Electrostatic interactions between charges lead to

the rich behavior of polyelectrolyte solutions
qualitatively different from those of uncharged

polymers [8–10]. For example:

(1) The crossover from dilute to semidilute solution

regime occurs at much lower polymer concen-

trations than that in solutions of neutral chains.

(2) There is a well-pronounced peak in the scattering

function of the homogeneous polyelectrolyte

solutions. The magnitude of the wave vector

corresponding to this peak increases with concen-

tration as c1/2. There is no such peak in solutions of

neutral polymers.



Nomenclature

B second virial coefficient

b bond length

C third virial coefficient

c polymer concentration

c* polymer overlap concentration

cBead crossover concentration between string

and bead controlled regimes

cb polymer concentration for overlap of

electrostatic blobs

ce entanglement concentration

cs salt concentration

e elementary charge

Db bead size in the necklace model of a

polyelectrolyte chain in a poor solvent

D0
e electrostatic blob size

D�
e electrostatic blob size for the effective

fraction of charged monomers f*

De(z) electrostatic blob size in non-uniformly

stretched chain

Dself chain self-diffusion coefficient

Fconf(R) conformational part of the chain free

energy

f fraction of charged monomers on polymer

backbone

f* effective fraction of charged monomers

G plateau modulus

g0
e number of monomers in an electrostatic

blob

gintra(r) intrachain monomer–monomer correlation

function

gT number of monomers in a thermal blob

q charge valence

kB Boltzmann constant

L length of a rod-like polyion

Lnec end-to-end distance of a necklace

lB Bjerrum length

l0 length of a polymeric strand with mstr

monomers

lOSF
p Odijk–Skolnick–Fixman electrostatic per-

sistence length

lstr string length between the centers of two

neighboring beads

mb number of monomers in a bead

mstr number of monomers in a string

N degree of polymerization

nb number of beads on a necklace

Rglob size of a polymer globule

Re end-to-end distance

Rblob
e end-to-end distance of a polyelectrolyte

chain from scaling approach

RF
e end-to-end distance of a polyelectrolyte

chain from Flory-like minimization of the

chain free energy

r0 radius of a rod-like polyion

rD Debye screening length

T absolute temperature

U interaction parameter defined as the ratio

of the Bjerrum length lB to the bond size b

b fraction of condensed counterions

G polymer surface coverage

g0 Oosawa–Manning counterion conden-

sation parameter, g0ZlBfN/L

ds surface overcharging

3 dielectric constant of a medium

3LJ interaction parameter of the Lennard–

Jones potential

h solution viscosity

hsp specific viscosity

Q theta temperature

k inverse Debye screening length, rDZkK1

x correlation length of a semidilute polymer

solution

xT thermal blob size

p polymeric osmotic pressure

s monomer diameter in Sections 2 and 3 and

surface number charge density in Section 4

s* surface number charge density at which

adsorbed polyelectrolyte chains begin to

overlap

se crossover surface number charge density

between 2D and 3D adsorbed layer

tZ1KQ=T effective temperature

tRouse chain relaxation time in an unentangled

regime

trep chain relaxation time in an entangled

regine

tx relaxation time of a correlation blob

f polymer volume fraction, fZcv

4 (r) reduced electrostatic potential

fosm osmotic coefficient
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Fig. 1. Examples of polyelectrolytes.
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(3) The osmotic pressure of polyelectrolytes in salt-free

solutions exceeds the osmotic pressure of neutral

polymers at similar polymer concentrations by

several orders of magnitude. It increases almost

linearly with polymer concentration and is inde-

pendent of the chain molecular weight in a wide

range of polymer concentrations. This almost linear

concentration dependence of the osmotic pressure

together with its strong dependence on added salt

demonstrates that osmotic pressure is mainly due to

the counterion contribution.

(4) The viscosity of polyelectrolyte solutions is

proportional to the square root of polymer

concentration hwc1/2 (Fuoss’ law [11]), while for

solutions of uncharged polymers at the same

concentration the viscosity is proportional to

polymer concentration. There is no concentration

regime where reduced viscosity h/c of solutions of

neutral polymers decreases with polymer concen-

tration (h/cwcK1/2 for polyelectrolytes in the Fuoss

regime).

(5) Polyelectrolyte chains in semidilute regime follow

unentangled dynamics in a much wider concen-

tration range and the crossover to the entangled

dynamics occurs further away from the chain

overlap concentration than in solutions of

uncharged polymers.

Polyelectrolyte chains at surfaces and interfaces

represent an example of both two- and three-
dimensional polyelectrolyte solutions in which the

local polymer concentration is controlled by inter-

actions between adsorbing substrate and polyelec-

trolyte chains. As the surface charge density

increases, the dilute solution of adsorbed chains

transforms into a two-dimensional semidilute sol-

ution. If the surface charge density increases even

further, the chains in the adsorbed layer form a

concentrated polyelectrolyte solution with thickness

increasing with surface charge density. The new and

unusual phenomenon observed in the adsorbed layers

is the surface overcharging (overcompensation of

surface charge) by adsorbed polyelectrolyte chains.

The amount of surface overcharging can be tuned by

varying the solution ionic strength. The charge

inversion plays a central role in the layer-by-layer

deposition technique. This self-assembly method has

been introduced for fabrication of the molecularly

layered multicomposite films with a high degree of

complexity (see for review [12,13]) [14–17]. The film

growth is achieved by alternating the deposition of

polyanions and polycations from their aqueous

solutions. The simplicity of the electrostatic assembly

technique with practically no limitations on the shape

of charge bearing species allows fabrication of

multilayer films from synthetic polyelectrolytes,

DNA, proteins, inorganic platelets, nanoparticles,

and viruses.

Below we review modern theoretical approaches to

polyelectrolyte solutions and to adsorption of charged

polymers that ignore the atomistic details of solvent

and polymers. In these theories, polyelectrolyte chains

are modeled by charged bead-spring chains with

beads representing groups of chemical monomers.

The solvent molecules are replaced by a continuum

with the same macroscopic physical properties such

as dielectric constant 3 and solvent viscosity h0. The

counterions and salt ions are treated either explicitly

or as an effective background leading to screening of

the electrostatic interactions between ionized groups

on the polymer backbone. Fig. 2 shows an example of

such representation of polystyrene sulfonate in water

by a chain consisting of charged beads (we will call

them monomers) with counterions in a dielectric

continuum. In the following sections we will show

how this simplified model can be used to describe

properties of charged polymers in solutions and at

interfaces.



Fig. 2. Illustration of the mapping procedure of sodium polystyrene

sulfonate (NaPSS) in water. The repeat units of NaPSS are replaced

by spherical monomers (green circles) connected by springs and the

solvent molecules are represented by a continuum with dielectric

constant 3. Counterions are represented by spherical beads (red

circles) (For interpretation of the reference to colour in this legend,

the reader is referred to the web version of this article.).
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2. Polyelectrolytes in dilute solutions

In dilute solutions, the intrachain interactions

dominate over the interchain ones. Thus, one can

effectively consider a single polyelectrolyte chain

with counterions surrounding it in a large unit cell

with size equal to the distance between chains.

Consider a polyelectrolyte chain with degree of

polymerization N and with fraction f of charged

groups on the polymer backbone in a medium with

dielectric constant 3. The potential energy of the

polyelectrolyte chain U({ri}) with monomers located

at positions r1, r2, r3,.,rN and carrying charges eq1,

eq2, .,eqN is

UðfrigÞ

kBT
Z

3

2b2

XNK1

iZ1

ðriC1KriÞ
2

C
XN

iZ1

X
j!i

lBqiqj

jriKrjj
expðKkjriKrjjÞ

C
UshðjriKrjjÞ

kBT
(2.1)

where the first term on the right-hand side of Eq (2.1)

describes the entropic elasticity of harmonic bonds
with length b connecting monomers into a polymer

chain, the second-term is the screened Coulomb

(Yukawa) interaction between charged monomers,

kB is the Boltzmann constant, T is the absolute

temperature, and lB is the Bjerrum length

lB Z e2=ð3kBTÞ; (2.2)

the distance at which the electrostatic interaction

between two elementary charges e in the medium with

dielectric constant 3 is equal to the thermal energy

kBT. The electrostatic interactions between counter-

ions and salt ions are not explicitly included in the

chain potential energy; instead, their effect is taken

into account through the concentration dependence of

the Debye screening length rDZkK1

rK2
D Z k2 Z 4plB

X
s

csq
2
s (2.3)

where cs is the concentration of small ions of type s

and qs is their valence. Electrostatic interactions are

exponentially screened on the length scales larger

than the Debye screening length rD. In a dilute salt-

free solution, the concentration of counterions is very

low (the Debye screening length is larger than the

chain size) and therefore ionized groups on a chain

interact with each other through the unscreened

Coulomb potential.

The last-term on the right-hand side of Eq. (2.1),

Ush(r), represents the short-range interactions

between monomers, which are typically described in

computer simulations [18,19] by the Lennard–Jones

6–12 potential

ULJðrÞ Z 43LJ

s

r

� �12

K
s

r

� �6
� �

(2.4)

where 3LJ is the interaction parameter and s is the

monomer diameter.
2.1. Flory theory and scaling model of a

polyelectrolyte chain
2.1.1. Flory theory

The Flory-like description of a polyelectrolyte

chain without short-range interactions was first

introduced over 50 years ago by Kuhn et al. [20]. A

polyion is described in this model as a random coil

with the restriction that the length Re of its end-to-end
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vector minimizes the sum of the configurational and

electrostatic free energies. In this approach, the two

terms associated with the chain connectivity and

interactions are evaluated separately. The confor-

mational part of the chain free energy is estimated

neglecting the interactions between monomers

FconfðReÞzkBT
R2

e

b2N
(2.5)

(Here and below we will present scaling analysis

neglecting all numerical coefficients.)

The interaction part of the chain free energy is

evaluated by neglecting the connectivity of the

polymer chain and by assuming that monomers are

uniformly distributed within the chain volume Vch.

Let us assume that electrostatic interactions lead to the

unidirectional elongation of the chain, for instance

along z-axis, while its size stays unperturbed in the

directions perpendicular to the elongation axis. Thus,

the polyelectrolyte chain has the shape of an ellipsoid

with the longitudinal size equal to Re and with the

transverse size equal to that of an ideal chain bN1/2

(see Fig. 3).

The electrostatic energy of the uniformly charged

ellipsoid [21] with the net charge efN, where f is the

fraction of charged monomers, is proportional to

FelectrðReÞ

kBT
z

lBðfNÞ2

Re

ln
Re

bN1=2

� �
(2.6)

Combining conformational and interaction parts of

the free energy (Eqs. (2.5) and (2.6)), we arrive at the

free energy of a polyelectrolyte chain with a given

value of the end-to-end vector Re [20]

FFloryðReÞ

kBT
z

R2
e

b2N
C

lBðfNÞ2

Re

ln
Re

bN1=2

� �
(2.7)

The analysis of Eq. (2.7) shows that the confor-

mational part of the chain free energy (the first-tern on
Ree

bN1/2

Fig. 3. Schematic representation of a polyelectrolyte chain in an

elongated conformation.
the right-hand side of Eq. (2.7)) increases as the value

of Re increases. This increase in the conformational

part of the chain free energy is associated with its

entropic nature. The number of available confor-

mations decreases with increasing end-to-end dis-

tance leading to a decrease in the chain

conformational entropy and an increase in the

conformational part of the free energy. On the

contrary, the electrostatic part of the chain free energy

(the second-term on the right-hand side of Eq. (2.7))

decreases with increasing chain size Re. Charged

monomers move further apart with increasing chain

size leading to weaker electrostatic repulsion between

them. Thus, the optimal chain size corresponds to the

minimum of the chain free energy as a function of

end-to-end distance Re. Taking the derivative of Eq.

(2.7) with respect to Re and solving iteratively the

resultant non-linear equation, we obtain the following

expression for the chain size

RF
e zbNu1=3f 2=3½lnðeNðuf 2Þ2=3Þ�1=3 (2.8)

where u is the interaction parameter—the ratio of the

Bjerrum length lB (Eq. (2.2)) to the bond size b

u Z lB=b (2.9)

The chain size grows faster than linear as N[ln (N)]1/3

with the degree of polymerisation. The onset of

elongation of a polyelectrolyte chain is at the value of

its electrostatic energy (see Eq. (2.6)) on the order of

the thermal energy kBT

lBðfNÞ2

bN1=2
z1 (2.10)

This happens when the number of charged monomers

on the chain fN is on the order of uK1/2N1/4. At

stronger electrostatic interactions, the chain size

monotonically increases with increasing fraction of

charged monomers f on the polymer backbone.

However, one has to keep in mind that Eq. (2.8) is

only valid in the range of parameters for which the

chain size RF
e is smaller than the size of the fully

stretched chain bN. This requirement leads to the

upper bound on the chain degree of polymerization

N!uK2=3fK4=3 expðuK1=3fK2=3Þ. For longer chains,

quadratic dependence of the conformational part of

the chain free energy on the end-to-end distance (the

first term in Eq. (2.7)) is no longer valid and one has to

take into account the non-linear effects in chain
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elasticity [10,22]. In this case, the chain’s end-to-end

distance RF
e is proportional to the degree of

polymerization N. For example, for polyelectrolyte

chains with interaction parameter uz2 and fraction of

charged monomers fZ0.2 the crossover degree of

polymerization is about 50 Kuhn monomers.

The fluctuations of chain size near the optimal

value RF
e are on the order of bN1/2. This can be shown

by expanding Eq. (2.7) for the Flory free energy of a

polyelectrolyte chain in the power series of dRe Z
Re KRF

e up to the quadratic term. The energy

fluctuations around the minimum are

DFFloryðdReÞzkBT
dR2

e

b2N
(2.11)

Typical energy fluctuations are on the order of the

thermal energy kBT, which leads to the typical value

of the mean-square average fluctuations hdR2
e i in the

chain size to be on the order of b2N. The fluctuations

of the chain size are small in comparison to the

optimal chain size RF
e above the chain deformation

threshold and can be neglected when fN[uK1=2N1=4.
z 
0 

De(z)

ge(z)monomers Re/2- Re /2

Fig. 4. Schematic sketch of a non-uniformly stretched polyelec-

trolyte chain in a dilute salt-free solution.
2.1.2. Scaling model

The scaling approach to the polyelectrolyte chain

conformations in dilute solutions is based on the

assumption of the separation of different length

scales and the concept of an electrostatic blob [9,23–

25]. The conformations of the chain inside the

electrostatic blob are unperturbed by the electrostatic

interactions. For a Q-solvent for uncharged polymer

backbone, the relation between the blob size and the

number of monomers in it is expected to be

D0
e zb

ffiffiffiffiffi
g0

e

p
. (The good solvent conditions for

polymer backbone can be taken into account by

changing the relation between the blob size and the

number of monomers in it to that for a swollen

section of a chain, D0
e zbðg0

eÞ
3=5, (see for details [9,

23–25]). The energy of the electrostatic interactions

between all charged monomers inside a blob is on

the order of the thermal energy kBT

lBðfg
0
eÞ

2

D0
e

zuf 2ðg0
eÞ

3=2 z1 (2.12)

(Note the similarity between Eq. (2.12) for the

electrostatic blob and Eq. (2.10) for the onset of

electrostatic effects of the whole chain.) Eq. (2.12)
leads to the following relations between the number

of monomers in a blob g0
e , its size D0

e and

the fraction of charged monomers f

g0
e zðuf 2ÞK2=3 (2.13a)

D0
e zbðuf 2ÞK1=3 (2.13b)

Electrostatic interactions at the length scales larger

than the blob size lead to the elongation of the

polyelectrolyte chain into an array of blobs. The size

of the polyelectrolyte chain is estimated as the

number of blobs per chain N=g0
e times the blob size

D0
e

Rblob
e z

N

g0
e

D0
e zbNðuf 2Þ1=3 (2.14)

The difference between expressions in Eqs. (2.14) and

(2.8) appears to be in the logarithmic term. The origin

of this difference lies in the assumption of linear

additivity of the electrostatic energy adopted in the

scaling approach—all electrostatic blobs were

assumed to have the same size independently of their

location along the polymer backbone. The blobs in the

middle of the chain interact with the rest of the chain

stronger than blobs at the chain ends. This additional

contribution from larger length scales leading to the

logarithmic correction is discussed in the next section.
2.2. Non-uniform stretching of polyelectrolyte chains

The main contribution to the free energy of a

polyelectrolyte in the case of strong deformation with

small fluctuation corrections comes from the chain

conformation that minimizes its potential energy

U({ri}) given by Eq. (2.1). Let us select the z-axis

of our coordinate system along the chain’s end-to-end



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–11181056
vector with its origin located in the middle of the

polyelectrolyte chain (see Fig. 4).

The chain conformation corresponding to the

minimum of its potential energy is given by the

following expression

v

vzi

UðfrigÞ

kBT
ZK

3

b2
ðziC1 CziK1 K2ziÞ

C lBqi

v

vzi

X
jsi

qj

jrjKrij
Z 0; for is1;N

(2.15)

where we neglected the effect of the short-range LJ-

interactions. Let us consider index i as a continuous

variable m and treat zi as a continuous function z(m) of

argument m. In the continuous limit Eq. (2.15) can be

reduced to [26]

3

b2

d2zðmÞ

dm2
zf

d4ðzÞ

dz
(2.16)

The reduced electrostatic potential 4(z) at position z

along the deformation axis of a polyelectrolyte chain

is defined as the sum of all the contributions from all

charges along the chain

4ðzÞ Z lB
X

j

qj

jzêzKrjj
(2.17a)

where êz is a unit vector pointing along the

deformation axis of the polyelectrolyte chain. The

term on the left-hand side of Eq. (2.16) describes

the elastic force acting on the mth monomer,

balanced by the electrostatic force on the right-

hand side of the equation. This equation is valid at

any point along the chain except at chain ends

where the tension v(m)Zdz(m)/dm vanishes (v(0)Z
v(N)Z0). Eq. (2.16) together with the boundary

conditions is similar to Newton’s equation of motion

of the particle along the z-direction in the external

potential 4(z). The ‘particle’ starts its motion at time

tZ0 from the point zZKRe/2 with zero initial

velocity and arrives at point zZRe/2 at time tZN

with zero final velocity.

The reduced electrostatic potential can be esti-

mated by assuming one-dimensional charge
distribution

4ðzÞzlB

ðzKDeðzÞ=2

KRe=2

fgeðz
0Þ

Deðz
0Þ

dz0

zKz0

0
B@

C

ðRe=2

zCDeðzÞ=2

fgeðz
0Þ

Deðz
0Þ

dz0

z0Kz
C

fgeðzÞ

DeðzÞ

1
CA

(2.17b)

Here, Re is the chain size along the direction of

elongation, and ge(z) and De(z) are the number of

monomers in the electrostatic blob and the electro-

static blob size at position z, respectively (see Fig. 4).

Assuming that the blob size De(z) in a Q-solvent for

the uncharged backbone varies weakly with z, and

taking into account the relation between the number

of monomers ge(z) in an electrostatic blob and its size

De(z)Zbge(z)1/2, we can simplify expression (2.17b)

4ðzÞz
ufDeðzÞ

b
ln

R2
e K4z2

DeðzÞ
2

� �
C1

� �
(2.18)

Eq. (2.18) is valid in the interval

KRe=2CD0
e =2!z!Re=2KD0

e =2, where D0
e z

bðuf 2ÞK1=3 is the size of the electrostatic blobs at

chain ends. We can self-consistently find the

electrostatic blob size using the classical path

approximation for a strongly stretched chain. The

average position of a monomer along the chain can be

uniquely described within the strong stretching

approximation by its projection on the deformation

direction z. In this case, the derivative d/dm can be

transformed into the derivative with respect to

z(d/dmZv(z)d/dz). Defining the local tension v(z) in

terms of the number of monomers ge(z) in the

electrostatic blob and its size De(z) (v(z)ZDe(z)/

ge(z)), one can rewrite Eq. (2.16) for the electrostatic

blob size

3b2

2

d

dz
DeðzÞ

K2 zf
d4ðzÞ

dz
(2.19)

The solution of this equation with the electrostatic potential

f(z) given by Eq. (2.18) can be approximated by

DeðzÞzD0
e ln

R2
e K4z2

2ReD0
e

� �
C1

� �K1=3

(2.20)

Thus, the smallest electrostatic blob is in the middle of the

chain. This result is not surprising since the center of the
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chain experiences stronger electrostatic repulsion than

sections closer to chain ends. The chain size is obtained

from the monomers’ conservation condition

N Z 2

ðRe=2KD0
e =2

0

geðzÞdz

DeðzÞ
z

ReD0
e

b2
ln

eRe

D0
e

� �K1=3

(2.21)

The logarithmic term on the right-hand side of Eq.

(2.21) accounts for the non-uniform stretching of the

polyelectrolyte chain. An iterative solution of Eq. (2.21)

yields the following expression for the chain size [26–

29]

Re zbNu1=3f 2=3½lnðeN=g0
eÞ�

1=3 (2.22)

This expression for the chain size is in agreement with

the result obtained by the Flory-like calculations by

balancing electrostatic and elastic energies of a

polyelectrolyte chain (Eq. (2.8)).

The non-uniform stretching of polyelectrolyte

chains was directly tested in the molecular

dynamics simulations by Liao et al. [26]. Fig. 5

shows the test of Eq. (2.22) for the end-to-end

distance in dilute solutions of fully charged chains

(fZ1). The electrostatic blob size De for this plot

was obtained from the linear monomer density

distribution r(z)Zge(z)/De(z) averaged along the
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Fig. 5. Universal plot of root-mean-square end-to-end distances

obtained using Eq. (2.22) approaches the solid line with slope 1 for

the longest chains. Reproduced with permission from Liao, Q.,

Dobrynin, A.V., & Rubinstein, M. Macromolecules 36, 3386–3398

(2003). [26] Copyright 2003, American Chemical Society.
chain elongation direction. Data for different

concentrations collapse on the universal curve that

approaches a straight line with unit slope for longer

chains. This is a confirmation of the non-uniform

chain stretching and the applicability of the strong

stretching approximation. The deviation from the

straight line for short chains is due to the finite size

effect. The fluctuations of the end-to-end distance

for short chains are comparable with the average

size of these chains.

Experimentally, the information about chain

structure in dilute solutions is obtained from the

analysis of the scattering function S(q). In dilute

solutions, the scattering function S(q) is proportional

to the Fourier transform of the intrachain monomer–

monomer correlation function

gintraðrÞ Z
1

cN

X
isj

hdðrKrijÞi (2.23)

where c is the monomer concentration, brackets h i

correspond to the ensemble average over all chain

conformations, and rij is the vector between ith and jth

monomers on the chain. The summation in Eq. (2.23)

is carried out over all pairs of monomers on the chain.

In the strong stretching limit, the fluctuations of the

linear monomer density dr(z) along the chain

stretching direction z can be neglected in comparison

with the average linear monomer density r(z). In this

case, Eq. (2.23) can be written in terms of the average

linear monomer density r(z)

gintraðrÞ Z
1

cN

ðRe=2

KRe=2

dz

!

ðRe=2

KRe=2

dz0rðzÞrðz0ÞhdðrKðz0KzÞêzÞiorient

Z
1

2pcNr2

ðRe=2

KRe=2

dzrðzÞrðz CrÞ ð2:24Þ

where brackets h iorient denote the averaging over all

orientations of the unit vector êz. In the case of

uniformly stretched chain with the average linear

monomer density r(z)ZN/Re, Eq. (2.24) can be
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further simplified

gintraðrÞ Z
N

2pcr2

ReKr

R2
e

qðRe KrÞ (2.25)

where q(x) is the step function (q(x)Z1 for xR0 and

q(x)Z0 for x!0). The intrachain pair correlation

function gintra(r) follows the simple scaling law rK2

for distances r/Re. In the case of non-uniformly

stretched polyelectrolyte chain, the average linear

monomer density r(z) varies logarithmically along the

elongation axis (r(z)Zge(z)/De(z)zDe(z)/b2 where

De(z) is given by Eq. (2.20)). The intrachain

correlation function gintra(r) counts the number of

monomer pairs separated by distance r. The sum-

mation over all monomer pairs leads to additional

averaging of the linear monomer density r(z) along

the chain deformation direction. Both the end and the

middle chain sections contribute to the function

gintra(r) (see Eq. (2.24)). Because of such averaging

of the logarithmic function, one can expect the

intrachain correlation function gintra(r) to be close to

that for uniformly stretched chains (see Fig. 6). For

comparison, we fit the simulation result of cgintra(r)

using the analytical form (Eq. (2.25)) obtained for the

stepwise monomer density distribution as well as by

direct numerical integration (Eq. (2.24)) of the linear
r/σ
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Fig. 6. Comparison of the simulation results (squares) with

predictions of Eqs. (2.24) (solid line) and (2.25) (dashed line) for

intrachain monomer–monomer correlation function in dilute

solutions for fully charged chains with fZ1 and NZ187 at

concentration cZ1:5!10K5sK3 (see text for details). Reproduced

with permission from Liao, Q., Dobrynin, A.V., & Rubinstein, M.

Macromolecules 36, 3386–3398 (2003). [26] Copyright 2003,

American Chemical Society.
monomer density r(z) obtained during simulations.

The results of MD simulations [26] for the fully

charged chains (fZ1) with the number of monomers

NZ187 at polymer concentration cZ1.5!10K5sK3

are shown in Fig. 6. One can see that the agreement

between simulation data and both analytical results is

excellent. In addition, it demonstrates that the

intrachain correlation function is not very sensitive

to the non-uniform chain stretching. A good approxi-

mation of this correlation function can be obtained

from the uniform density profile.

2.3. Polyelectrolyte chain in a poor solvent

for polymer backbone

In poor solvents for polymer backbone there is an

effective attraction between monomers, which causes

neutral polymer chain without charged groups to

collapse into dense spherical globules in order to

maximize the number of favorable polymer–polymer

contacts and minimize the number of unfavorable

polymer–solvent contacts [22]. Upon charging, poly-

meric globules change their shape and size. This

phenomenon was observed over 50 years ago by

Katchalsky and Eisenberg [30] in their study of the

viscosity of aqueous solutions of poly(methacrylic

acid) (PMA). The viscosity of dilute PMA solution

stayed almost constant at a low pH and then abruptly

increased as solution pH reached some critical value,

indicating a dramatic change in the chain dimensions.

This dramatic change in solution viscosity of PMA is

qualitatively different from that observed in solutions

of poly(acrylic acid) (PAA) for which viscosity grows

smoothly with increasing neutralization, indicating

smooth expansion of polymer chains. The difference

in behavior of PMA and PAA is due to the fact that

water is a poor solvent for PMA that has hydrophobic

methyl groups while it is a good solvent for PAA. (For

a historical overview of this subject see the paper by

Morawetz [31].)

We begin our discussion of polyelectrolytes in a

poor solvent by briefly reviewing the theory of the

globular state in neutral polymers. In the globular

state close to the transition point, the interaction part

of the chain free energy Fint(R) can be expanded into a

power series of the number density of monomers rz
N=R3

glob (Rglob is the size of the globule). This

expansion is similar to the virial expansion in
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the theory of real gases [32]. Thus, the interaction part

of the free energy can be written as

Fint

kBT
zNBr CNCr2 (2.26)

where B and C are the second and third virial

coefficients. These coefficients are determined by the

functional form of the effective short-range inter-

action potential between monomers in a given solvent.

For the Lennard–Jones potential, the second virial

coefficient can be estimated as

BðTÞ Z
1

2

ð
dr 1Kexp K

ULJðrÞ

kBT

� �� �

zs3 1K
Q

T

� �
zs3t (2.27)

where Q is the theta temperature and tZ1KQ=T is

the relative deviation from the theta temperature,

called effective temperature. At Q-point, the second

virial coefficient is equal to zero. Below the Q-

temperature, the second virial coefficient B(T) is

negative, corresponding to the effective attraction

between monomers—poor solvent conditions for

polymer backbone. The third virial coefficient C is

always positive and is proportional to s6. For

simplicity, we will assume that the bond length

between monomers b is on the order of the monomer

diameter s. The equilibrium size of the globule is
R
glob

ξ

l0

T

0

D

(a)

(b)

Fig. 7. (a) Schematic representation of a polymeric globule of size Rglob co

representation of a necklace-like polyelectrolyte chain.
obtained by minimizing the interaction part of the free

energy Fint of the globule (Eq. (2.26)) with respect to

its size Rglob. The optimal size of the globule [10,22]

is equal to

Rglob zbjtjK1=3N1=3 (2.28)

There is an important length scale—the correlation

length xT of the density fluctuations inside a globule

(thermal blob size). At length scales smaller than the

thermal blob size xT, the chain statistics are

unperturbed by monomer–monomer attractive inter-

actions and are that of an ideal chain of gT monomers

ðxT zbg1=2
T Þ (see Fig. 7(a)). At length scales larger

than the thermal blob size, the attraction between

monomers wins (the attractive interaction between

two blobs is on the order of the thermal energy kBT)

and thermal blobs in a globule are densely packed,

rzgT=x
3
T. The polymer density r inside the globule

scales linearly with the absolute value of the effective

temperature t

rzbK3jtj

Thus, the number of monomers in a thermal blob is

gT zjtjK2

and its size is

xT zbjtjK1:
T
ξ

b

lstr

nsisting of dense packing of thermal blobs of size xT. (b) Schematic
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The free energy of the globule is on the order of the

thermal energy kBT per thermal blob

Fint

kBT
zK

N

gT

zKNt2 (2.29)

In addition to this bulk contribution to the free energy

of a globule, there is also a surface energy

contribution. The origin of the surface energy is the

difference in the number of nearest neighbors for

thermal blobs at the surface of the globule and those in

the bulk. It requires extra energy to bring a blob to the

surface. The surface energy of a globule can be

estimated as the number of blobs at the globule

surface S=x2
T times kBT because any two blobs inside

the globule attract each other with the energy on the

order of the thermal energy kBT and blobs at the

surface are missing part of this attraction energy

because they have fewer neighbors

Fsurf zkBTS=x2
T zgS (2.30)

where g is the surface tension of the globule

ðgzkBT =x2
TÞ. In fact, a polymeric globule can be

envisioned as a liquid droplet in the air.

The problem of the shape of a charged globule

bears similarity with the classical problem of the

instability of a charged droplet, considered by Lord

Rayleigh over 100 years ago [33]. In his classical

experiments, Rayleigh showed that a charged droplet

is unstable and breaks into smaller droplets if its

electric charge exceeds some critical value. The value

of the critical charge is controlled by the electrostatic

energy, Q2/(3Rdrop), of the droplet of size Rdrop with

charge Q, and its surface energy gR2
drop where g is the

surface tension of the air–water interface. Balancing

these two energies, one finds that the critical charge

Qcrit scales with the size of the droplet as R3=2
drop. The

equilibrium state of the charged droplet with QOQcrit

is a set of smaller droplets with charge on each of

them smaller than the critical one and placed at

an infinite distance from each other. For a polyelec-

trolyte chain in the globular state, its surface energy

kBTR2
glob=x

2
T becomes on the order of its electrostatic

energy kBTlB(fN)2/Rglob at the critical fraction of

charged monomers per chain fcrit equal to

fcrit z
jtj

uN

� �1=2

(2.31)
(In the derivation of Eq. (2.31) we used Eq. (2.28) for

the globular size Rglob.)

What are the conformations of the polymer chain

after this transition? The Rayleigh’s experiments give

a hint to what happens with polyelectrolytes in a poor

solvent when the fraction of charged monomers f

exceeds the critical value fcrit. Similar to a charged

droplet, a polyelectrolyte chain in a poor solvent

reduces its energy by splitting into a set of smaller

charged globules—beads connected by strings [34].

To show that, let us consider a necklace-like

polyelectrolyte chain that has nb (nbO1) beads of

size Db with mb monomers in each. These beads are

connected by strings, each having mstr monomers.

(See Fig. 7(b) for the definitions of different length

scales.) Each bead is a collapsed charged globule with

the size

Db zbjtjK1=3m1=3
b (2.32)

The total contribution to the necklace free energy due

to bead interface is equal to the number of beads nb

per chain times the surface energy of a bead

Fs
b

kBT
znb

D2
b

x2
T

znbjtj
4=3m2=3

b (2.33)

Pulling monomers into a string requires extra

energy kBT per thermal blob or kBT/gT per

monomer that is the difference between the average

interaction energy of a monomer in a string and

that in the interior (or even at the surface) of a

bead. Thus, each string has an additional

positive contribution to the necklace free energy

of kBTmstr/gT due to the loss of favorable attractive

interactions between monomers. The combined

contribution of the surface energy of nbK1 strings

to the free energy of a necklace is

Fs
str

kBT
zðnbK1Þ

mstr

gT

zðnbK1Þt2mstr (2.34)

In addition to the surface free energy term, the free

energy of a string has an elastic contribution due to

the stretching of the polymer backbone between

beads. Combining elastic and surface free energy

contributions to the string free energy we can write

Fstr

kBT
Z ðnbK1Þ

l2
0

b2mstr

Ct2mstr

� �
(2.35)
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where l0 is the length of a strand with mstr

monomers (see Fig. 7(b)). Minimization of Eq.

(2.35) with respect to mstr at fixed length l0 of the

strand results in the linear relation connecting the

distance between surfaces of the two neighboring

beads and the number of monomers in a string mstr

mstr Z
l0

jtjb
(2.36)

Substitution of this relation into Eq. (2.34) leads to

the linear dependence of the string free energy on

its length l0

Fstr

kBT
Z ðnbK1Þjtj

l0
b

(2.37)

The electrostatic contribution to the necklace

free energy includes the electrostatic energy of

beads, the electrostatic interaction between beads,

and the electrostatic energy of strings. There are

three different regions with different symmetry of

the electrostatic potential in dilute solutions of

necklaces. At distances from the center of a bead

smaller than half the distance between the centers

of mass of two neighboring beads, lstrZl0CDb, the

distribution of the electrostatic potential has almost

spherical symmetry that is slightly perturbed by the

strings of charged monomers. The contribution of a

bead to the necklace electrostatic energy can be

estimated as

Uelec
b

kBT
z

lBðfmbÞ
2

Db

z
lB tj j

1=3f 2m5=3
b

b
(2.38)

By multiplying the last equation by the number of

beads per chain nbead, one obtains the combined

electrostatic self-energy of all beads. At the length

scales larger than half the string length, the

distribution of electrostatic potential has a cylind-

rical symmetry. The self-energy of the cylinder

with the diameter equal to lstr and total length

(nbK1)lstr is estimated as

Uelec
neck

kBT
z

lBðfNÞ2

ðnb K1Þlstr

lnðnbÞ (2.39)

Combining all the terms together, we can write

the total energy of a necklace as the function of the

number of monomers in a bead, mb, the number of
beads on a chain, nb, and the string length

Fneck

kBT
z

lBðfNÞ2

ðnbK1Þlstr

lnðnbÞC ðnbK1Þjtj
l0
b

Cnbmb jtj4=3mK1=3
b C

lBf 2jtj1=3m2=3
b

b

� �
(2.40)

where the first-term describes the electrostatic

repulsion between beads, the second one—the

surface energy of strings and finally the last two

terms correspond to the surface energy of all beads

and their electrostatic self-energy. Analyzing Eq.

(2.40), one has to keep in mind that the total

number of monomers in beads nbmb plus the

number of monomers in all strings (nbK1)mstr

should be equal to the degree of polymerization N.

The equilibrium distance between the centers of

mass of two neighboring beads lstr is obtained by

minimizing the first two terms of the free energy of a

necklace Eq. (2.40) with respect to distance lstr. The

distance between the centers of neighboring beads lstr

is larger than the length l0 by the bead diameter Db

(lstrZl0CDb), thus on the scaling level both lengths

lstr and l0 are on the same order of magnitude when

lstr[Db. Below we will call lstr—the length of a

string. After minimization, we obtain

lstr z
bfN

nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

jtj

� �
lnðnbÞ

s
(2.41)

where we assume that the number of beads per chain

is large, nb[1. Eq. (2.41) shows the linear relation of

the distance between the centers of mass of two

neighboring beads and the charge per string fN/nb for a

given number of beads on a necklace.

In order to complete the optimization of the

necklace structure, one has to minimize the free

energy of a necklace with respect to the number of

monomers in a bead mb that leads to

mb z
jtj

uf 2
(2.42)

The number of monomers in a bead increases with

increasing the absolute value of the effective

temperature jtj and decreases with increasing fraction

of charged monomers f. Eq. (2.42) is another form of



Fig. 8. Dependence of the reduced mean-square radii of gyration of

polyelectrolyte chains in a poor solvent on the reduced chain

valence fN1/2 for chains with degrees of polymerization NZ16, 32,

64, 128, and 200. Results of the Monte Carlo simulations of freely

jointed chains interacting via Coulomb and Lennard–Jones potential

(3LJZ1.5 and uZ2). Reproduced with permission from Dobrynin,

A.V., Rubinstein, M., & Obukhov, S.P. Macromolecules 29, 2974–

2979 (1996). [34] Copyright 1996, American Chemical Society.

Fig. 9. Typical configurations of freely jointed uniformly charged

chains in poor solvent conditions for three different charge

fractions: (a) a spherical globule for fZ0; (b) a dumbbell for fZ
0.125; and (c) a necklace with three beads for fZ0.15. Reproduced

with permission from Dobrynin, A.V., Rubinstein, M., & Obukhov,

S.P. Macromolecules 29, 2974–2979 (1996). [34] Copyright 1996,

American Chemical Society.
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the Raylegh’s stability condition for a charged globule

(Eq. (2.31)).

In the case mb/mstr[1, the number of beads nb per

chain is approximately equal to N/mb. Since most of

the length of the necklace is stored in the strings, the

length of the necklace can be estimated as the number

of beads nb per chain times the distance between the

centers of mass of two neighboring beads lstr

Lnec znblstr zbfN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

jtj
ln

Nuf 2

jtj

� �s
(2.43)

The number of beads nb (nbzN/mb) in a necklace

can only be an integer, therefore, Eq. (2.42) defines

the set of boundaries

f z
jtj

u

nb

N

� �1=2

(2.44)

between the states of the necklace globule with

different number of beads. By changing the fraction of

charged monomers f or solvent quality t the globule

undergoes a cascade of transitions between states with

different integer number of beads nb per necklace.

Conformational transitions of polyelectrolyte

chains in poor solvents for the polymer backbone

were studied using molecular simulations by Hooper

et al. [35] and by Higgs and Orland [36]. It was found

that a polyelectrolyte chain undergoes an abrupt

conformational transition from a collapsed to an

extended state with increasing chain charge. As the

strength of the segment–segment attraction decreases

the transition becomes less pronounced [35].

The details of the transition and conformations of

polyelectrolyte chains above the transition were

described by Dobrynin et al. [34]. Performing

Monte Carlo simulations of freely jointed uniformly

charged polyelectrolyte chains with fractional charge

on each monomer f, they showed that the critical

number of charged monomers (fN)crit on the chains at

which charged globules becomes unstable is pro-

portional to
ffiffiffiffi
N

p
(see Fig. 8).

For the number of charged monomers on the chain

fN above the critical value (fN)crit, the polyelectrolyte

chain first takes a dumbbell configuration (see

Fig. 9(b)). At higher charge, the polymer forms a

necklace with three beads joined by two strings (see

Fig. 9(c)). These simulations have shown that there is

a cascade of transitions between necklaces with
different number of beads as the charge on the chain

increases.

The effect of solvent quality on the cascade of

transition between different pearl-necklace structures
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was investigated using Monte Carlo [37] and

molecular dynamics [38] simulations. Chodanowski

and Stoll [37] have found necklaces with up to 12

beads for a polyelectrolyte chain with degree of

polymerization NZ200. These results of computer

simulations are in good qualitative agreement with

theoretical models [34,39–41] of a polyelectrolyte

chain in a poor solvent.

The transition between necklaces with different

number of beads can be induced by applying an

external force—stretching the necklace [40,42–44].

Since the necklaces with different numbers of beads

coexist, the chain deformation will have a saw-tooth

deformation curve. However, this mean-field picture

of abrupt transitions between necklaces with different

numbers of beads is smeared by fluctuations in the

number of monomers in a bead as well as by

fluctuations of the number of beads in a necklace

[43,44]. The smooth deformation curve of a hydro-

phobic polyelectrolyte chain is confirmed by compu-

ter simulations [45,46].

2.4. Polyelectrolyte chains at finite concentrations

and counterion condensation

The electrostatic attraction between polyelectro-

lyte chains and counterions in solutions can result in

condensation of counterions on polyelectrolytes. The

counterion condensation appears to be due to a fine

interplay between the electrostatic attraction of a

counterion to a polymer chain and the loss of the

translational entropy by counterions due to their

localization in the vicinity of the polymer chain. In a

very dilute polyelectrolyte solution the entropic

penalty for counterion condensation is very high and

almost all counterions leave polymer chains and stay

‘free’ in solution. However, as polymer concentration

increases, the entropic penalty for counterion localiz-

ation decreases resulting in a gradual increase in the

number of condensed counterions. For polyelectrolyte

solutions in a good or theta solvent for polymer

backbone the fraction of free counterions decreases

logarithmically with increasing polymer

concentration.

A qualitatively different scenario is seen for

polyelectrolyte chains in a poor solvent known as

the avalanche-like counterion condensation [47–49].

By increasing polymer concentration or by decreasing
temperature one can cause a spontaneous conden-

sation of counterions inside beads of necklace

globules. The reduction of the effective charge of

the beads by condensed counterions increases the

mass of the beads, initiating further access of

counterions that starts the avalanche-like counterion

condensation process. At finite polyelectrolyte con-

centrations, this avalanche-like condensation results

in a phase separation of polyelectrolyte solutions into

dilute and concentrated phases.

There are several approaches to describe counter-

ion condensation in polyelectrolyte solutions. In the

first approach (Oosawa–Manning condensation the-

ory), the counterions are separated into ‘free’ and

‘condensed’ [5,50–53]. Free counterions are able to

explore the solution volume V. The condensed

counterions are localized within a small volume

surrounding polymer backbone. Modifications of the

two-state counterion condensation model include ion-

binding and ion localization models [48,54,55].

The two-state approximation for counterion distri-

bution in a polyelectrolyte solution is an over-

simplification of the real situation. A more rigorous

description of the distribution of counterions can be

obtained in the framework of the so-called Katch-

alsky’s cell model [56]. This model decouples the

counterion and polymeric degrees of freedom provid-

ing the equilibrium counterion density profile for the

fixed idealized polymer conformation. The mean-field

approximation of the counterion density profile is

obtained by solving the non-linear Poisson–Boltz-

mann equation describing the distribution of the

electrostatic potential around a macroion. Unfortu-

nately, the exact analytical solution of the non-linear

Poisson–Boltzmann equation exists only for a rod-like

polyelectrolyte [57–59] and for a planar charged

surface. To avoid some of the limitations of the cell

model and to describe the counterion distribution in

dilute solutions, Deshkovski et al. [60] developed a

two-zone model. In this model, the volume occupied

by charged rods is divided into two types of regions.

The inner regions are cylindrical zones around the

charged rods with the diameter on the order of the

length of rods L. The outer regions are spherical zones

outside the cylindrical regions that extend up to the

distance between chains. It turns out that this model

also has an exact analytical solution of the non-linear

Poisson–Boltzmann equation for the electrostatic
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potential in the cylindrical regions around polyions

[60]. In the limit when the outer (spherical) zone

disappears, the solution of the two-zone model is

reduced to that for the classical cell model.
2.4.1. Two-state model of counterion condensation

According to the Oosawa–Manning two-state

model [5,50], counterions in a polyelectrolyte solution

can be classified into two categories: counterions

localized inside potential valleys along polymer

backbones (state 1) and counterions freely moving

outside the region occupied by polyelectrolyte chains

(state 2) (see Fig. 10). The total solution volume, V, is

divided into two regions. One region surrounds

polyelectrolyte backbone with volume v where

counterions are localized. The total volume occupied

by condensed counterions is equal to the total number

of chains Np in solution times the localization volume

v (VconZNpv). The outer region (state 2) is further

away from polyions where free counterions are

distributed. The volume of this region is VKNpv. At

equilibrium, the electrochemical potentials mel of

counterions in both states are equal

mel

kBT
Z ln

n1

Npv

� �
K41 Z ln

n2

V KNpv

� �
K42

(2.45)

where n1 is the number of condensed counterions, n2

is the number of free counterions, and 4i is the

reduced electrostatic potential of counterions in the ith

state. Eq. (2.45) can be rewritten by introducing the
L

State 1

State 2

R

r0

Fig. 10. Schematic sketch of a polyelectrolyte chain and the

definition of different length scales for the two-state model. L is the

length of rod-like polyion and R is the cell size (R/L).
fraction of condensed counterions bZn1=ðn1 Cn2Þ

and polymer volume fraction fZNpv=V

ln
b

1Kb

� �
Z ln

f

1Kf

� �
KD4 (2.46)

where D4Z42K41 is the difference of the reduced

electrostatic potentials between states 2 and 1. In the

original Oosawa–Manning model, the polyelectrolyte

chains were assumed to be rod-like with the distance

2R between them smaller than their length L. In this

case, the typical variations of the reduced electrostatic

potential between two cylindrical regions occupied by

counterions is approximately equal to

D4z2ð1KbÞ
lBfN

L
ln

r0

R

� �
zð1KbÞg0lnðfÞ (2.47)

where r0 is the radius of region 1 and g0 is the so-

called Oosawa–Manning counterion condensation

parameter—product of the Bjerrum length lB and the

linear number density of ionized groups fN/L on the

polymer backbone

g0 Z
lBfN

L
(2.48)

Substituting expression for D4Z42K41 from Eq.

(2.47) into Eq. (2.46), we can rewrite Eq. (2.45) in the

limit of low polymer volume fractions, 4/1, in the

following form

ln
b

1Kb

� �
Z ½1Kð1KbÞg0�lnðfÞ (2.49)

There are two qualitatively different asymptotic

regimes of Eq. (2.49) for the dependence of the

fraction of condensed counterions b on the polymer

volume fraction. For the small values of the counter-

ion condensation parameter g0/1, the fraction of

condensed counterions b is equal to f and decreases

with decreasing polymer volume fraction f. The

fraction of condensed counterions b eventually

approaches zero at infinite dilution, f/0. In the

opposite limit of large values of the Oosawa–Manning

counterion condensation parameter g0[1 the frac-

tion of free counterions 1Kb is equal to

1KbzgK1
0 ½1Klnðg0Þ=lnðfÞ� (2.50)

and approaches 1/g0 at infinite dilution, f/0. Thus,

there is the counterion condensation phenomenon that

is associated with the value of the parameter g0.
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The inverse reduced effective linear charge density

(1Kb)g0 of the rod-like polyelectrolyte as ‘seen’ by a

counterion in region 2 saturates at unity. In this

regime, the distance between ionized charged groups

on polyion, L=½ð1KbÞfN�zlB½ð1KbÞg0�
K1, is of the

order of the Bjerrum length lB. Fig. 11 shows the

dependence of the inverse reduced effective linear

charge density (1Kb)g0 of the rod-like polyelec-

trolyte on its bare value g0 with two qualitatively

different regimes. The inverse reduced effective linear

charge density (1Kb)g0 increases linearly for small

values of the Oosawa–Manning condensation par-

ameter g0 and saturates as it becomes larger than

unity.

The size of flexible polyelectrolytes increases with

the fraction of ionized charged groups (1Kb)f as Lz
bNð1KbÞ2=3ðuf 2Þ1=3 (see for example Eq. (2.14)).

Substituting this expression for the chain size into the

definition of the Oosawa–Manning counterion con-

densation parameter g0 (Eq. (2.48)), we can rewrite

Eq. (2.49) in the following form

ln
b

1Kb

� �
Z ½1Kð1KbÞ1=3u2=3f 1=3�lnðfÞ (2.51)

The counterion condensation will occur in this case

when the parameter u2f becomes larger than unity. At

the crossover value of the parameter u2fz1, the

distance between two neighbouring charged groups

along the polymer backbone, b/f1/2, is comparable

with the Bjerrum length lB. The value of the parameter

u2fz1 separates two different classes of polyelec-

trolyte systems: weakly charged polyelectrolytes for
Fig. 11. Dependence of the inverse reduced effective linear charge

density of the rod-like polyelectrolyte on the Oosawa–Manning

condensation parameter g0 at different polymer volume fractions f.
which the parameter u2f is smaller than unity, and

strongly charged polyelectrolytes with u2f [1. The

counterion condensation phenomenon is expected

only for strongly charged polyelectrolytes.

The counterion condensation phenomenon

described above is a specific feature of the cylindrical

symmetry of the system (even at the ‘infinite

dilution’) for which the electrostatic potential varies

logarithmically with distance r from the polyion. The

original Oosawa–Manning treatment of counterion

condensation corresponds to the case of semidilute

polyelectrolyte solutions when the distance between

chains is smaller than their length (L[R). This

relation between R and L is assumed even at ‘infinite

dilution’ (L[R/N). Below we review a model

[60] that releases this assumption.
2.4.2. Counterion distribution and osmotic pressure

in dilute polyelectrolyte solutions.

Consider a dilute solution of cylindrical polyions

with radius r0, length L, and the number of charged

groups fN per polyion. A dilute solution can be

modeled by placing each polyion at the center of a cell

of size Rcell wcK1=3
pol , where cpol is the density of

polyions (see Fig. 12). The cell volume is divided into

two zones: a cylindrical zone (I) of length L and radius

RZL/2, surrounding a rod-like polyion; and a

spherical zone (II) with radius Rcell, outside the

cylindrical region (see Fig. 12).

The reduced electrostatic potential f(r) in the

cylindrical zone I satisfies the Poisson–Boltzmann

equation

v2

vr2
C

1

r

v

vr

� �
4ðrÞ Z 4pcðRÞexp½4ðrÞ� (2.52)

where r is the distance from the axis of the cylindrical

polyion, and c(R) is the counterion concentration at

the boundary of the cylindrical region where the

electrostatic potential 4(R) is set to zero. Here, we

consider only systems with monovalent counterions.

The inner boundary condition at the surface of the

charged rod at rZr0 is determined by the reduced

linear charge density g0ZfNlB/L

v4ðrÞ

vr
rZr0

ZK2
g0

r0

���� (2.53)
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Zone 1

Zone 2

R

r0

Fig. 12. Schematic sketch of a dilute solution of rod-like polyelectrolytes and the definition of different length scales for the two-zone model.

Fig. 13. Theoretical phase diagram of the two-zone model.

Parameter g0 is the bare linear charge density on polyion and gR

is the effective linear charge density of the cylindrical region. Phase

I—weakly charged polyions; Phase II—saturated condensation;

Phase III—unsaturated condensation. See text for details.
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Note that the reduced linear charge density g0 is the

dimensionless Manning counterion condensation

parameter (Eq. (2.48)) [50,51]. The outer boundary

condition at rZR is determined by the effective linear

charge density of the cylindrical region

gR Z fRNlB=L; (2.54)

where fRN is the net charge within the cylindrical

region, which is equal and opposite to the charge of

the outer region due to the electroneutrality condition

v4ðrÞ

vr
rZR ZK2

gR

R

��� (2.55)

The solution of the non-linear Poisson–Boltzmann

equation (Eq. (2.52)) with the boundary conditions

(Eqs. (2.53) and (2.55)) leads to the following

counterion density profile in the cylindrical zone as

a function of the distance r from the polyion axis [60]

cðrÞ Z
2

plB

a2z2ar2aK2

ðr2aKz2aÞ2
(2.56)

where parameters a and z are defined by the following

equations

r2a
0

g0K1Ka

g0K1 Ca
Z z2a Z R2a gR K1Ka

gR K1 Ca
(2.57)

Eq. (2.57) represents the boundary conditions (Eqs.

(2.53) and (2.55)) in terms of the model parameters.

The exact solution of the two-zone model predicts

three qualitatively different regimes shown in Fig. 13

within the physical range g0OgR of linear charge
densities g0 and gR. These regions are separated by

the line aZ0 (thick solid line in Fig. 13)

g0;critðgRÞ Z
gR C ð1KgRÞlnðR=r0Þ

1 C ð1KgRÞlnðR=r0Þ
(2.58)

Phase I (gR!g0!g0,crit(gR)!1) corresponds to the

real values of the parameter a (parameter a is

proportional to 1Kg0 for large R). In this regime,

the electrostatic attraction is not strong enough to

keep counterions adjacent to the polyion, and most of

the counterions are outside the cylindrical region. The
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counterion concentration in the cylindrical zone

around the polyions has a power law dependence on

the distance r from the polyion cðrÞf rK2g0 . Phase II

corresponds to g0Og0,crit, and to the pure imaginary

values of the parameter a. In this range of parameters

the charge on the polyion is almost completely

compensated by its counterions, and the counterion

density profile is universal (c(r)frK2) and indepen-

dent of the linear charge density g0 on the polyion.

The line aZ0 on this phase diagram (see Eq. (2.58))

is the line of second-order phase transitions that

separates Phase II with the self-similar counterion

density profile from Phases I and III. Phase III

corresponds to the condition 1(gR!g0!g0,crit(gR)!
1), and to the real values of the parameter a (see

Fig. 13). Here, the counterion density profile is

cðrÞfrK2gR .

Experimentally the fraction of free counterions in

salt-free polyelectrolyte solutions is believed to give

the main contribution to the osmotic pressure. In order

to obtain an expression for the osmotic pressure in the

framework of the two-zone model, one has to know

the counterion concentration at the outer boundary of

the spherical region. This requires knowledge of the

electrostatic potential within the spherical zone.

However, we can avoid solving the non-linear

Poisson–Boltzmann equation and use the relation

between the pressure tensor P(r)dij and the Maxwell

stress tensor [21]

TijðrÞ Z
3

4p
EiðrÞEjðrÞK

E2ðrÞ

2
dij

� �
(2.59)

where dij is the unit tensor and Ei(r) is the ith

component of the electric field vector. Since the

system is in equilibrium, the mechanical and

electrostatic forces are balanced at each point within

a cell. This leads to the following relation between the

pressure and the Maxwell stress tensor

ViPðrÞdij KViTijðrÞ Z 0 (2.60)

The integral of the last equation over the volume of

the spherical zone reduces to the integral over the

zone boundaries. The value of the electric field at the

outer boundary of the spherical zone is equal to zero

due to electroneutrality of the two zones, E(Rcell)Z0.

The value of the pressure tensor at the outer boundary
of the spherical region is equal to the osmotic pressure

p Z PðRcellÞ Z kBTcðRcellÞ

Z kBTcðRÞK
3E2ðRÞ

8p

Z
kBT

2plBR2
ððgR K1Þ2 Ka2 Kg2

RÞ (2.61)

where parameter a is the exponent related to the decay

of the counterion density profile in the cylindrical

zone and is given by Eq. (2.57).

Dividing the osmotic pressure by the ideal pressure

of all counterions, kBTfN/Vcell, we obtain the

prediction of the two-zone model for the osmotic

coefficient

fosm Z
Vcell

2Ving0

½ðgRK1Þ2Ka2Kg2
R� (2.62)

where Vcell and Vin are the total cell volume and

volume of the cylindrical region, respectively.

Eq. (2.62) for the osmotic coefficient reduces to

that derived for the Katchalsky’s cell model [56] in

the case gRZ0 corresponding to semidilute

polyelectrolyte solutions with the length of the

polyion larger than the distance between polyions

(VcellZVin)

fosm
cell Z

1Ka2

2g0

(2.63)

The osmotic coefficient in semidilute solutions (see

Eq. (2.63)) is proportional to the fraction of ‘free

counterions’ 1/g0 [5,50,56].

Eq. (2.62) can be simplified in the limit of not very

large values of the parameter gRR1 by assuming that

the variations of the electrostatic potential over the

spherical zone are small and, therefore, counterions

are distributed almost uniformly in the spherical zone

with the average concentration

cðRcellÞz
fRN

Vout

z
gRL

lBVout

(2.64)

where Vout is the volume of the outside (spherical)

zone. Using this approximation, we can write the

following expression for the osmotic coefficient of the
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Fig. 14. (a) Dependence of the osmotic coefficient of rod-like

polyions on polymer concentration in dilute solutions. Open

symbols are simulation results. The lines are predictions of zero-

order approximation of the two-zone model. From top to bottom,

the parameter g0 is 0.5, 1.0, 1.5, and 3.0, respectively. (b)

Dependence of the osmotic coefficient of flexible polyions on

polymer concentration in dilute solutions of strongly charged

polyelectrolyte chains (fZ1). Reproduced with permission from

Liao, Q., Dobrynin, A.V., & Rubinstein, M. Macromolecules 36,

3399–3410 (2003). [61] Copyright 2003, American Chemical

Society.
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two-zone model

f
osm
dilute z

cðRcellÞV

fN
Z

gR

g0

1 C
pL3

4Vout

� �
(2.65)

Eq. (2.65) implies that in dilute solutions (VoutOL3)

the osmotic coefficient is proportional to the fraction

of counterions that are outside the cylindrical zone

gR/g0. At infinite dilution, the osmotic coefficient

fosm approaches unity indicating that almost all

counterions are outside the cylindrical zone and

gRzg0.

Fig. 14 shows the osmotic coefficient of rod-like

(Fig. 14(a)) and flexible fully charged (Fig. 14(b))

polyelectrolytes in dilute salt-free solutions [61].

The solid lines in Fig. 14(a) are the predictions of

the zero-order approximation two-zone model (Eq.

(2.65)) without any adjustable parameters. These

figures show a decrease in the osmotic coefficient

fosm with increasing polymer concentration c. This

behaviour is not only in good qualitative agree-

ment, but for some data, even in good quantitative

agreement with the predictions of the two-zone

model. To verify the predictions of Eq. (2.65) for

the osmotic coefficient, Fig. 15 shows a universal

plot of the reduced osmotic coefficient g0fosm/gR

as a function of the normalized polymer concen-

tration c/c*.

For the rod-like chains, we define the overlap

concentration c* as monomer concentration in the

cylindrical zone 4N/(pL3). All points collapse onto

the universal curve as predicted by Eq. (2.65) for rod-

like polyelectrolyte solutions (see Fig. 15(a)). How-

ever, the size Re of flexible chains is a function of

polymer concentration because polyelectrolytes con-

tract with increasing concentration. To collapse all

points into one universal curve and to take into

account the chain contraction in Fig. 15(b), the

reduced osmotic coefficient g0fosm/gR is plotted

versus the ratio of polymer concentration c to

monomer concentration within a cylindrical region

cp[Re(c)]3/(4N). All points once again collapse into

one universal curve, proving that the two-zone model

adequately describes simulation results for flexible

chains as well.

The Poisson–Boltzmann approach to description

of electrostatic potential near macroions fails when

there are strong correlations between counterions.
This takes place either in the system with

multivalent counterions or in the case of large

values of the Bjerrum length lB. We refer readers

to Refs. [62–64] for the detailed discussion of this

subject.



1E-3 0.01 0.1

0

1

2

γ
0
 = 3.0

γ
0
 = 1.5

γ
0
 = 1.0

γ
0
 = 0.5

10-6 10-5 10-4 10-3 10-2 10-1 100
0

1

2

3

4

         f = 1                f = 1/3
N = 25    N = 25
N = 40  N = 40
N = 60    N = 61
N = 94    N = 94
N = 187  N = 187
N = 300

cπRe
3/(4N)

γ 0
φo

sm
/γ

R
γ 0

φo
sm

/γ
R

c/c*

(a)

(b)
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order approximation of the two-zone model (Eq. (2.65)).
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2.4.3. Ion-binding and ion localization models

for counterion condensation

The ion-binding model was originally developed to

describe the ionization equilibrium in polyelectrolytes

[48,54,65]. This model also separates counterions into

two different classes: bound and free counterions. The

bound counterions are complexed with oppositely

charged groups on the polymer backbone, forming

dipoles, while free counterions can move freely

through the solution. Under these assumptions, the

chemical potentials of both bound and free counterions

are calculated.
The chemical potential of bound counterions has

the following contributions:

(i) An entropic contribution due to redistribution of

bound counterions between different charged

groups along the polymer backbone. For poly-

electrolyte chain with fN monomers carrying

ionic groups and having (1Kb)fN of these

groups ionized this contribution is

mentr
bind Z kBT ln

b

1Kb

� �
(2.66)

(ii) The localization of counterions within volume v

near the binding site results in an additional

penalty, which depends on the localization

volume logarithmically

mlocal
bind ZKkBT lnðvÞ (2.67)

(iii) Formation of ion pairs also changes the local

solvent structure. This contribution to the

counterion chemical potential has both entro-

pic and energetic parts. The entropic part is

due to the solvent rearrangement around the

ion pair and the energetic contribution is due

to electrostatic interactions between solvent

molecules and ions of both types. This

contribution to the chemical potential of

bound ions is usually measured with respect

to the chemical potential in the ionized state

and considered as an input parameter of the

theory. We will denote this part of the bound

ion chemical potential as Dmbind.

The ‘free’ counterions are still free to explore the

whole volume of the system. Their chemical potential

has

(i) An entropic contribution due to the translational

entropy of counterions

mtrans
free zkBT ln½ð1KbÞfc� (2.68)

(ii) An electrostatic contribution due to interactions

between ionized groups along the polymer

backbone leading to the increase of chain free
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energy

melectr
free z

kBT

g0
e f ð1KbÞ

zkBTu2=3f 1=3ð1KbÞ1=3 (2.69)

Here, we used the scaling model of the polyelec-

trolyte chain in a Q-solvent (Eq. (2.13a)) to obtain

expression (2.69) for the electrostatic part of the

chemical potential of the chain.

In equilibrium, the chemical potentials of bound

and free counterions are equal to each other. The

fraction of bound counterions is given by the

following non-linear equation

b

ð1KbÞ2
zf f exp u2=3f 1=3ð1KbÞ1=3K

Dmbind

kBT

� �
(2.70)

where fZcv is the polymer volume fraction in

solutions with polymer concentration c. It follows

from this equation that connecting charged monomers

into chains (the first term in the square brackets) shifts

ionization equilibrium towards the formation of ionic

pairs (increasing b) in comparison with the ionization

equilibrium in a monomeric system [48]. For a

polymer in a Q-solvent, the fraction of bound

counterions increases monotonically with increasing

polymer volume fraction.

The counterion binding model presented above can

be extended to the poor solvent condition for polymer

backbone. In this case, the expression for the chemical

potential describing the interactions between ionized

groups on a necklace has a qualitatively different form

melectr
free zkBT

u1=3jtj

f 1=3ð1KbÞ1=3
(2.71)

Taking into account this expression for the electro-

static part of the chemical potential, Eq. (2.70) can be

rewritten for polyelectrolytes in poor solvents as

b

ð1KbÞ2
zf f exp

u1=3jtj

f 1=3ð1KbÞ1=3
K

Dmbind

kBT

� �
(2.72)

It follows from this equation that the electrostatic

energy per charged monomer increases with increas-

ing number of bound counterions. This induces an

additional influx of counterions to compensate for the

growing electrostatic energy and sets up an
avalanche-like counterion condensation and an abrupt

first-order transition into a globule state [47–49].

The formation of ion pairs on the polymer

backbone results in additional dipole–dipole attractive

interactions. These extra attractive interactions

decrease the second virial coefficient shifting the

position of the Q-temperature. The shift of the Q-

temperature in the case of strongly charged polyelec-

trolytes could be significant leading to chain collapse.

A detailed analysis of counterion condensation on the

chain conformations in different temperature regimes

was presented by Schiessel and Pincus [66] and by

Schiessel [67].

The description of counterion condensation in the

counterion localization model is similar to the ion-

binding model. The only difference is the treatment of

condensed counterions. In the counterion localization

model, the condensed counterions are free to move

inside the volume of a chain (see Refs. [47,49]). Such

consideration of condensed counterion changes the

entropic contribution to the counterion’s chemical

potential. It is due to translational entropy of

counterions inside the volume of the chain. The

interactions of counterions with the surrounding

charged background can also be included into the

model (see for details Ref. [68]). These interactions

lead to the effective monomer–monomer attraction

and could induce chain collapse at relatively large

values of the Bjerrum length.

Recently, Kramarenko et al. [55] introduced a

three-state model of counterion condensation in dilute

polyelectrolyte solutions. This model introduces three

possible states for counterions: free counterions inside

and outside the polyelectrolyte chain and bound

counterions forming ionic pairs with the correspond-

ing sites on the polymer backbone. This model has

features of both ion-binding and counterion localiz-

ation models. The formation of ionic pairs becomes

extremely important when the polyelectrolyte chain

collapses, expelling solvent molecules from the chain

interior and lowering the effective local dielectric

constant. The decrease of the dielectric constant

promotes further ion pairing and chain collapse.

The models for counterion condensation, discussed

above, assume uniform distributon of charges along

the polymer backbone and neglect the effects of chain

ends. In Section 2.2, we have shown that the

polyelectrolyte chain is non-uniformly stretched.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–1118 1071
The non-uniform stretching of the chain results in

charge depletion in the middle of the chain and

additional charge accumulation at the chain ends (see

for details [28,69]). This counterion redistribution

occurs because the polyelectrolyte is stronger

stretched in the middle than at the chain ends leading

to the increase of the effective linear charge density

towards chain ends.
2.4.4. Effect of counterion condensation on chain size

and chain conformation

As we have shown in previous sections, the

number of condensed counterions increases with

increasing polymer concentration. The polyelectro-

lyte conformations are controlled by the fraction of

ionized groups. Thus, counterion condensation leads

to weakening of electrostatic interactions and

promotes shrinkage of polyelectrolyte chains. The

decrease of chain size with increasing polymer

concentration is supported by the results of computer

simulations [26,70–73]. Fig. 16 shows the variation in

chain size for partially charged chains with fZ1/3

[26].

The strength of the electrostatic interactions is also

influenced by the dielectric constant of a polyelec-

trolyte solution. Experimentally, dielectric constant
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Fig. 16. Concentration dependence of the size of partially charged

chains with fZ1/3. The overlap concentrations are marked by

arrows. Reproduced with permission from Liao, Q., Dobrynin,

A.V., & Rubinstein, M. Macromolecules 36, 3386–3398 (2003).

[26] Copyright 2003, American Chemical Society.
can be continuously changed by using mixed solvents.

At constant polymer concentration, the increase of the

strength of the electrostatic interactions induced by

the decrease of the dielectric constant first leads to

stretching of the polyelectrolyte chain. In a Q-solvent

for polymer backbone the chain size is proportional to

the 1/3 power of interaction parameter u, Rewu1/3 (see

Eq. (2.8)). However, as the strength of electrostatic

interactions increases further, the counterion conden-

sation reduces the effective charge on polyelectrolyte

chains. More counterions form ionic pairs in solutions

with stronger electrostatic interactions leading to the

additional attraction between monomers and shrink-

age of polyelectrolyte chains. Thus, the size of a

polyelectrolyte chain is expected to show the non-

monotonic dependence on the strength of the

electrostatic interactions (the value of the Bjerrum

length lB). Brilliantov et al. [68] have applied the one-

component plasma model to describe electrostatic

interactions induced by condensed counterions. This

model predicts an abrupt transition between stretched

and collapsed chain conformations. The predictions of

the model are in reasonably good qualitative

agreement with the results of molecular dynamics

simulations by Winkler et al. [74]. The collapse of

polymer chains can also be described by introducing

renormalization of the second virial coefficient due to

the dipole–dipole and the ion–dipole interactions

inside polymer coils [54]. This model predicts the

non-monotonic dependence of the polymer size on the

interaction parameter u, but in this case the chain size

varies smoothly with the interaction parameter.

A comprehensive study of the effect of the

counterion condensation on the necklace formation

in dilute polyelectrolyte solutions was performed by

Limbach and Holm [75]. They concluded that the

polyelectrolyte chain adopts necklace conformation

only in the narrow range of the interaction parameter.

At finite polymer concentrations, the necklace

stability region is strongly influenced by the counter-

ion condensation. A similar trend was observed in

Monte Carlo simulations of titration of hydrophobic

polyelectrolytes by Ulrich et al. [76]. Depending on

the solvent quality for the polymer backbone and the

pH–pK0 value, polyelectrolyte chains were found in

five different conformation states: coil, collapsed

spherical globule, necklace globule, sausage-like

aggregate and fully stretched chain.
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2.5. Effects of added salt on chain conformations

and electrostatic persistence length

The electrostatic interactions between charged

monomers in solutions with finite salt concentrations

are screened by salt ions and their strength decreases

exponentially with the distance between charges (see

Eq. (2.1)). However, the charges still interact through

the unscreened Coulomb potential at distances much

smaller than the Debye screening length rD. A

polyelectrolyte chain does not feel the presence of

salt if the Debye screening length is much larger than

the chain size Re. At high salt concentrations such that

the Debye screening length rD is smaller than the

electrostatic blob size D0
e , the electrostatic interactions

can be viewed as the short-range ones with the

effective monomeric second virial coefficient Bel

proportional to f 2lBr2
D. At these salt concentrations,

a polyelectrolyte chain has the same structure as a

neutral polymer in a good solvent.

It was proposed by Odijk [77] and by Skolnick and

Fixman [78] (OSF) that at intermediate salt concen-

trations, D0
e !rD !Re, the intrachain electrostatic

interactions induce additional chain stiffening beyond

the Debye screening length rD. Thus, a polyelectrolyte

chain in salt solutions behaves as a semiflexible

polymer with salt-concentration-dependent persist-

ence length.

The original derivation of the electrostatic persist-

ence length is based on the evaluation of the change of

the electrostatic energy as polymer conformation

deviates from a straight line. Let us consider a
R θ

θ

b i

b i+1

r(n)

nθ

c

ii

i+1i+1

Fig. 17. Schematic representation of the conformation of a

polyelectrolyte chain for calculation of the OSF electrostatic

persistence length.
variation in the electrostatic energy of a fully charged

polyelectrolyte chain (fZ1) with bond length b by

bending the chain into a circle with radius Rc Z
b=½2 sinðq=2Þ� (see Fig. 17). The distance between two

monomers separated by n bonds along the polymer

backbone in such conformation is equal to

rðnÞ Z 2Rc sinðnq=2Þ

Z
b sinðnq=2Þ

sinðq=2Þ
z

q/1
bnð1Kn2q2=24Þ (2.73)

The difference between the electrostatic energy per

monomer in the circular and rod-like conformations is

DUelectrðqÞ

kBT

zlB

XN

nZ1

expðKkrðnÞÞ

rðnÞ
K

expðKkbnÞ

bn

� �
z

kb/1

lB

8k2b3
q2

(2.74)

The expression (2.74) was obtained [22] by substitut-

ing expression for r(n) (Eq. (2.73)) into the right-hand

side of Eq. (2.74) and expanding it into the power

series over q. A chain in the circular configuration

makes a complete turn after npfqK1 steps leading to

the persistence length bqK1.

In the OSF derivation of the electrostatic persist-

ence length [77,78] , it was assumed that such bending

of a chain can be induced by thermal fluctuations if

the change in the electrostatic energy per persistence

length npDUelectr(q)is on the order of the thermal

energy kBT. This leads to the typical values of the

bending angle qOSFzk2b3/lB and the OSF electro-

static persistence length equal to

lOSF
p z

b

qOSF

z
lBr2

D

4b2
(2.75a)

The original OSF derivation [77,78] was done for

intrinsically rigid chains for which the total persist-

ence length is the sum of the electrostatic contribution

given by Eq. (2.75a) and of the bare persistence

length l0
p.

Odijk [79] applied Eq. (2.75a) to describe solution

properties of flexible strongly charged polyelectro-

lytes with the electrostatic interaction parameter

uf2z1. In this case, the electrostatic contribution to

the chain persistence length lOSF
p is the main factor
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Fig. 18. Conformation of a polyelectrolyte chain with the arbitrary

distribution of torsion angles fi and bond angles qi.
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controlling the bending rigidity of the polyelectrolyte.

The additional chain stiffening of these polyelec-

trolytes could occur at distances substantially larger

than the Debye screening length rD. The Odijk result

was extended to flexible weakly charged polyelec-

trolytes with uf2/1 by Khokhlov and Khachaturian

[24] by considering electrostatic blobs of size D0
e [23]

as new effective monomers

lKK
p z

r2
D

D0
e

(2.75b)

This result for weakly charged chains was rederived in

the framework of the variational approach by several

authors [80–82].

Since 1977, there were series of attempts to

confirm or disprove the OSF result for electrostatic

persistence length [80–85]. Schmidt [85] used a

variation of the Flory approach to calculate the

chain size and persistence length. In this approach,

the electrostatic energy of the chain was evaluated

using the worm-like chain distribution function for the

average mean-square distance between monomers.

The numerical minimization displays weaker than r2
D

dependence without pure scaling regime. The electro-

static persistence length at high salt concentrations

appears to asymptotically approach rD. Barrat and

Joanny [86] used a variational approach with the trial

function describing the chain under tension. They

found a linear dependence of the electrostatic

persistence length on the Debye length. In a series

of papers [81,87], Ha and Thirumalai applied the

Edwards and Singh variational principle [88], mini-

mizing the error in the chain mean-square end-to-end

distance between the trial chain and the actual

polymer chain. The results of this minimization

procedure depend on the value of the parameter uf2.

For weakly charged chains with uf2/1, the

electrostatic persistence length is proportional to r2
D.

However, in the limit uf2/1, the linear rD depen-

dence of the electrostatic persistence length was

reproduced. Manghi and Netz [82] have recently

argued that Ha and Thirumalai’s prediction [81,87]

for rD dependence of the electrostatic persistence

length is a result of the incorrect elimination of the

divergence in the expression for chain entropy. The

linear rD dependence of the electrostatic persistence

length was also derived by Muthukumar et al. [89,90].
Netz and Orland [80] and Manghi and Netz [82] have

applied Gaussian variational principle considering

electrostatic persistence length as an adjustable

parameter. This approach leads to r2
D dependence of

the electrostatic persistence length reproducing

Khokhlov–Khachaturian’s result [24] for weakly

charged chains.

The linear dependence of the electrostatic persist-

ence length on the Debye screening length rD is

supported by computer simulations of weakly charged

polyelectrolyte chains [91–97] and some experiments

[98–104]. The recent computer simulations [105–107]

have shown that in order to distinguish between the

two limiting cases of the salt concentration depen-

dence of the electrostatic persistence length, one has

to go to very long chains (NO512). For shorter chains,

the difference between quadratic and linear depen-

dence of the electrostatic persistence length on the

Debye screening length rD is not numerically

significant. However, for longer chains with NO
1024, there is a deviation from the linear dependence

but not sufficient enough to rule it out completely.

However, the analysis of the data was done by

assuming two pure asymptotic regimes for electro-

static persistence length lp wr2
D and rD neglecting

logarithmic corrections to both results. These logar-

ithmic corrections are due to local chain stretching

and could be important for longer chains with a degree

of polymerization NO1024 as we described in

Section 2.2 on non-uniform chain stretching in dilute

salt-free solutions.

In order to describe the possible origin of different

dependence of the electrostatic persistence length on

the Debye screening length, consider a freely rotating

polyelectrolyte chain with adjustable, but uniform
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(same for all bonds) value of the bond angle q (see

Fig. 18) [10]. While the values of the bond angles are

fixed, the torsion angles can assume any values from

the interval Kp%fi%p. In this approach, we assume

that the electrostatic repulsion between charged

monomers imposes constraints on the bond angles in

comparison with those for freely jointed (neutral)

polymer chain. The optimal value of the bond angle is

then found by minimizing the sum of electrostatic and

entropic (conformational) contributions to the free

energy of the chain with respect to the bond angle q. In

the limit of small bond angles, the freely rotating

chain model reduces to the worm-like chain model

with the orientational memory between two vectors bi

and biCn decaying exponentially with the number of

bonds n between them [10]

hðbi$biCnÞif Z b2hcosðqðnÞÞif zb2ðcosðqÞÞn

zb2 expðKnq2=2Þ
(2.76)

where brackets h if denote the average over torsion

angles fi. The characteristic length of orientational

correlations [10] is equal to 2/q2. The square of the

angle q(n) between any two bond vectors separated by

n bonds along the polymer backbone is equal to nq2

(hq(n)2iznq2), which is a direct result of the

randomness in the torsion angles distribution.

The mean-square average distance between two

monomers of this chain separated by n bonds is equal

to [10]

hrðnÞ2if z
8b2

q4
exp K

nq2

2

� �
C

nq2

2
K1

� �
(2.77)

(In the derivation of Eq. (2.77), it is assumed that the

typical values of the angle q are small so that cos(q)

can be approximated cosðqÞz1Kq2=2) At short

distances along the polymer backbone, nq2/1, the

conformation of the chain is close to the rod-like with

the average mean-square distance hr(n)2ifzb2n2. At

larger distances along the polymer backbone, nq2[1

the orientational memory is lost and the chain behaves

as an ideal chain with the persistence length

lp z2b=q2 (2.78)

and the mean-square distance between two monomers

varies linearly with the number of bonds n between

them, hr(n)2ifz4b2qK2n. The difference of the
electrostatic energy per monomer between a freely

rotating chain with bond angle q and a rigid rod is

equal to

hDUelectrðqÞif

kBT

zlB
XN

nZ1

expðKk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hrðnÞi2f

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

hrðnÞi2f

q K
expðKkbnÞ

bn

0
B@

1
CA z

kb/1

lBq2

kb2

(2.79)

In the derivation of Eq. (2.79) we use the following

expansion forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrðnÞ2if

q
z

nq2/1
bn 1K

nq2

12

� �
(2.80)

By imposing the angular constraint one changes

the number of available states in bond orientational

space. For a freely rotating chain with the fixed bond

angle qiZq and unrestricted torsion angles fi each

bond vector is localized on a circle of radius b sin(q)

(see Fig. 18). The number of states U(q) available to a

bond vector is proportional to the circumference

2pb sin(q), which for small values of the bond angle is

proportional to angle q, U(q)fq. Thus, for a chain

with the bare persistence length b the entropy change

due to imposed angular constraint depends logar-

ithmically on the value of the bond angle q

DSðqÞzkBlnðUðqÞÞzkBlnðqÞ (2.81)

The free energy change per bond of a chain with

electrostatic interactions is equal to the sum of entropic

Eq. (2.81) and energetic Eq. (2.79) contributions

FðqÞ

kBT
zKlnðqÞC

lBq2

kb2
Cconst (2.82)

Minimization of this expression with respect to angle q

leads to the optimal angle value q to be on the order offfiffiffiffiffiffiffiffiffiffiffiffi
kb2=lB

p
. This results in the linear dependence of the

electrostatic persistence length on the Debye screening

length rD

lWLC
p z2b=q2zurD (2.83)

Thus, minimization of Eq. (2.82) with respect to angle q

corresponds to optimization of the chain persistence

length. There is very simple interpretation of the

electrostatic contribution to the chain persistence length.
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It is proportional to the energy of electrostatic

interactions between two chain segments with length

on the order of the Debye screening length rD carrying

rD/b charged monomers and separated by a distance rD,

~3electzkBTlBðrD=bÞ
2=rDzkBTurD=b.

There are two important differences between the

result of OSF and of the free energy minimization

based on the freely rotating chain model. In the OSF

calculations it is assumed that the main deformation

mode of the chain is the circular mode. However, this

deformation mode has a stronger dependence of the

electrostatic energy on the Debye screening length (see

Eq. (2.74)) than in the case of the freely rotating chain

model with the average electrostatic energy given by

Eq. (2.79). Therefore, for similar bond angles q the

circular mode has a larger value for the electrostatic

energy. To offset this fast increase in the electrostatic

energy as a function of the angle q in the circular

conformation one needs smaller values for the bond

angles. This increases the bond alignment and

polyelectrolyte persistence length. The weaker depen-

dence of the average electrostatic energy on the Debye

screening length (see Eq. (2.79)) indicates that there are

other softer deformation modes that have lower

electrostatic energies and provide dominant contri-

butions to the chain partition function. Thus, by

allowing fluctuations of the torsion angles one increases

the separation between ionic groups and therefore

lowers the electrostatic energy of the chain. Another

important difference between the OSF approach and the

free energy minimization approach is the entropic

penalty for bond orientation. In the free energy

minimization approach, this penalty is on the order of

the thermal energy kBT per oriented bond (for the freely

rotating chain model the entropy change due to

imposed angular constraint depends logarithmically on

the value of the angle q (DS(q)akB ln(q)) while in the

OSF approach it is kBT per persistence length. The

bond orientational entropy prevents the extreme

alignments of the bonds into rod-like conformation,

which would otherwise be energetically favourable.

Thus, the decrease in the chain bending energy occurs

at the expense of the bond orientational entropy. It is

worth mentioning that the optimization of the free

energy (Eq. (2.82)) of the freely rotating chain with

respect to the bond angle is similar to the Flory-like

approach to the optimization of the polyelectrolyte

chain size described in Section 2.1.
3. Semidilute polyelectrolyte solutions
3.1. Overlap concentration

Polyelectrolyte chains begin to overlap when the

distance between them becomes on the order of their

size. For non-uniformly stretched chains, the relation

between the number of monomers N and chain size RF
e

in salt-free solutions is given by Eq. (2.8). Thus, the

overlap concentration c* can be estimated as

c� z
N

ðRF
e Þ

3
zbK3uK1fK2NK2 lnK1ðN=geÞ (3.1)

In order to verify this modified scaling prediction with

logarithmic correction, the dependence of the overlap

concentration c* on the degree of polymerization N

for partially fZ1/3 (circles) and fully fZ1 (squares)

charged chains is presented in Fig. 19(a) [26]. The

solid and dashed lines correspond to Eq. (3.1) for

different values of f. The dependence of the overlap

concentration c* on the degree of polymerization N

follows the modified scaling predictions given by Eq.

(3.1) for the longer chains but deviates from it for

shorter ones. This deviation from the scaling law can

be attributed to the finite size effect. Short chains are

not stretched enough to satisfy the strong stretching

approximation in the evaluation of their sizes. It

follows from Fig. 19(a) that the simulation curves for

both charge densities fZ1 and fZ1/3 have similar

shapes. In Fig. 19(b), the simulation results are

collapsed onto one universal curve. The numerical

factor for this transformation is equal to 0.4.

According to the scaling theory this factor should be

inversely proportional to the square of the ratio of the

effective charge densities on the chains

½f�ð1=3Þ=f�ð1Þ�
2Z0:4. For weakly charged chains

with bare charge density fZ1/3, this conversion

factor is equal to [1/3/(1)]2Z0.11. This discrepancy

between 0.11 and 0.4 can be explained by the

counterion condensation. The ratio of the effective

charge fractions on the two chains obtained from the

osmotic coefficient is f�ð1=3Þ=f�ð1ÞZ0:69 (see Ref.

[61]), which is close to the expected value

f�ð1=3Þ=f�ð1ÞZ
ffiffiffiffiffiffiffi
0:4

p
z0:63. Thus, effective charge

densities f* rather than the bare ones have to be used

for the evaluation of the conversion factor. Below we

will use f* to describe the effective charge density on



(a)

(b)

Fig. 19. (a) Dependence of the overlap concentration on the number

of monomers for partially fZ1/3 (circles) and fully fZ1 (squares)

charged chains. Lines are predictions of Eq. (3.1). (b) Universal

curve for the dependence of the overlap concentration on the

number of monomers. The solid line is given by c*f*
2 w NK2/lnN.

Reproduced with permission from Liao, Q., Dobrynin, A.V., &

Rubinstein, M. Macromolecules 36, 3386–3398 (2003). [26]

Copyright 2003, American Chemical Society.
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the polymer backbone rather than its bare value f and

consider it as an adjustable parameter. Experimentally

this value can be evaluated from conductivity [108,

109] or from the osmotic pressure measurements.
De
3.2. Scaling model of semidilute polyelectrolyte

solutions
Fig. 20. Schematic representation of a semidilute polyelectrolyte

solution.
3.2.1. Correlation length

The important length scale above the overlap

concentration, cOc*, is the correlation length x—
the average mesh size of the semidilute polyelec-

trolyte solution. The average charge of the

correlation volume x3 is equal to zero because the

charge on the section of the chain with gx

monomers within the correlation length x is

compensated by counterions. The interactions

between correlation volumes can be ignored in

the zero order approximation, and the electrostatic

blob size and stretching of a chain can be estimated

by taking into account only electrostatic inter-

actions within the correlation volume x3. In fact,

the multipole expansion of electrostatic interactions

between correlation volumes starts with quadru-

pole–quadrupole terms due to cylindrical symmetry

inside the correlation volume. Thus, each charged

monomer experiences electrostatic repulsion from

all other charged monomers within the correlation

volume and electrostatic attraction to the counterion

background. This corresponds to the well-known

Katchalsky’s cell model approximation (see Section

2.4.2) [3,56,58,59]. Electrostatic interactions within

a correlation cell with radius x/2 and length x can

be estimated by assuming that the cell has

cylindrical symmetry with the polyelectrolyte

chain located along the axis of the cylinder (see

Fig. 20).
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The electrostatic interactions per monomer located

at point zm along the chain axis are

Uel

kBT
Z 2lBf 2

�

ðx=2
DeðzmÞ=2

geðzÞ

DeðzÞ

dz

z
C

lBf 2
�geðzmÞ

DeðzmÞ

K2plBf�

ðx=2
Kx=2

dz

ðKx=2

0

ccountðrÞr drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 Cr2

p (3.2)

where ccount(r) is the counterion density profile. The

first two terms in Eq. (3.2) describe the intrachain

electrostatic interactions between a charged monomer

and the chain section within correlation length x (see

Eq. (2.17b)). The last term in this equation corresponds

to the attraction of the charged monomer to the

counterion background. Since each monomer on the

polyelectrolyte chain experiences on average the same

electrostatic interactions, except for the monomers that

are close to chain ends, we can assume that chains are

uniformly stretched so that ge(z)/De(z)Zge/DeZconst.

In this case, the first integral over z in Eq. (3.2) can be

easily evaluated. The last integral can also be evaluated

if the counterion density profile around the polyelec-

trolyte chain is known. However, in order to obtain

scaling relations between correlation length x and

polymer concentration, one can assume a uniform

counterion density profile ccount(r)Zf*c. This leads to

the following expression for the electrostatic inter-

action energy per monomer

Uel

kBT
z

lBf 2
�ge

De

ln
x

De

� �
KlBf 2

�cx2 (3.3)

The total interaction energy per monomer consists of

the electrostatic part Uel and the elastic contribution

due to stretching of the polyelectrolyte chain

kBTD2
e =ðb

2geÞ per electrostatic blob containing ge

monomers. Therefore, the interaction part of the

monomer chemical potential can be written as

m

kBT
z

D2
e

b2g2
e

C
lBf 2

�ge

De

ln
x

De

� �
KlBf 2

�cx2 (3.4)

This expression has to be minimized with respect to the

correlation length x and the electrostatic blob size De

by taking into account the relation between the number

of monomers in the electrostatic blob ge and its size

ðD2
e fb2geÞ. This minimization leads to the following
expression for the correlation length

x ln1=6 ex

D�
e

� �
z

D�
e

cb2

� �1=2

(3.5)

and the electrostatic blob size

De zD�
e lnK1=3 ex

D�
e

� �
(3.6)

where we have introduced the electrostatic blob size

D�
e zbðuf 2

�Þ
K1=3 for the effective charge fraction f* (cf.

Eq. (2.13b)). The electrostatic blob size De (Eq. (3.6))

increases logarithmically with polymer concentration.

The correlation length of semidilute polyelectrolyte

solution (see Eq. (3.5)) has only minor logarithmic

corrections to the well-known scaling form [2,23,25,

110,111] xfcK1=2

xfcK1=2 lnK1=6 ecb

c

� �
fcK1=2 (3.7)

The concentration dependence of the number of

monomers in a correlation volume x can be obtained by

imposing the close-packing condition for chain

sections of size x, czgx/x
3. This leads to the following

concentration dependence of the number of monomers

within a correlation volume [2,23,25,110,111]

gxfcx3fcK1=2lnK1=2 e

cD�
e b2

� �

zcK1=2lnK1=2 ecb

c

� �
(3.8)

where cb is the polymer concentration at which

electrostatic blobs begin to overlap.

Fig. 21 displays the results of MD simulations for

concentration dependence of the correlation length x

for several chain lengths (open symbols) [26] and

results of scattering experiments (filled symbols)

[112,113] in the semidilute salt-free polyelectrolyte

solutions. For the fixed chain length N, simulations

show that the slope of the correlation length

approaches the scaling value K1/2 in the semidilute

regime. However, for the same polymer concen-

trations, the correlation length increases with increas-

ing number of monomers N and, finally, saturates for

longer chains. This saturation of the correlation length

indicates that the N-dependence of the correlation

length is due to the finite size effects. For shorter

chains there are not enough correlation blobs per



Fig. 21. Concentration dependence of the correlation length x in

salt-free polyelectrolyte solutions. Filled symbols corresponds to

the SANS data (circles) (Nierlich, M. et al. J. Phys. (Paris) 40, 701

(1979)) and light scattering data (squares) (Drifford, M., Dalbiez,

J.P. J. Phys. Chem. 88, 5368 (1984)) in solutions of NaPSS. Open

symbols represent results of the molecular dynamics simulations

[26]. The lines with slope K1/2 are shown to guide the eye.
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Fig. 22. Normalized chain size Re(c
*)/x as a function of reduced

concentration c/c*. The line with slope 1/2 is shown to guide the

eye. Reproduced with permission from Liao, Q., Dobrynin, A.V., &

Rubinstein, M. Macromolecules 36, 3386–3398 (2003). [26]

Copyright 2003, American Chemical Society.
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chain to completely suppress the contributions from

chain ends. Scattering experiments in the semidilute

solutions [112,113] find the correlation length varying

reciprocally with square root of polymer concen-

tration, xwcK1/2. Light scattering [112] and neutron

scattering [113] data were combined to cover

four orders of magnitude in concentration of salt-

free solutions of polystyrene sulfonate sodium salt:

5!10K5!c!5!10K1 M. (see filled symbols in

Fig. 21).

A plot of R(c*)/x as a function of c/c* (Fig. 22)

provides an estimate (with the logarithmic accuracy)

of the number of blobs per chain. All simulation data

collapse onto a single universal curve. The y-axis of

this plot is proportional (up to a logarithmic

correction) to the number of correlation blobs per

chain. The number of blobs per chain R(c*)/x in the

semidilute solution increases with polymer concen-

tration as c1/2 as predicted by the scaling theory. It

follows from this plot that for short chains the number

of correlation blobs per chain does not exceed 10

throughout the entire semidilute regime. Finite size

effects dominate chain properties of such short chains.

However, for longer chains far from the overlap
concentration, the number of blobs approaches 100,

and finite size effects are suppressed.
3.2.2. Persistence length and chain size

The scaling model of a polyelectrolyte chain in

semidilute solutions is based on the assumption of

the existence of a single length scale—the

correlation length x. On length scales larger than

the correlation length x, the conformations of a

polyelectrolyte chain in semidilute solutions are

assumed to be Gaussian. Thus, the polyelectrolyte

chain is assumed to be flexible at length scales on

the order of the correlation length x. MD

simulations are the optimal tool to check the

assumptions of the scaling theory. The persistence

length lp (chain section containing kp bonds) can be

calculated from the decay rate of the bond angle

correlation function along the chain contour

hcos qki Z
ðbs$ðbsCk

jðbsjjðbsCkj
fexp K

k

kp

� �
(3.9)

Here, ðbsand ðbsCkare the bond vectors of sth and sC
kth bonds. The persistence length lp is estimated as

the square-root of the mean-square end-to-end

distance of the chain section containing kp bonds.

The brackets h i denote the averaging over different

chain conformations. The averaging over different

possible positions of sth bond vector along the



Fig. 24. Concentration dependence of the persistence length lp
(filled circles) and the correlation length x (open squares) for chains

with NZ300 and fZ1. The arrow marks the location of the overlap

concentration. Reproduced with permission from Liao, Q.,

Dobrynin, A.V., & Rubinstein, M. Macromolecules 36, 3386–

3398 (2003). [26] Copyright 2003, American Chemical Society.
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chain (sZ0,.,NKk) is performed by keeping the

number of bonds k between the two vectors

constant.

Fig. 23 shows the bond angle correlation function

of a fully charged (fZ1) polyelectrolyte chain with

the number of monomers NZ300 at different polymer

concentrations in semidilute solutions. The bond

angle correlation function has two regimes. At small

distances within the electrostatic blob, it decays very

fast because the electrostatic interactions are too weak

to orient the bonds. At the intermediate k values, the

decay is much slower due to the electrostatic

interactions. The persistence length lp in simulations

was estimated from the exponential decay of the bond

angle correlation function in the intermediate region

[70]. Fig. 24 shows the results for the concentration

dependence of the electrostatic persistence length

lp(c) and the correlation length x(c) in semidilute

polyelectrolyte solutions. As one can see from this

plot, both length scales are proportional (in fact very

close) to each other. These results support the

hypothesis of a single length scale in semidilute

polyelectrolyte solutions.

At length scales larger than the correlation length

x, other chains and counterions screen electrostatic

interactions, and the statistics of the chain are those of

a Gaussian chain with the effective persistence length
Fig. 23. Dependence of the bond angle correlation function on the

distance k along the chain for polyelectrolytes with NZ300 and fZ
1 at different polymer concentrations. Semilogarithmic scales.

Reproduced with permission from Liao, Q., Dobrynin, A.V., &

Rubinstein, M. Macromolecules 36, 3386–3398 (2003). [26]

Copyright 2003, American Chemical Society.
on the order of the correlation length x. Thus,

according to the scaling model, a chain in the

semidilute salt-free polyelectrolyte solution is a

random walk of correlation blobs [2,23,25,110,111]

with size

Re zx
N

gx

� �1=2

fN1=2cK1=4 ln1=12 ecb

c

� �
fN1=2cK1=4

(3.10)

To verify the scaling hypothesis for the chain size, the

plot of the normalized chain size Re/x as a function of

the number of correlation blobs per chain N/gx is

shown in Fig. 25. All points for chains with different

degrees of polymerization, different fractions of

charged monomers, and at different polymer concen-

trations collapse onto one universal line, with the

slope 1/2 as expected for Gaussian chains with N/gx

correlation blobs.

Fig. 26 shows the results of molecular dynamics

simulations for the end-to-end distance of chains as a

function of reduced concentration c/c* in semidilute

solutions for polyelectrolytes with different number of

monomers. The results show that the concentration

dependence of the chain size can be described by the

power law RwcKn; however, the exponent n is N-

dependent. The simulation results clearly show

the crossover from the weak concentration dependence



Fig. 25. Dependence of the reduced chain size Re/x on the number of

correlation blobs N/gx for chains with different degrees of

polymerization, fractions of charged monomers, and at different

polymer concentrations. Thin solid line has slope 1/2. Reproduced

with permission from Liao, Q., Dobrynin, A.V., & Rubinstein, M.

Macromolecules 36, 3386–3398 (2003). [26] Copyright 2003,

American Chemical Society.
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of end-to-end distance of polyelectrolyte chain,

RewcK0.094 for NZ25, to a stronger concentration

dependence, RewcK0.22 for NZ300. The concentration

dependence of the chain size for the longest chains
Fig. 26. Dependence of the root-mean-square end-to-end distance

for chains with the fraction of charged monomers fZ1 on the

reduced polymer concentration c/c*. Reproduced with permission

from Liao, Q., Dobrynin, A.V., & Rubinstein, M. Macromolecules

36, 3386–3398 (2003). [26] Copyright 2003, American Chemical

Society.
approaches the predicted value of the scaling exponent

of K1/4.

The chain size of NaPSS in aqueous semidilute

solutions with no added salt was found [114] to scale

with concentration as RewcK1/4 in agreement with

Eq. (3.10).
3.2.3. Semidilute polyelectrolyte solutions with added

salt [25]

The electrostatic interactions in salt-free solutions

are screened at length scales on the order of the

correlation length x. The reason for such screening is

that the Debye screening length due to counterions

alone kK1Z ð4plBf�cÞK1=2 is always larger than the

correlation length x as long as the system is below the

counterion condensation threshold. The counterion

condensation in a Q-solvent takes place for strongly

charged polyelectrolytes for which the parameter uf1/2

is larger than unity. For weakly charged polyelec-

trolytes, the parameter uf1/2 is smaller than unity and

counterion condensation can be neglected (see

Section 2.4.1). In this case, one has to include the

sections of the chains inside the Debye screening

length into the screening of electrostatic interactions.

In order to calculate the contribution of sections of the

chains into the Debye screening length, each chain is

divided into subsections of size kK1. The charges on

each of these subsections are strongly interacting and

contribute coherently to the screening as one big

charge Z

Z z
f�gekK1

De

z
f�
u

� �1=3 1

kb
(3.11)

The concentration of these sections is equal to

cZ z
cf�
Z

(3.12)

By assuming that each section contributes to screen-

ing independently, one can use the expression for the

Debye screening length for multivalent ions to

estimate the electrostatic screening length

kK1 Z ½4plBðf�c CcZZ2Þ�K1=2 zð4plBcf�ZÞK1=2

(3.13)

Notice that for Z[1, the sections of the chain

provide the main contribution to the screening. The

screening length can be determined self-consistently
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from Eq. (3.13) by substituting expression (3.11) for

the section valence Z [25]

kK1 Z 4plBf 2
�

cge

De

� �K1=3

zðuf 2
�Þ

K2=9cK1=3 (3.14)

The Debye screening length due to chain sections

k(Z)K1 is smaller than the solution correlation length

x. This means that there is less than one polyion

section inside a Debye volume cZk(Z)K3/1 contra-

dicting the assumption of the Debye–Huckel theory.

In semidilute solutions, the Debye screening length

kK1 due to counterions alone is larger than the

correlation length of the solution x, while the

screening length due to sections of the chain is

smaller than x. Therefore one can conclude that in this

case when the counterion screening is too weak, but

screening due to sections of the chains is too strong,

the electrostatic screening length is on the order of the

distance between chains x. Thus, the electrostatic

screening length rscr in the solutions of multivalent

ions with valence Z can be found self-consistently by

assuming that the number of counterions and salt ions

inside the volume with radius on the order of the

electrostatic screening length is equal to the charge

valence Z

cionr3
scr zðcf� C2csÞr

3
scr zZ (3.15)

It is important to point out that this is the minimal

conjecture: it is conceivable that the electrostatic

screening length expands even more, but it must

expand at least up to rscr to compensate for the charge

with valence Z.

For semidilute polyelectrolyte solutions, the effec-

tive charge on a chain section inside the electrostatic

screening length rscr is equal to (see Eq. (3.11))

Z z
f�gerscr

De

z
f�
u

� �1=3 rscr

b
(3.16)

Substituting expression (3.16) into Eq. (3.15) one can

find the relation between the electrostatic screening

length and the ion concentration

rscr z
f�
u

� �1=6

bK1=2ðcf� C2csÞ
K1=2

zx0ðcÞ 1 C
2cs

f�c

� �K1=2

(3.17)
where

x0ðcÞzbðuf 2
�Þ

K1=6ðcb3ÞK1=2

is the correlation length of the salt-free polyelectrolyte

solution.

Using this assumption about the electrostatic

screening length, one can calculate the correlation

length of a semidilute polyelectrolyte solution in the

presence of added salt. The calculation of the

correlation length in polyelectrolyte solutions with

added salt is based on the assumption that the chain

conformation at the length scales smaller than the

screening length is that of a rod-like chain consisting

of gscrZgerscr/De monomers, while at the length

scales larger than the screening length rscr, but smaller

than correlation length x, the sections of the chain of

length rscr obey self-avoiding walk statistics. On

length scales longer than correlation length x the chain

is ideal. (Note that this assumption disagrees with the

OSF result (see Section 2.5) but it is consistent with

the result lpzrscr (see Fig. 24)). This leads to the

following expression for the correlation length of a

polyelectrolyte solution in the presence of added salt

xðcÞzrscr

gx

gscr

� �3=5

zrscr

Degx

rscrge

� �3=5

zbðcb3ÞK1=2ðuf 2
�Þ

K1=6 1 C
2cs

cf�

� �1=4

zx0ðcÞ 1 C
2cs

cf�

� �1=4

(3.18)

where gx is the number of monomers in a correlation

volume. The concentration dependence of the corre-

lation length x in the high salt concentration regime

(cs[cf*) is similar to that in solutions of uncharged

polymers xfcK3/4. At low salt concentrations, Eq.

(3.18) reproduces salt-free result xfcK1/2. Thus, any

quantity X of the polyelectrolyte solution with salt

concentration cs can be expressed in terms of the same

property X0 in a salt-free solution as

X Z X0 1 C
2cs

f�c

� �a

(3.19)

The results for static properties of semidilute

polyelectrolyte solutions with added salt are summar-

ized in Table 1 (see Section 3.2.5).



Table 1

Scaling relations for semidilute solutions of polyelectrolytes in a Q-solvent for polymer backbone [25]

RzbN1=2BK1=4ðcb3ÞK1=4yK1=8; xzbB1=2ðcb3ÞK1=2y1=4

Unentangled Entangled

t ðhsb
3=kBTÞBK3=2N2ðcb3ÞK1=2yK3=4 ðhsb

3=kBTÞN3nK2BK3yK3=2

G kBTc/N ðkBT=b3ÞnK2BK3=2ðcb3Þ3=2yK3=4

h hsNBK3=2ðcb3Þ1=2yK3=4 hsðN
3=n4ÞBK9=2ðcb3Þ3=2yK9=4

Dself ðkBT=hsbÞN
K1By1=2 ðkBT=hsbÞn

2NK2B5=2ðcb3ÞK1=2y5=4

where yZ1C2cs/cf*, and the parameter Bzðuf 2
�Þ

K1=3.
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3.2.4. Osmotic pressure and scattering function

Donnan equilibrium [5] in ionic systems requires

charge neutrality on both sides of the membrane

across which the osmotic pressure p is measured. The

electroneutrality condition leads to the partitioning of

salt ions between the reservoir and the polyelectrolyte

solution region

cC
s Z cK

s C f�c (3.20)

where cC
s and cK

s are the average concentrations of

positively and negatively charged salt ions in the

polyelectrolyte solution. Here it is assumed that

counterions are positively charged and macroions

are negatively charged.

The local ion concentration cC
s ðrÞ or cK

s ðrÞ in

polyelectrolyte solutions is related to the local value

of the reduced electrostatic potential 4(r) by the

Boltzmann distribution

cC
s ðrÞ Z cC

s exp½4ðrÞ�

cK
s ðrÞ Z cK

s exp½K4ðrÞ�
(3.21)

where the reduced electrostatic potential 4(r) is

defined as 4(r)ZeJ(r)/kBT. Thus, the product of the

concentrations of salt ions stays constant at each point

of the solution. Since salt ions can penetrate through

the membrane, the chemical equilibrium on both sides

of the membrane requires that this product stays

constant in the reservoir as well. This leads to

cC
s cK

s Z c2
s (3.22)

where cs is the average salt concentration in the

reservoir. By solving Eq. (3.20) with Eq. (3.22) one

can find the average concentrations of positively and

negatively charged salt ions in the polyelectrolyte

solution as functions of the average salt concentration
cs and polymer concentration c. The ionic contri-

bution to the osmotic pressure is equal to the

difference between the ideal gas pressure of salt ions

in the polyelectrolyte solution and in the reservoir [5].

pion

kBT
Z cC

s CcK
s K2cs

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf�cÞ2 C4c2

s

q
K2cs (3.23)

In the limit of low salt concentrations, cs/f
*
c, the

difference is proportional to the pressure from the

ideal gas of counterions. At higher salt concentrations,

cs[f*c, the ionic part of the osmotic pressure is equal

to

pion

kBT
z

ðf�cÞ2

4cs

Z
2plBðf�cÞ2

k2
(3.24)

and can be considered as the result of the effective

excluded volume interactions between charged mono-

mers on the polyelectrolyte backbone with excluded

volume lBr2
D. (At high salt concentrations (cs[f

*
c),

the concentrations of salt ions cC
s and cK

s in a

polyelectrolyte solution are almost equal to those in

reservoir cs.)

In addition to the ionic contribution, polyelec-

trolyte solutions have the polymeric contribution to

their osmotic pressure. In semidilute solutions, the

polymeric contribution is essentially kBT per corre-

lation volume [10,22]

ppol

kBT
zxK3 (3.25)

The total osmotic pressure of polyelectrolyte

solutions can be approximated as the sum of the
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ionic and polymeric contributions

p

kBT
Z

pion

kBT
C

ppol

kBT
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf�cÞ2 C4c2

s

q
K2cs Cx

K3

(3.26)

At low salt concentrations, cs/f
*
c, the ionic

contribution to the osmotic pressure f
*
c dominates

over the polymeric contribution throughout the entire

semidilute regime. At high salt concentrations,

cs[f
*
c, both ionic and polymeric contributions are

much smaller than those at low salt concentrations.

However, for the vast majority of the systems studied

so far [115–123], the ionic contribution dominates the

osmotic pressure of polyelectrolyte solutions. There-

fore, Eq. (3.26) is a good approximation of the

osmotic pressure of polyelectrolyte solutions.

To illustrate this point, Fig. (27) shows the total

osmotic pressure p obtained from the MD simulations

[61] of semidilute polyelectrolyte solutions of fully

charged chains with NZ300 (squares), together with

the polymeric contribution to the osmotic pressure

(circles). The polymeric contribution is estimated as

kBT/x3. As one can see, the polymeric contribution to

the osmotic pressure is negligible at lower concen-

trations. It becomes on the same order of magnitude as

the total osmotic pressure at polymer concentrations

on the order of 100c*. Thus, the osmotic pressure of

semidilute polyelectrolyte solutions is dominated by
1 10 100 1000
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Fig. 27. Comparison of the total osmotic pressure p in semidilute

polyelectrolyte solutions with the polymeric contribution estimated

as kBT/x3 for fully charged (fZ1) flexible chains with NZ300.

Reproduced with permission from Liao, Q., Dobrynin, A.V., &

Rubinstein, M. Macromolecules 36, 3399–3410 (2003). [61]

Copyright 2003, American Chemical Society.
the pure counterion contribution over a wide range of

polymer concentrations.

The ionic part of the osmotic pressure in semidilute

polyelectrolyte solutions can be calculated by using

the Katchalsky’s cell model [3,56]. In the frameworks

of this model, a semidilute polyelectrolyte solution is

represented as a periodic array of chains separated by

the distance RZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx=ðpxcÞ

p
, where x and gx are the

correlation length and the number of monomers

within the correlation length, respectively. The

osmotic coefficient predicted by the Katchalsky’s

cell model [3,56] is given in Eq. (2.63). To evaluate

the osmotic coefficient, we have to know two

parameters a and g0. The evaluation of the parameter

g0 is straightforward, using the number of monomers

gx within the correlation length x. In the case of pure

complex values of the parameter a, it satisfies the

following non-linear equation obtained from the

boundary conditions (Eq. (2.57))

jajln
R

s

� �
Z arctan

1

jaj

� �
Carctan

g0 K1

jaj

� �
(3.27)

where the radius of the cylinder is set to be equal

to s. The osmotic coefficient predicted by the

Katchalsky’s cell model [3,56] is compared with

the results of the computer simulations in Fig. 28.
Fig. 28. Comparison of the osmotic coefficient obtained in MD

simulations of semidilute polyelectrolyte solutions (open squares)

with the predictions of the Katchalsky’s cell model (solid line).

Reproduced with permission from Liao, Q., Dobrynin, A.V., &

Rubinstein, M. Macromolecules 36, 3399–3410 (2003). [61]

Copyright 2003, American Chemical Society.
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The predictions of the cell model agree reasonably

well with simulation results for c!100c*. Never-

theless, the cell model systematically overestimates

the osmotic coefficient, and the largest deviations

are observed in the concentration interval where the

polymeric contribution to the osmotic pressure

becomes comparable to the one due to counterions.

The comparison of the experimental data with the

predictions of the cell model was done by Hansen

et al. [119]. They found that the predictions of the

Katchalsky’s cell model for the osmotic coefficient

are in surprisingly good agreement with all

available experimental finding over a wide range

of DNA concentrations.

The experimental data for the osmotic pressure of

semidilute solutions of NaPSS obtained by Koene

et al. [122] and the salt-free data of Takahashi et al.

[123] are shown in Fig. 29. While Takahashi et al. did
Fig. 29. Osmotic pressure of semidilute NaPSS solutions as a

function of polymer and salt concentration. Filled circles are data of

Takahashi et al. [123] for MwZ4.3!105 Da with no added salt and

apparent salt concentration csZ3!10K5 M. Other symbols are

data of Koene et al. [122] for molecular weight MwZ6.5!105 Da

and salt concentrations csZ5!10K3 M (open circles), csZ
5!10K2 M (open squares), csZ1!10K2 M (open diamonds),

and csZ1!10K1 M (filled triangles); for MwZ4!105 Da and

csZ1!10K2 M (bottom-filled diamonds); and for MwZ12!

105 Da and csZ1!10K2 M (top-filled diamonds). The solid curve

is Eq. (3.23) with f*Z0.16. Reproduced with permission from

Dobrynin, A.V., Colby, R.H., & Rubinstein, M. Macromolecules

28, 1859–1871 (1995). [25] Copyright 1995, American Chemical

Society.
not report the salt concentration of their ‘salt-free’

solutions, the data clearly indicate a low level of salt

(see Fig. 1 of Ref. [123]) and we estimated it from

their data. Data at high salt concentrations from Ref.

[123] were not used in Fig. 29 because they

correspond to a dilute solution regime. The solid

curve in Fig. 29 is the prediction of Eq. (3.23) with the

effective fraction of free counterions f* equal to 0.2.

The agreement between the scaling theory and the

experimental data is very good over a wide range of

polymer and salt concentrations.

The high osmotic pressure of salt-free polyelec-

trolyte solutions has important consequences for the

scattering function S(q). The osmotic compressibility

is related to the scattering at zero wavelength

Sð0Þ Z kBT
vc

vp
(3.28)

At low salt concentrations, the osmotic pressure is

controlled by the concentration offree counterions. This

leads to the scattering function S(0) inversely pro-

portional to the fraction of free counterions

Sð0Þz1=f� (3.29)

The counterion pressure causes S(0) to be much smaller

than its value at the correlation length S(2pxK1). The

fluctuations of polymer density on the length scales

larger than the electrostatic screening length are

governed by the electroneutrality condition. However,

these fluctuations are f*gx times larger than thermal

fluctuations of counterion density and would result in a

prohibitively large loss of counterion entropy. There-

fore, the extremely high counterion pressure suppresses

density fluctuations on length scales larger than the

correlation length x. For qO2pxK1, the scattering

function S(q) decreases with q as in the case of neutral

polymers. This suggests that there is a maximum in the

scattering function S(q) of salt-free polyelectrolyte

solutions at the wave vector q on the order of 2pxK1.

The maximum in the scattering function S(q)

disappears at high salt concentrations. When the salt

concentration cs is on the order of cgxf*
2, the polymer

density fluctuations on the length scales larger

than the correlation length x are no longer suppressed

(S(0)wgx). In this high salt concentration regime, the

scattering function is similar to that in solutions of

neutral polymers.
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3.2.5. Dynamics of polyelectrolyte solutions [25,111]

3.2.5.1. Unentangled regime (c*!c!ce). The hydro-

dynamic interactions between sections of a chain in

semidilute solutions are screened on the length scales

larger than the correlation length x [8–10]. Inside the

correlation blob the motion of different chain sections

are strongly hydrodynamically coupled just as in

dilute solutions. The relaxation time of the section of a

polyelectrolyte chain with gx monomers inside the

correlation blob is Zimm-like (proportional to the

volume pervaded by the section) [8,10]

tx zhsx
3=ðkBTÞ (3.30)

Each chain consists of N/gx correlation blobs. The

hydrodynamic interactions between these blobs are

screened and therefore their motion can be described

by Rouse dynamics [8,10]

tRouse ztxðN=gxÞ
2 z

hsb
3

kBT
ðuf 2

�Þ
1=2ðcb3ÞK1=2N2

c�!c!ce

(3.31)

(Here we consider salt-free polyelectrolyte sol-

utions.) The chain relaxation time in this unen-

tangled semidilute regime decreases with increasing

polymer concentration as tRousewcK1/2. This

decrease of solution relaxation time with increasing

polymer concentration is unique for unentangled

polyelectrolyte solutions. Relaxation time of

‘normal’ polymer solutions increases with increasing

polymer concentration. The reason for such unusual

dependence is that the chain size decreases with

increasing polymer concentration while their friction

coefficient (proportional to contour length) does not

change. This leads to the concentration-independent

self-diffusion coefficient

Dself zR2=tRouse z
kBT

hsb
ðuf 2

�Þ
K1=3NK1

c�!c!ce

(3.32)

that is inversely proportional to the degree of

polymerization, N. The terminal modulus G of a

solution in the Rouse model for unentangled

polymers is kBT per chain [8,10]. The viscosity of
polyelectrolyte solutions in this regime is

hzGtRouse zhsðuf 2
�Þ

1=2ðcb3Þ1=2N

c�!c!ce

(3.33)

In the salt-free solution, the viscosity grows as the

square root of concentration hwc1/2. Thus, the

scaling model of polyelectrolyte solutions recovers

the well-known phenomenological Fuoss law [11].

3.2.5.2. Entanglement criterion. The unentangled

semidilute regime of neutral polymer chains exists

above the chain overlap concentration c* within the

polymer concentration range c*!c!ce, where ce is

polymer concentration corresponding to the onset of

entanglements. The physical reason for the unen-

tangled semidilute regime is that the topological

constraints between polymers require significant

chain overlap. This leads to the diameter of the

topological tube constraining transversal motion of

the chain to be larger than the correlation length. It

was established experimentally that at the entangle-

ment onset, each chain has to overlap with n other

chains (see for discussion Refs. [10,124–126]), with

5!n!10. To estimate the entanglement concen-

tration ce for polyelectrolytes, we will assume that it is

necessary to have n chains within the volume

occupied by a polyelectrolyte chain to topologically

constrain its motion. Thus, the monomer concen-

tration required for chain entanglement is

ce z
nN

R3
eðceÞ

zc�
nR3

eðc
�Þ

R3
eðceÞ

znðc�Þ1=4c3=4
e

zn4c� (3.34)

where we use the following relation between the chain

size at entanglement concentration ce and that at

overlap concentration c*, RðceÞzRðc�Þðc�=ceÞ
1=4.

Thus, the unentangled semidilute regime in salt-free

solutions could be 3–4 decades wide (103!ce/c
*!104)

[25,111]. The physical reason for this unusually wide

unentangled regime is the strong concentration depen-

dence of the chain size (RewcK1/4). It is only slightly

weaker than the concentration dependence of the

distance between centers of mass of neighboring chains

(RcmwcK1/3). Therefore, the number of chains over-

lapping with a selected chain has very weak
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concentration dependence ½ðRe=RcmÞ
3 zðc=c�Þ1=4�. The

viscosity at the entanglement concentration ce is h (ce)

zn2hsz50hs, as in the case of neutral polymers.

3.2.5.3. Semidilute-entangled regime (cOce). Entan-

glements are characterized by the tube diameter a (the

mesh size of the temporary entanglement network)

(see Fig. 30). The polymer strand between entangle-

ments is a random walk of Ne/gxz(a/x)2 correlation

blobs, where Ne is the number of monomers in an

entanglement strand. There are n such strands

inside the volume a3, so that (a/x)3znNe/gx leading

to nZa/x. Thus, the tube diameter a is proportional to

the correlation length. The longest relaxation time of a

polymer chain can be calculated using the reptation

theory [8,10]. By assuming that the dynamics of the

chain at the length scales smaller than a correlation

blob size is Zimm-like, and the relaxation of a

polymer strand between entanglements is Rouse-like,

the longest relaxation time of the chain is concen-

tration-independent

trep ztx

Ne

gx

� �2 N

Ne

� �3

z
hsb

3

kBT
uf 2

�nK2N3 (3.35)

The plateau modulus in this regime is GznekBT,

where ne is the number density of entanglement

strands. The volume per entanglement strand is

x3Ne/gxzxa2. The scaling model predicts the plateau
Fig. 30. Schematic representation of an entangled polyelectrolyte

solution.
modulus

Gz
kBT

xa2
z

kBT

b3
nK2ðuf 2

�Þ
1=2ðcb3Þ3=2 (3.36)

and the solution viscosity in the semidilute-entangled

regime

hztrepGzhsn
K4N3ðuf 2

�Þ
3=2ðcb3Þ3=2 (3.37)

In salt-free entangled polyelectrolyte solutions, the

viscosity is predicted to grow faster than linearly with

polymer concentration c.

The diffusion coefficient in the entangled regime

decreases as cK1/2 with increasing polymer concen-

tration

Dself z
R2

e

trep

z
kBT

hsb
n2NK2ðuf 2

�Þ
K5=6ðcb3ÞK1=2 (3.38)

Any dynamic property X of a polyelectrolyte

solution with added salt can be expressed in terms

of the same property X0 in salt-free solutions as

X Z X0ð1 C2cs=f�cÞa (3.39)

by analogy with the similar relation for static

properties (see Eq. (3.19)). The results for dynamic

properties of semidilute solutions are summarized in

Table 1.

3.2.5.4. Comparisons with experiments. Fig. 31

demonstrates dependence of the overlap concen-

tration, c*, on the chain degree of polymerization, N,

for salt-free solutions of NaPSS [127]. It is in

excellent agreement with the prediction of the scaling

model c*wNK2. The overlap concentration for

shorter polymers was obtained from X-ray scattering

data (squares), while for longer polymers it is

determined from viscosity data (circles). The overlap

concentration c* is predicted to decrease with the

fraction f of charged monomers as c*wfK2 for

polyelectrolytes in a Q-solvent for polymer backbone

(Eq. (3.1)) and as c*wfK12/7 for polyelectrolytes in a

good solvent. Fig. 32 confirms this scaling prediction

for ethylene glycol solutions of N-methyl-2-vinyl

pyridinium chloride random copolymers with fraction

of quaternized monomers up to 10 mol%. At higher

fraction of quaternized monomers one reaches the

Manning counterion condensation limit of one charge

per Bjerrum length (lBZ15 Å in ethylene glycole) and



Fig. 31. Dependence of the overlap concentration, c*, on chain

degree of polymerization, N, in salt-free polyelectrolyte solutions of

NaPSS. Data obtained from X-ray scattering (squares) and from

viscosity (circles). Reproduced with permission from Boris, D.C., &

Colby, R.H. Macromolecules 31, 5746–5755 (1998). [127] Copy-

right 1998, American Chemical Society.

Fig. 32. Dependence of the overlap concentration, c*, on the

effective charge density, f, for 2-vinyl pyridine and N-methyl-2-

vinyl pyridinium chloride random copolymer in ethylene glycol

solvent of the at 25 8C. Data provided by Dou, S. and Colby, R. H.
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the overlap concentration c* becomes independent of

charge density f (saturates at f*).

Fig. 33 shows the dependence of the specific

viscosity of salt-free solutions of 2-vinyl pyridinium

chloride and N-methyl-2-vinyl pyridinium chloride

random copolymers on the ratio of polymer concen-

tration c to the overlap concentration c*. These data

clearly indicate linear concentration dependence

of specific viscosity in dilute solutions (hspzc/c* for

c!c*) as well as concentration regimes correspond-

ing to unentangled solutions with hspwc1/2 and

entangled solutions with hspwc3/2. There is indeed a

wide range of polymer concentrations (two orders of

magnitude for chains with higher charged fractions)

where solution viscosity follows the Rouse dynamics

(Eq. (3.33)) manifested by the Fouss law [11],

hspwc1/2. This regime of unentangled semidilute

polyelectrolyte solutions has much wider concen-

tration range than similar regime in solutions of

neutral polymers (open circles in Fig. 33). This

concentration dependence of specific viscosity is

general for salt-free polyelectrolyte solutions [127].

The crossover at concentration ce to the entangled

regime is also seen in the specific viscosity data

(Fig. 33). According to the Kavassalis–Noolandi
10-2

10-1

101

102

103

104

105

100

10-2 10-1 101 102 103100

Fig. 33. Reduced concentration, c/c*, dependence of the specific

viscosity, hsp, at 25 8C in ethylene glycol solvent of the random

copolymer 2-vinyl pyridine and N-methyl-2-vinyl pyridinium

chloride (PMVP-Cl) with various charge densities [numbers in the

legend correspond to the extent (mole %) of quaternization] and the

uncharged neutral parent poly(2-vinyl pyridine) (P2VP) of MwZ
364 000 Da (open circles). Data provided by Dou, S. and Colby, R. H.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–11181088
conjecture [124–126], the crossover to the entangled

regime occurs when there is a universal number n of

overlapping chains to form an entanglement.

Experimental data indicate that the Kavassalis–

Noolandi conjecture [124–126] for entanglements

used in the scaling model requires some modification

[127]. It is possible that the properties of the

confining tube for charged polymers changes with

concentration leading to the concentration-dependent

parameter n.

The correlation length x becomes smaller than

electrostatic blob size De at concentrations higher than

cb. Electrostatic interactions are not important in

polyelectrolyte solutions with concentration c above

cb and specific viscosity is expected to have

concentration dependence similar to that in solutions

of entangled neutral polymers, hspwc15/4. This quasi-

neutral regime of polyelectrolyte solutions at high

polymer concentrations cOcb is confirmed by the data

in Fig. 33.

Fig. 34 shows the concentration dependence of the

terminal modulus. The terminal modulus is kBT per

chain (GwkBTc/N) in the unentangled regime. The

modulus at polymer concentrations above entangle-

ment onset ce increases rapidly with increasing
Fig. 34. Concentration dependence of the terminal modulus

calculated from steady shear relaxation time (filled symbols) and

from the oscillatory shear relaxation time (open symbols) at 25 8C in

ethylene glycol solvent of random copolymer 2-vinyl pyridine and

N-methyl-2-vinyl pyridinium chloride (PMVP-Cl) with various

charge densities [numbers in the legend correspond to the extent

(mole %) of quaternization] and the uncharged neutral parent

poly(2-vinyl pyridine) (P2VP) of MwZ364 000 Da (open circles).

Data provided by Dou, S. and Colby, R. H.
concentration in the way expected by the scaling

model Gwc3/2.

The concentration dependence of the self-

diffusion coefficient of sodium poly(styrene sulfo-

nate) with molecular weight in the range (16 000 !
M!350 000 Da) in the salt-free aqueous solution

measured by the pulse field gradient NMR [128,

129] presents further evidence of the validity of the

Rouse model. The self-diffusion coefficient is

concentration-independent in semidilute unen-

tangled regime in agreement with the prediction

of the scaling model (Eq. (3.32)). The molecular

weight dependence of the self-diffusion coefficient

DselfwMK1 is in excellent agreement with the

prediction of the scaling model for the unentangled

salt-free solutions (Eq. (3.32)).
3.2.6. Semidilute polyelectrolyte solutions in a poor

solvent for polymer backbone

Polyelectrolyte chains in a poor solvent for the

polymer backbone adopt necklace-like confor-

mations. There are three different length scales in

the necklace globule: the string length lstr, the bead

size Db and the thermal blob size xT determining

the length scale of density fluctuations inside beads.

Thus, all three different length scales will determine

the properties of semidilute polyelectrolyte solutions

in a poor solvent for the polymer backbone [49,

130].

The crossover from dilute to semidilute solutions

takes place when the size of the necklace becomes

comparable to the distance between chains

c� z
N

L3
nec

zbK3NK2 jtj

uf 2
�

� �3=2

z
m3=2

b

b3N2
(3.40)

where we have neglected the logarithmic correction to

the chain size.

In a semidilute solution (cOc*), the configuration

of the chain on length scales shorter than the

correlation length x is similar to that in dilute

solutions. On length scales longer than the correlation

length x, the chain is assumed to be a random walk of

correlation segments x. The correlation length at the

overlap concentration x(c*) is equal to the necklace

size Lnec. In the semidilute regime (cOc*) the

correlation length is independent of the degree of

polymerization.
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xzLnec

c�

c

� �1=2

zb
jtj

uf 2
�

� �1=4

ðcb3ÞK1=2

zbm1=4
b ðcb3ÞK1=2 (3.41)

The correlation length is inversely proportional to the

square root of polymer concentration. In the case of

the necklace-like chain, the number of monomers in

the correlation volume is

gx zcx3 zm3=4
b ðcb3ÞK1=2 (3.42)

The normal dependence of the correlation length x on

polymer concentration (see Eq. (3.7)) continues while

x is larger than the length of the string lstr between

neighboring beads. These two lengths become of the

same order of magnitude (xwlstr) at polymer

concentration [49,130]

cBead zbK3 uf 2
�

jtj

� �1=2

zbK3mK1=2
b (3.43)

For higher polymer concentrations cOcBead, the

electrostatic interaction between beads is screened,

and there is one bead per every correlation volume x3.

The correlation volumes are space filling czgxx
K3.

The number of monomers inside the correlation

volume for cOcBead is

gx zcx3 zmb (3.44)

since we have assumed that most of the polymer mass

is in beads (mb/mstr[1). Therefore, the correlation

length decreases inversely proportional to the one-

third power of polymer concentration

xz
jtj

uf 2
�

� �1=3

cK1=3 z
c

mb

� �K1=3

(3.45)

This concentration dependence of the correlation

length x is unusual for semidilute solutions of

polymers and is more typical for the distance between

chains in dilute solutions (the system behaves as a

dilute solution of beads). The main difference between

cK1/3 concentration dependence of Eq. (3.45) and

similar concentration dependence of the correlation

length in dilute polyelectrolyte solutions is that

correlation length in semidilute solutions (Eq.

(3.45)) is N-independent, while in dilute polyelec-

trolyte solutions xzðc=NÞK1=3
Since the electrostatic interactions are screened on

the length scales longer than the correlation length x,

the configuration of a polyelectrolyte chain is that of a

random walk of size x

Re zx
N

gx

� �1=2

zbN1=2
ðcBead=cÞ

1=4; for c�!c!cBead

ðcBead=cÞ
1=3; for cBead !c!cb

(
(3.46)

where cb is the polymer concentrations at which the

beads start to overlap. This crossover concentration is

on the order of the concentration inside the beads

cbzbK3jtj. It is important to point out that at the

crossover concentration between string-controlled

and bead-controlled regimes, the chain size is

approximately equal to the Gaussian chain size

bN1/2, but its conformation is far from that of an

ideal chain. In the bead-controlled regime, the chain

size is smaller than the Gaussian chain size. However,

above the bead overlap concentration, the chain size is

once again on the order of the Gaussian chain size.

But now the chain configuration is that of an ideal

chain because at these high polymer concentrations

the electrostatic interactions are almost completely

screened. Thus, the existence of three different length

scales is manifested in non-monotonic dependence of

the chain size on polymer concentration [49]. This

chain size dependence on polymer concentration is

reflected in the dynamic properties of polyelectrolyte

solutions and is expected to lead to a dramatic

increase in the solution viscosity close to bead overlap

concentration. The scaling predictions of the dynamic

properties of polyelectrolyte solutions in poor

solvent for polymer backbone are summarized in

Table 2.

The existence of different concentration regimes

in semidilute polyelectrolyte solutions was con-

firmed by the experiments of Essafi et al. [131] and

Spitteri et al. [132,133] on partially sulfonated

poly(styrene sulfonate) in water. It was reported

by Essafi et al. [131] that the exponent of the

concentration dependence of the correlation length

x(c) depends on the degree of sulfonation. For

example, this exponent is K0.38 for 40% sulfona-

tion throughout the whole semidilute regime while it

is close to its classical value K0.5 for the fully



Table 2

Scaling relations for semidilute solutions of polyelectrolytes in a poor solvent for the polymer backbone

String-controlled regime: RzbN1=2mK1=8
b ðcb3ÞK1=4yK1=8;

xzbm1=4
b ðcb3ÞK1=2y1=4

Bead-controlled regime: RzbN1=2mK1=6
b ðcb3ÞK1=3yK5=24;

xzbm1=3
b ðcb3ÞK1=3y5=12

Unentangled Entangled Unentangled Entangled

t ðhsb
3=kBTÞN2mK3=4

b ðcb3ÞK1=2yK3=4 ðhsb
3=kBTÞN3nK2mK3=2

b yK3=2 ðhs=kBTÞN2mK1
b cK1yK5=4 ðhsb

3=kBTÞN3nK2mK2
b yK5=2cK1

G kBTc/N ðkBT=b3ÞnK2mK3=4
b ðcb3Þ3=2yK3=4 kBTc/N ðkBT=n2ÞmK1

b cyK5=4

h hsNmK3=4
b ðcb3Þ1=2yK3=4 hsðN

3=n4ÞmK9=4
b ðcb3Þ3=2yK9=4 hsNmK1

b yK5=4 hsðN
3=n4ÞmK3

b yK15=4

where yZ ð1C2cs=cf�Þ, and mb zjtj=uf 2
� is the number of monomers in a bead. Reproduced with permission from Dobrynin, A.V. and

Rubinstein, M. Macromolecules 32, 915–922 (1999). [130] Copyright 1999, American Chemical Society.
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sulfonated samples. Similar observations were

reported by Heitz et al. [134] for poly(methacrylic

acid) in water as a function of its neutralization. The

exponent of concentration dependence of the

correlation length x(c) was found to change from

K0.43 to K0.31 as the neutralization decreased

from 0.95 to 0.09. Evidence of the intrachain

correlation peak associated with the presence of

beads was observed in the Kratky plot of the data

obtained in the small angle neutron scattering

experiments by Spitteri et al. [132,133]. The

evolution of the polyelectrolyte solution with

increasing polymer concentration in solvophobic

polyelectrolytes in a series of polar organic solvents

[135] shows that the scaling exponent of x(c)

changes from K0.45 to K0.13. Similar behavior

was reported for partially sulfonated polystyrene by

the Williams group [136,137]. This concentration

dependence of the correlation length is in qualitative

agreement with the predictions of the necklace

model for the crossover to the bead-controlled

regime.

The small angle neutron scattering (SANS) spectra

[138] measured in dilute solutions of water/acetone

mixtures of poly(methacryloylethyltrimethylammo-

nium methyl sulfate) can be analyzed using the

necklace model of polyelectrolyte chains. According

to the results of these experiments, each polyelec-

trolyte chain consists of a sequence of dense beads

connected by regions of loose polymer. The radius of

these dense beads is about 28 nm. Each molecule has

about 3–4 dense beads with the volume fraction of

polymer inside these globular sections close to 8%.

Recent nuclear magnetic resonance (NMR) studies

[139] of semidilute solutions of poly(styrenesulfonic

acid) (PSS), poly(methacrylic acid) (PMA), and
poly(acrylic acid) (PAA) in water/methanol mixtures

are consistent with the necklace-like structure of

polyelectrolytes in poor solvent conditions. These

observations indicate that, while parts of polyelec-

trolyte chains have compact globule-like confor-

mation, the segments of the chains connecting these

compact globules retain flexibility similar to those

observed in Q and good solvents. The fraction of the

mass of polyelectrolytes in compact globules varies

from 27 to 32% depending on the polymeric system.

Atomic force microscopy (AFM) images

of necklace globules of poly(2-vinylpyridine) and

poly(methacryloyloxyethyl dimethylbenzylammo-

nium chloride) adsorbed at mica surface were

reported by Kiriy et al. [140] and by Minko et al.

[141]. These images clearly show an abrupt confor-

mational transition from elongated chains to compact

globules through the intermediate necklace-like

globule conformations with increasing ionic strength

of the solution.

Molecular dynamics simulations of partially

charged polyelectrolytes in poor solvent conditions

were performed by the German group [46,71,72] and

by Liao et al. [142]. These simulations have confirmed

that polyelectrolyte chains at low polymer concen-

trations form necklaces of beads connected by strings

(see Fig. 35). As the polymer concentration increases,

the fraction of condensed counterions on the chain

increases and chains shrink by decreasing the length

of strings and the number of beads per chain. At

higher polymer concentrations, polymer chains inter-

penetrate leading to a concentrated polyelectrolyte

solution. In this range of polymer concentrations the

chain size is observed to increase towards its Gaussian

value. The non-monotonic dependence of the chain

size on polymer concentration shown in Fig. 35 is in a



Fig. 35. Concentration dependence of the chain size for partially

charged chains with fraction of charged monomers fZ1/3 in poor

solvent [142] with interaction parameters lBZ3s, 3LJZ3/2kBT.

Different color symbols and lines correspond to the different

number of monomers per chain, as indicated in the figure. The

positions of the overlap concentration c* are marked by the arrows.

Inserts show typical chain conformations.
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qualitative agreement with the scaling model

described above [130].

3.3. Phase separation in polyelectrolyte solutions

3.3.1. Mean-field approach

It is well known that below Q-temperature the

solution of uncharged polymers is unstable with

respect to phase separation into concentrated and

dilute polymeric phases. This phenomenon is driven

by the minimization of the number of unfavourable

polymer–solvent contacts and the relatively small

entropic penalty for chain partitioning between

concentrated and dilute polymeric phases. For

polymers, the entropic penalty is on the order of the

thermal energy kBT per chain that is much smaller

than that in the mixture of similar low molecular

compounds at the same concentrations. Charging

polymers can significantly improve solution solu-

bility. In the salt-free solutions, the electroneutrality

condition should be satisfied in both concentrated and

dilute phases in order to avoid huge electrostatic

energy penalty caused by charge inhomogeneities
(Donnan equilibrium). Thus, separating polymers into

concentrated and dilute phases will lead to additional

entropic penalty due to the redistribution of counter-

ions. In order to show this, consider Flory–Huggins

lattice model of polyelectrolyte solution [143,144]

with polymer volume fraction fZcb3

FðfÞ

kBT
Z

V

b3

f

N
lnðfÞC f f lnðfÞC

t

2
f2 C

f3

6

� �

C
DFionicðfÞ

kBT

(3.47)

where tZ1KQ=T is the effective temperature. The

first two terms in Eq. (3.47) are contributions of chains

and counterions to the entropy of mixing, while third

and fourth terms correspond to short-range inter-

actions between polymers and solvent. Finally, the

last term describes the contribution to the solution free

energy from the density fluctuations. The form of this

term depends on the assumptions made about the

effect of polymeric degrees of freedom on density and

charge fluctuations in the system. If the polymeric

effects are completely ignored, the fluctuation term

is the well-known Debye–Huckel correction due to

charge density fluctuations (see for details Ref. [32]).

In the limit kb/1 it reduces to the Debye–Huckel

law, KkBTVk3. The fluctuation correction has a

completely different form if the effect of the

connectivity of charged monomers into polymeric

chain is taken into account. There are two different

expressions for this term: one was derived by Borue

and Erukhimovich [145] (see also Ref. [146]) and

another is due to Mahdi and Olvera de la Cruz [147].

(Ermoshkin and Olvera de la Cruz [148] have recently

modified Mahdi and Olvera de la Cruz’s [147]

approach by taking into account finite ion size and

counterion condensation.) Both calculations treat

polymeric and counterion density fluctuations in the

framework of the random phase approximation. The

expression derived by Mahdi and Olvera de la Cruz

has a more general form and takes into account the

finite N effects. In the limit of long polyelectrolyte

chains, N[1, it reproduces Borue and Erukhimo-

vich’s result [145].

The fluctuation corrections to the free energy of the

solution of weakly charged polyelectrolytes with
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f/1 can be neglected and the terms in the brackets

on the right-hand side of Eq (3.47) are sufficient to

determine the stability region of the polyelectrolyte

solution. The spinodal of the polyelectrolyte solution

is given by the following equation

v2FðfÞ

vf2
Z f C

1

N

� �
f

K1 Ct Cf Z 0 (3.48)

If there is more than one ionized group per chain,

fN[1, the 1/N term can be neglected and the location

of the stability region is determined by the counterion

entropy and by the strength of polymer solvent

interactions. In this case the critical point is located at

fcr Z
ffiffiffi
f

p
; and tcr ZK2

ffiffiffi
f

p
(3.49)

At effective temperature t below tcr the polyelec-

trolyte solutions are phase separated over some

concentration range. The dependence of the spinodal

line of the salt-free polyelectrolyte solution on the

fraction of charged monomers f on the polymer

backbone is shown in Fig. 36. With increasing

fraction of charged monomers f the two-phase region

moves towards lower effective temperatures and is

located at lower temperatures than in solutions of

neutral polymers (for neutral polymers tcr zK2=
ffiffiffiffi
N

p
)

making polyelectrolyte solutions more stable. Monte

Carlo simulations [149] of the phase separation in

polyelectrolyte solutions have confirmed that fcr is

independent of the degree of polymerisation N.

The addition of salt to polyelectrolyte solutions

lowers the penalty due to counterion redistribution
Fig. 36. Spinodal line given by Eq. (3.48) for weakly charged

polyelectrolytes with the degree of polymerization NZ1000.
thus promoting phase separation. At high salt

concentrations, the electrostatic interactions between

charged monomers are exponentially screened lead-

ing to the renormalization of the second virial

coefficient between monomers. The Flory–Huggins

free energy of polyelectrolyte solutions at high salt

concentrations is

FðfÞ

kBT
Z

V

b3

f

N
lnðfÞC t C

f 2

2csb
3

� �
f2

2
C

f3

6

� �

C
DFionicðfÞ

kBT

(3.50)

Taking the second derivative of Eq. (3.50) with

respect to polymer volume fraction f, we obtain the

following equation for the spinodal line of the phase

diagram

1

Nf
Ct C

f 2

2csb
3

Cf Z 0 (3.51a)

with the critical point located at volume fraction

fcr Z
1ffiffiffiffi
N

p ; (3.51b)

and effective temperature

tcr ZK
2ffiffiffiffi
N

p K
f 2

2csb
3

(3.51c)

Thus, addition of salt leads to the increase of the

critical temperature. The shift of the critical point is

inversely proportional to the salt concentration cs at

high salt concentrations. For a recent review of

experimental results of the phase separation in

polyelectrolyte solutions see the paper by Volk et al.

[150].

The Flory–Huggins lattice consideration of the

polyelectrolyte solutions presented above incorrectly

describes dilute polyelectrolyte solutions. In the

Flory–Huggins approach, the monomers are uni-

formly distributed over the whole volume of the

system leading to underestimation of the effect of

short-range monomer–monomer interactions and of

the intrachain electrostatic interactions. A similar

problem appears in the Flory–Huggins theory of phase

separation of polymer solutions (see for discussion

Refs. [10,22]). This leads to the incorrect expression
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for the low polymer density branch of the phase

diagram.

3.3.2. Microphase separation

Phase separation into dilute and concentrated

phases is not the only option for polyelectrolytes in

a poor solvent for polymer backbone. It was shown

that weakly charged polyelectrolytes could locally

violate electroneutrality condition thus minimizing

the entropy loss due to the redistribution of counter-

ions. This local violation of electroneutrality leads to

the formation of mesophases—alternating regions

with high and low polymer densities. These meso-

phases appear as a result of optimization of

electrostatic and short-range interactions. The possi-

bility of this type of instability of the homogeneous

phase in solutions of weakly charged polyelectrolytes

was first discovered by Borue and Erukhimovich

[145] and then studied in a series of papers by Joanny

and Leibler [151], Vilgis and Borsali [146], and

Khokhlov and Nyrkova [143].

The stability analysis of the homogeneous phase is

done by investigating the correction to the free energy

of homogeneous phase that is quadratic in the power

of the Fourier transform of the polymer density

fluctuations df(q). For weakly charged polyelectro-

lytes, this correction has the following form

DFðfdfðqÞgÞ

kBT
Z

1

2b3

ð
dq

ð2pÞ3
1

fN
C

q2b2

12f
Ct Cf

�

C
4plBf 2

b3ðq2 Ck2Þ

�
dfðqÞdfðKqÞ

(3.52)

where q is the wave vector of the reciprocal space.

The first two terms in square brackets in Eq. (3.52)

describe the effect of the connectivity of the polymer

chain, the third and fourth terms correspond to the

short-range interactions between monomers, while the

last term describes the effect of electrostatic inter-

actions between charge density waves formed by

polymer density fluctuations. The Debye screening

length, kK1, in Eq. (3.52) includes contributions from

both counterions and salt ions, k2Z4plB(fcC2cs).

The magnitude of the mean-square fluctuations of

the Fourier component of the polymer volume

fraction at wavelength 2p/q corresponds to fluctu-

ations of the free energy, Eq. (3.52), of the order of the
thermal energy kBT and is proportional to

hdfðqÞdfðKqÞi

f
1

fN
C

q2b2

12f
Ct Cf C

4plBf 2

b3ðq2 Ck2Þ

� �K1

(3.53)

The fastest growing modes correspond to the

maximum of the right-hand side of Eq. (3.53). The

maximum of the expression (3.53) as a function of the

absolute value of q-vector is located at

q2
maxb2 Z ð48puf 2fÞ1=2Kk2b2 (3.54)

In salt-free polyelectrolyte solutions, the position of

the maximum qmax scales as one-fourth power of the

polymer volume fraction f. This concentration

dependence of the maximum in the scattering function

was recently observed by Braun et al. [152]. As salt is

added to the solution, the maximum shits towards

smaller q values corresponding to larger length scales.

At high salt concentrations, the maximum disappears

and the system behaves as a solution of neutral

polymers with effective short-range interactions.

The spinodal of the homogeneous phase with

respect to density fluctuations with finite value of the

wavevector qmax (so-called microphase separation) is

1

fN
Ct Cf C

4p

3

uf 2

f

� �1=2

K
k2b2

12f
Z 0 (3.55)

In salt-free solutions with csZ0 and k2Z4plBfc this

expression becomes

1

fN
Ct Cf C

4p

3

uf 2

f

� �1=2

K
puf

3
Z 0 (3.56)

and the critical point of the spinodal is located at

fcr Z
p

3
uf 2

� �1=3

; and

tcr ZKð9puf 2Þ1=3
(3.57)

where we neglected NK1 term in Eq. (3.56). Thus,

below the critical temperature the system could form

mesophases. It turns out that the critical temperature

for microphase separation given by Eq. (3.57) is

located above the critical temperature for macrophase

separation transition (see Eq. (3.49)). It indicates that

upon cooling the system first forms mesophases and
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then phase separates into concentrated and dilute

phases.

The phase separation and mesophase formation in

solutions of weakly charged polyelectrolytes in poor

solvent for polymer backbone was investigated by

Dormidontova et al. [153] (see Fig. 37). Using the

weak-crystallization theory, they calculated a phase

diagram of the system in the Flory–Huggins par-

ameter c—volume fraction f plane. Dormidontova et

al. found in some parts of phase diagram spherical

microdomains organized into body-centered-cubic

lattice (region 2), in other parts of the phase diagram

cylindrical domains forming a triangular lattice

(region 3), while in the third part of phase diagram

they found lamellar microdomains (region 4). These

mesophases can coexist with homogeneous concen-

trated and dilute phases (region 1). The specific

feature of the phase diagram in Ref. [153] is the region

of stability of the cylindrical mesophase (region 3)

that separates coexistence region (5) into two parts. It

should be noted that the weak-crystallization theory is

only correct close to the spinodal line of the

homogeneous phase, where the relative amplitudes
0.5
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Fig. 37. Phase diagram of solutions of weakly charged polyelec-

trolytes in Flory–Huggins interaction parameter c and polymer

volume fraction f plane [153]. The numbered regions correspond

to: homogeneous phase (1), microphase separated phase with

microdomains forming body-centered-cubic lattice (2), triangular

microdomain phase (3), lamellar microdomain phase (4), and region

of phase separation (5). Reproduced with permission from

Dormidontova, E.E., Erukhimovich, I.Y., & Khokhlov, A.R.

Macromolecular Theory and Simulations 3, 661–675 (1994).

[153] Copyright 1994, Wiley–VCH.
of the density waves, corresponding to the formation

of the microdomains, are smaller than unity.

Furthermore, in the strong segregation limit with

well-defined interface between regions of dense and

very dilute polymer solutions, the cylindrical micro-

domains are unstable with respect to capillary waves

that lead to the formation of the necklace-like

structure of beads (spherical microdomains) con-

nected by strings of polymeric strands. A similar

effect causes a cylindrical polyelectrolyte globule [47]

to transform into a necklace-like globule [34] (see

Section 2.3).

The weak-crystallization theory of microphase

separation in polyelectrolyte solutions has another

shortcoming. It assumes that the effect of electrostatic

interactions on the chain conformation is very weak

allowing one to utilize the ideal chain statistics in

describing the effect of chain connectivity on polymer

density fluctuations. This approximation is only

correct at high polymer concentrations such that fO
jtj. Thus, the description of the semidilute and dilute

polymer solution regions of the phase diagram in Ref.

[153] could only be qualitatively correct.
3.3.3. Necklace model of phase separation

A different approach to the phase separation in

polyelectrolyte solutions was proposed by Dobrynin

and Rubinstein [49]. They used a two-zone model to

describe counterion condensation inside beads of the

necklace-like globules in dilute solutions. Within this

approximation, the free energy of the dilute solution

of necklaces is

FneckðfÞ

kBT
z

V

b3

f

N
lnðfÞCff lnðf bjtjÞ

�

Cff
ð1KbÞ2=3

3

u

f

� �1=3

jtjKft2

� (3.58)

where b is the fraction of condensed counterions. The

first term on the right-hand side of Eq. (3.58) describes

polymer contribution to the entropy of mixing, the

second term is the entropy of counterions localized

inside beads, the third term is the free energy of the

beads, and, finally, the last term is the contribution to

the necklace free energy due to the short-range

monomer–monomer interactions inside beads. The

dense polymeric phase was described by adopting the

virial expansion of the Flory–Huggins free energy
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(see Eq. (3.47)). The phase diagram was calculated by

comparing the chemical potential of chains and the

osmotic pressure in dilute and concentrated phases.

Fig. 38 shows the resultant phase diagram of salt-free

polyelectrolyte solutions at poor solvent conditions

for the polymer backbone. The shaded area corre-

sponds to the two-phase region. Above the critical

temperature (for the values of the parameter

jtj! ðf =uÞ1=3), the polyelectrolyte solution is stable

with respect to phase separation. In regime I of the

phase diagram (Fig. 38), the thermal blob size

xrzb/jtj is larger than the bead size Db zbðuf 2ÞK1=3.

For the range of the effective temperatures jtj!
(uf2)1/3 the polymer–solvent interactions are not

strong enough to collapse chains, and they adopt the

conformations similar to the ones for polyelectrolytes

in a Q-solvent (regime I). In regime II, the polymer–

solvent interactions dominate at small length scales

and polyelectrolytes form necklace globules. The

chains can either be in a dilute regime for polymer

concentration below the overlap concentration c* (see

Eq. (3.40)) or in a semidilute regime for cOc*. In the

semidilute regime, the correlation length x decreases

with increasing polymer concentration c (see Eq.

(3.41)). The correlation length x becomes on the order

of the length of a string lstr connecting two

neighboring beads at polymer concentration czcBread

(see Eq. (3.43)). At this polymer concentration the
φ

τ

–(uf 2)1/3

Concentrated
Solution 

(uf 2)1/3 (f/u)1/3

Ι

Phase Separation

–(f/u)1/3
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Fig. 38. Phase diagram of polyelectrolytes in a poor solvent.

Logarithmic scales. Reproduced with permission from Dobrynin,

A.V. & Rubinstein, M. Macromolecules 34, 1964–1972 (2001). [49]

Copyright 2001, American Chemical Society.
system crosses over into the so-called bead-controlled

regime in which there is one bead per every

correlation volume x3 and polyelectrolyte solution

can be viewed as a strongly correlated charged

colloidal liquid of beads (regime III). It is interesting

to point out that the upper crossover point of the

regime III has the same dependence on the parameters

u and f as the critical point of the spinodal of the

microphase separation transition (see Eq. (3.57)). The

structure of the polyelectrolyte solution in the bead-

controlled regime resembles that of microphase

separated one with beads forming polymer-rich

spherical domains that are surrounded by a solution

of strings with the excess of the solvent.

For the effective temperature jtjzðf =uÞ1=3, the

correlation length x becomes on the order of the size

of a bead Db at polymer concentration cb3zjtj. At

higher polymer concentrations, the system crosses

over into the concentrated polyelectrolyte solution

(regime IV). However, if the value of the parameter

jtj is larger than (f/u)1/3 the system will phase separate

into a concentrated polymer solution and a solution of

necklaces. The left boundary of the two-phase region

is

fdil zjtjexp K
u

f

� �1=3

jtj

� �
(3.59)

while the right boundary of the two-phase region is

fcon zjtj (3.60)

Thus, the polymer volume fraction in the concentrated

phase at the two-phase boundary is the same as inside

beads of the necklace globule in the dilute phase. Two

lines given by Eqs. (3.59) and (3.60) intersect at fcr z
ðf =uÞ1=3 and tcr zKðf =uÞ1=3.

The phase separation in solutions of hydrophobic

polyelectrolyte was observed in MD simulations of

Chang and Yethiraj [154]. They have found that

solutions of necklaces phase separate with increasing

polymer concentration. Polyelectrolytes in the dense

phase form spherical, cylindrical, and lamellar

structures depending on polymer concentration.
3.4. PRISM and self-consistent field methods

The self-consistent integral equation approach to

polyelectrolyte solutions [155–157] is an extension of
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Fig. 39. Comparison of concentration dependence of the root-mean-

square end-to-end distance obtained by PRISM method [166] (solid

lines) to those obtained in molecular dynamics simulations by

Stevens and Kremer (Journal of Chemical Physics 103, 1669–1690

(1995)) (symbols). Reprinted with permission from Yethiraj, A.

Journal of Chemical Physics, 108, 1184 (1998). Copyright 1998,

American Institute of Physics.
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the polymer–reference-interacting site model

(PRISM) to charged systems introduced by Curro

and Schweizer [158]. In this approach a multi-chain

system is approximated by a single chain in the

effective medium. Monomers on the polymer chain in

this medium interact via the bare potential V(r) and

the medium-induced interaction potential W(r). The

theory self-consistently determines relations between

the total correlation function h(r), direct correlation

function c(r), and the single chain structure factor

u(r). In the Fourier space these equations are

ĥðqÞ Z ûðqÞĉðqÞŜðqÞ (3.61)

where the carets denote the Fourier transforms

ĥðqÞ Z

ð
dr expðiqrÞhðrÞ (3.62)

ŜðqÞ is the static structure factor

ŜðqÞ Z ûðqÞCrĥðqÞ (3.63)

and r is the average monomer–monomer density. The

single chain structure factor u(r) is defined as

uðrÞ Z NK1
X
g;d

ugdðrÞ (3.64)

where ugd(r) is the probability distribution function

that two monomers g and d are separated by distance

r, and N is the chain degree of polymerization. The

PRISM equations can be solved providing the closure

relation between the direct, c(r), and the total

correlation function, h(r). For charged systems the

Laria–Wu–Chandler (LWC) closure [159]

u*c*uðrÞ Z u* K
VðrÞ

kBT

� �
*uðrÞChðrÞKln gðrÞ

(3.65)

achieves a better agreement between simulations and

analytical results for static properties of polyelec-

trolyte solutions. In Eq. (3.65), the asterisks denote

convolution integrals and g(r) is the pair correlation

function, g(r)Z1Ch(r). In this closure, the direct

correlation between two molecules is approximated

by the sum of the pairwise interaction and the reaction

field induced by many-body correlations.

The medium-induced interaction potential is

obtained from the pair correlation functions using

the mean pair approximation. In the hypernated chain
approximation, the medium-induced potential is given

by

ŴðqÞ

kBT
ZKrĉðqÞŜðqÞĉðqÞ (3.66)

The chain structure factor u(r) is then self-consist-

ently calculated either from the minimization of a

chain free energy in the effective medium calculated

in the Gaussian approximation [80] or from the

Edwards–Singh approach [88] which minimizes an

error in the perturbation series expansion of the mean-

square average end-to-end distance of polymers. The

PRISM equations and the equation for the chain

structure factor are solved iteratively with the initial

guess for the medium-induced interaction W(r)Z0.

The procedure is repeated until the required accuracy

is achieved.

Fig. 39 shows comparison of the results of PRISM

calculations for the concentration dependence of the

chain size in the solution of polyelectrolyte chains

interacting via Yukawa potential to the results of

computer simulations [70]. The PRISM theory under-

estimates the chain size in both dilute and semidilute

solutions. The agreement with the simulation results

can be improved if instead of using variational

approach in calculating single chain properties, one
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performs Monte–Carlo simulations of a chain with the

effective interaction potential at each iteration step.

The PRISM theory predicts scaling exponents for the

position of the maximum in the structure factor ŜðqÞ in

both dilute, qmaxwr1/3, and semidilute, qmaxwr1/2,

solution regimes, as well as polymer and salt

concentration dependence of the chain size in dilute

and semidilute regimes similar to those obtained in

the framework of the scaling theories described in

Section 3.2.

This approach was successfully applied by Yethiraj

[155,156] to describe solutions of flexible polyelec-

trolytes interacting via the Yukawa potential. During

the last few years this approach was utilized to obtain

solution properties of rod-like [160–162] and semi-

flexible [163–166] polyelectrolyte chains in a wide

concentration range.

The field theoretical approach to polyelectrolyte

solution was pioneered by Muthukumar [167]. This

approach also reduces a multi-chain problem of

strongly interacting polyelectrolytes to a single-

chain problem in the effective medium potential.

This is achieved by performing Hubbard–Stratono-

vich transformation that reduces the pairwise inter-

actions to the effective external field (effective

medium field) acting on each monomer. As in the

PRISM approach, the effective medium properties

and chain structure factor are found in a self-

consistent manner. This approach allows calculations

of the limiting scaling laws in semidilute and

concentrated polyelectrolyte solutions as well as

analytical interpolation formulas for the correlation

length, chain persistence length, and the average chain

size at various polymer and salt concentrations.

The computationally efficient realization of the

field theoretical method in concentrated polyelec-

trolyte systems was recently developed by Wang et al.

[168]. In this approach, the electrostatic interactions

are described by the non-linear Poisson–Boltzmann

equation with space-dependent dielectric constant that

accounts for the large differences in dielectric

constants of pure solvent and regions filled with

polymers. The solution of the non-linear Poisson–

Boltzmann equation at a given polymer density profile

provides the distribution of the electrostatic potential

over the system volume. The polymer density

distribution is then re-calculated by solving the

diffusion equation for the monomer probability
distribution function in the effective external poten-

tial. This distribution function is used to obtain a new

polymer density profile, which is used as the input

parameter for the Poisson–Boltzmann equation. The

iterative procedure continues until the required

accuracy is achieved. This method was applied to

the phase separated polyelectrolyte solutions in a poor

solvent, to the lamellar structured system of the

symmetric diblock polyelectrolytes, and to the

polyelectrolyte blends. This method provides a

quantitative agreement with results of computer

simulations.
4. Adsorption of polyelectrolytes

4.1. A brief historic overview of theoretical models

of polyelectrolyte adsorption

Adsorption of charged polymers on charged

surfaces and interfaces is a classical problem of

polymer physics and has been under extensive

theoretical and experimental studies for the last four

decades [63,169–173]. Interest in this problem is

stimulated by its tremendous importance for different

areas of natural sciences ranging from materials

science to physics of disordered systems and

biophysics.

One of the first analytical calculations of the

polyelectrolyte adsorption at a charged surface was

performed by Wiegel [174,175]. Assuming the

Gaussian statistics of a polyelectrolyte chain, he

calculated the adsorption threshold and the thickness

of the adsorbed chain as a function of salt

concentration. The binding of flexible macromol-

ecules to the oppositely charged cylinder was treated

by Odijk in a similar way [176]. The interaction

between the charged monomers on the chain was

taken into account by Muthukumar [177], who

considered a general case of the adsorption of a

polyelectrolyte chain that can take any conformation

between those of a self-avoiding walk and a rod,

depending on the ionic strength of the solution. This

theory was later extended to polyelectrolyte adsorp-

tion on charged patterned surfaces [178] and validated

by Monte Carlo simulations [178–180]. The scaling

theory of the conformations of a weakly charged

polyelectrolyte chain near a charged surface was
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proposed by Borisov et al. [181]. There are different

stages of adsorption of a polyion corresponding to the

rearrangement of chain conformations on different

length scales. The predictions of the theory were

confirmed by computer simulations [182]. The

detailed interfacial properties of a lattice model for

adsorption of a single polyelectrolyte chain were

studied by Beltran et al. [183] using Monte Carlo

simulations. It was demonstrated that polyelectrolyte

chains flatten out forming long trains of loops upon

increase in the surface charge density or in the fraction

of the charged monomers on the chain.

The Hoeve’s theory [184,185] for adsorption of

uncharged polymers was generalized by Hesselink

[186], who incorporated the electrostatic contribution

into Hoeve’s partition function of an uncharged

adsorbed polymer and considered the total free energy

of a system as a sum of electrostatic and non-

electrostatic terms. Assuming a step-like polymer

density distribution in the adsorbed layer, Hesselink

calculated the adsorption isotherm and polymer

surface coverage as a function of salt concentration.

The adsorbed amount rises very steeply and levels off

at the saturation value in solutions with extremely low

polymer concentrations. Hesselink’s theory predicts

an increase of polymer adsorbed amount with

increasing salt concentration.

The significant fraction of theoretical works deal-

ing with multi-chain polyelectrolyte adsorption at a

charged surface was carried out within the framework

of the self-consistent field (SCF) method [170,187,

188]. The polymer density distribution is coupled in

these theories to the local electrostatic potential

through the combination of the Poisson–Boltzmann

equation and the Edwards equation describing

polymer conformations in the effective external

potential. This approach was first applied by van der

Schee and Lyklema [189] and Evers et al. [190]. They

have showed that strong repulsion between charged

monomers leads to very thin adsorbed layers. The

adsorbed amount increases and the adsorbed layer

becomes thicker, if this repulsion is screened by

adding salt. The extension of the Van der Schee and

Lyklema theory to the case of weak polyelectrolytes

was done by Bohmer et al. [191]. The charge on

adsorbed weak polyelectrolytes is determined by the

pH and salt concentration in the local environment of

ionizable groups [172,191–193].
Polyelectrolyte adsorption was also studied using

the ground-state dominance approximation of the SCF

method [194–198]. Linearized solution of the

Poisson–Boltzmann and of Edwards’ equations was

obtained by Varoqui et al. [194]. They considered

conformations of weakly charged polyelectrolytes at a

liquid–solid interface and calculated the adsorption

isotherm and the concentration profile of these

polyelectrolytes near the charged interface. These

calculations show that the thickness of the adsorbed

layer D increases with increasing the surface number

charge density s as Dfs1/3. The numerical solution

of the non-linear Poisson–Boltzmann equation was

presented by Borukhov et al. [197,199]. These authors

also calculated the concentration profile of weakly

charged polyelectrolytes between two charged sur-

faces and the effective interactions between charged

surfaces [199–201]. Protective polyelectrolyte layers

lead to additional repulsive interactions between

surfaces. The analytical results for the polymer

density profiles within the framework of linear

response approximation were obtained by Chatellier

and Joanny [198]. It was demonstrated that the

concentration profile at low ionic strength shows

damped oscillations. The microscopic theory in the

framework of integral equation approach for the

interaction forces between hydrophobic surfaces

immersed in salt-free polyelectrolyte solutions have

been developed by Yethiraj [202]. The theory predicts

oscillatory forces between surfaces with the period of

oscillation proportional to the correlation length of

polyelectrolyte solution. This theory is in good

qualitative agreement with computer simulations by

Carignaro and Dan [203].

The attempt to describe the irreversible nature of

polyelectrolyte adsorption was made by Barford et al.

[204,205]. They proposed a model of the sequential

adsorption in which the polymer density profile is

built-up by the adsorption of incremental concen-

trations of polymers. Once each increment was

adsorbed, its surface concentration remains constant,

but the bulk profile equilibrates as more polymers are

adsorbed. This scheme was implemented in the

framework of the ground-state dominance approxi-

mation for the SCF method for which authors derived

the integro-differential equation for the polymer

density profile in the adsorbed layer. This model

predicts that less polymer can be adsorbed and that the
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polymer density profile is more extended for

irreversible adsorption in comparison with the case

of equilibrium adsorption.

The kinetics of polyelectrolyte adsorption was

investigated theoretically by Stuart et al. [206]. The

authors develop a Kramer’s rate theory model that is

based on the electrostatic origin of the barrier that

polyelectrolytes encounter in their motion toward

adsorbing surface. The height of the barrier was

calculated within a self-consistent filed model [170].

The model predicts that the equilibrium in adsorption

is attained at high and moderate salt concentrations.

However, for low salt concentrations the equilibrium

cannot be reached during the time of a typical

experiment.

Recent rejuvenation of the theoretical interest in

the problem of polyelectrolyte adsorption [207–217]

is due, in part, to the importance of this problem for

understanding the formation of polyelectrolyte multi-

layers formed by the successive deposition of

positively and negatively charged polyelectrolytes

on charged surfaces from aqueous solutions [12–17].

It is now possible to produce a sequence of hundreds

of alternating polyelectrolyte layers. These exper-

iments raised an important fundamental question

about the charge inversion in the adsorbed polyelec-

trolytes that is responsible for the successful build-up

of alternating polymer layers. A model for the charge

inversion in the adsorbed layer of flexible polyelec-

trolytes was proposed by Joanny [215]. Following the

traditional route using the Edwards mean-field

equation for a polyelectrolyte chain in the effective

external potential together with the Poisson–Boltz-

mann equation he showed that the overcharging is

proportional to the layer thickness and is inversely

proportional to the Debye screening length.

However, the self-consistent field approach fails to

describe two-dimensional semidilute and dilute

adsorbed layers where polyelectrolyte chains form a

strongly correlated liquid [218–221]. A good approxi-

mation in this case is to divide the adsorbed layer into

Wigner–Seitz cells surrounding each polyelectrolyte

chain in dilute adsorbed layer and sections of a chain

in a semidilute layer [207–216]. In the framework of

this approach the surface overcharging depends on the

size of the Wigner–Seitz cell and can be much larger

than the bare surface charge density. The Wigner–

Seitz cell description of polyelectrolyte adsorption is
similar to the Katchalsky’s cell model described in

Section 2.4.2.
4.2. Why self-consistent field method based on

Poisson–Boltzmann approach does not work

for polyelectrolyte adsorption

Consider adsorption of polyelectrolyte chains with

the degree of polymerisation N and with fraction of

charged monomers f from a dilute solution onto an

oppositely charged surface with the charge number

density s. At very low surface charge density s

(below adsorption threshold) polyelectrolyte chains

replace surface counterions and screen the surface

charge. The number density of polyions in this pre-

adsorption regime decreases with distance z from the

surface according to the Gouy–Chapman solution of

the non-linear Poisson–Boltzmann equation [222]

cchðzÞ Z
1

fN

slfN

ðz ClfNÞ
2

(4.1)

The Gouy–Chapman length lfN for polyions with

valency fN is

lfN Z ð2plBfNsÞK1 (4.2)

The density of polyelectrolyte chains, cchzlBs2, is

almost constant within distance lfN from the surface.

The average distance R between neighboring polyions

located within the Gouy–Chapman length from the

surface can be estimated as RzcK1=3
ch zlK1=3

B sK2=3. This

screening layer is dilute with the distance between

macroions R larger than their size Re (Re!R!lfN).

The electrostatic repulsion between two polyions

carrying charge efN separated by distance R is equal to

Uel zkBT
lBðfNÞ2

R
zkBTðs=sWCÞ

2=3 (4.3)

This electrostatic repulsion is weaker than the thermal

energy kBT when the surface charge number density s

is smaller than

sWC zlK2
B fK3NK3 (4.4)

At low surface charge densities, s!sWC, the classical

Poisson–Boltzmann approach works well to describe

distribution of polyions near charged substrates.

However, at higher surface charge densities, sO
sWC, the electrostatic repulsion between polyions,
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UelOkBT, forces them to organize into a two-

dimensional strongly correlated Wigner liquid at the

charged surface (distance R between chains becomes

larger than their distance lfN to the surface). For a

polyelectrolyte chain consisting of NZ102 Kuhn

monomers with 10% of these monomers charged

(fZ0.1) adsorbing from the aqueous solutions with

the Bjerrum length lBZ7 A the crossover surface

charge density is equal to swc z2!10K5 AK2. This is

very low surface charge density, which is at the lowest

end of the most experiments on polyelectrolyte

adsorption on glass and mica substrates. Thus, for

most experiments adsorbed polyelectrolyte chains

form strongly correlated Wigner liquid [218–221].
4.3. Two-dimensional adsorbed layers [209]

In this section we review the results of the cell

model of polyelectrolyte adsorption from a dilute

solution with salt concentration cs. In this approach,

each polyelectrolyte chain or section of a chain is

localized in the center of the cell due to strong

electrostatic repulsion between chains.
4.3.1. Dilute regime

The distance R between chains in a dilute two-

dimensional adsorbed layer is larger than their size Re.

(Here, we will use the scaling expression for the chain

size in a Q-solvent for the polymer backbone

neglecting logarithmic corrections and consider

adsorption of polyelectrolyte chains driven exclu-

sively by electrostatic interactions.) The total electro-

static energy of an adsorbed polyelectrolyte chain

includes the electrostatic attraction of the chain to the

charged surface with the surface charge number

density s (see Fig. 40)
Fig. 40. Schematic sketch of an adsorbed layer in dilute 2D regime.

Reproduced with permission from Dobrynin, A.V., Deshkovski, A.,

& Rubinstein, M. Macromolecules 34, 1964–1972 (2001). [209]

Copyright 2001, American Chemical Society.
Uatt

kBT
zKlBfNs

ðN
0

drr expðKr=rDÞ ZKlBfNsrD (4.5)

and repulsion from other adsorbed polyelectrolytes

distributed with the effective surface charge density

efN/R2, starting at distance R from a given polyion

Urep

kBT
z

lBðfNÞ2

R2

ðN
R

drr expðKr=rDÞ

Z
lBðfNÞ2rD

R2
expðKR=rDÞ (4.6)

The total electrostatic energy of the adsorbed layer

with the surface area S is the sum of the contributions

from all chains

Ucell

kBT
zSlBfNrD

1

2

fN

R4
expðKR=rDÞK

s

R2

� �
(4.7)

The factor 1/2 in front of the first term is added to

avoid double-counting the repulsive interactions

between the chains. The dependence of the cell size

R on the salt concentration is derived by minimizing

the total electrostatic energy with respect to R. The

equilibrium cell size corresponding to the minimum

of the electrostatic energy (Eq. (4.7))

fN

R2
expðKR=rDÞ 1 C

R

4rD

� �
zs (4.8)

At low salt concentrations, rD O
ffiffiffiffiffiffiffiffiffi
fN=s

p
, the cell size R

has a very weak dependence on the Debye screening

length rD. Thus, on the scaling level, at low salt

concentrations the size of the cell is

RzR0 z
ffiffiffiffiffiffiffiffiffi
fN=s

p
; low salt rD O

ffiffiffiffiffiffiffiffiffi
fN=s

p
(4.9)

In this salt concentration regime the cell is almost

electroneutral. The size of the cell is inversely

proportional to the square root of the surface charge

number density s. In this regime the left-hand side of

Eq. (4.8) can be expanded in the power series of R/rD.

Within this approximation the surface overcharging

by adsorbed polyelectrolyte chains is

dsz
fN

R2
Ksz

ffiffiffiffiffiffiffiffi
fNs

p

rD

; low salt rDO
ffiffiffiffiffiffiffiffiffi
fN=s

p
(4.10)

This equation implies that the effective surface charge

density at crossover between low and high salt
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regimes (rDzR0) is of the same order of magnitude as

the bare surface charge density s, but has opposite

sign.

The adsorption energy of polyelectrolyte chain

includes repulsion from other adsorbed chains and

attraction to an oppositely charged background

3ads

kBT
zlBrDfN

fN

R2
expðKR=rDÞKs

� �

z
R=rD/1

K
lBðfNÞ2

R
zKlBs1=2ðfNÞ3=2

(4.11)

In rewriting Eq. (4.11) we have substituted for the

surface charge density s its relation with the cell size

R given by Eq. (4.8) and expanded exponential

functions in the power series of R/rD. Eq. (4.11)

shows that at low salt concentrations each adsorbed

chain effectively interacts only with its neutralizing

background within a cell of size R. Using this

approximation we can estimate adsorption energy of

a chain with the center of mass located at distance z

(z/R) from adsorbing surface

3adsðzÞ

kBT
zlBfNs

ðR
0

r drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 Cz2

p

zKlBs1=2ðfNÞ3=2 1K
z

R

� �
(4.12)

The polyelectrolyte chains are strongly attracted to the

surface with the binding energy j3adsj[kBT as long

as the surface charge density s is larger than the

threshold value sWC (see Eq. (4.4)). The electrostatic

attraction of a polyelectrolyte chain to a charged

surface j3adsjzkBTðN=g0
eÞRe=R is weaker than the

electrostatic self-energy of a chain kBTðN=g0
eÞ as long

as polyelectrolyte chains in the adsorbed layer do not

overlap (Re!R). Therefore, this attraction is not

strong enough to perturb the internal chain structure

determined by the repulsion between charged mono-

mers along the polymer backbone and only influence

translational and orientational degrees of freedom of

the polyelectrolyte. The polyelectrolytes are localized

within thickness

DzðlBfNsÞK1 (4.13)

inside which (for z!D) the variations of the

adsorption energy Eq. (4.12) are on the order of the
thermal energy kBT. The probability of finding

polyelectrolyte chain beyond this distance D is

exponentially low. The localization length scale D is

on the order of the Gouy–Chapman length lfN. The

polyelectrolyte chains lay flat on the surface when

the localization length D becomes of the order of the

transversal size of the polyelectrolyte chains bN1/2.

This takes place at the surface charge density sdef

equal to

sdef zbK1lK1
B fK1NK3=2 (4.14)

At higher surface charge densities sOsdef, the

electrostatic attraction to the surface compresses the

chain within thickness D in the direction perpendicu-

lar to the charged surface. The thickness of the

polyelectrolyte chain is determined by balancing

the confinement entropy of a polyelectrolyte chain

kBTNb2/D2 with its attraction 3ads(D) to the charged

surface (see Eq. (4.12)). This gives the equilibrium

thickness of the chain

Dzb2=3ðlBf sÞK1=3 (4.15)

that is independent on the chain degree of polymeriz-

ation N. The thickness of adsorbed polyelectrolyte

chains decreases with increasing the surface charge

density s as sK1/3.

When the Debye radius rD becomes smaller

than
ffiffiffiffiffiffiffiffiffi
fN=s

p
the adsorbed polyelectrolyte chains inter-

act with the part of the surface within distance rD from

polyion. The cell size R that minimizes the electro-

static energy of chains in the adsorbed layer, Eq. (4.7),

is equal to

RzrDln
fN

sr2
D

� �
; high salt rD !

ffiffiffiffiffiffiffiffiffi
fN=s

p
(4.16)

Thus, the cell size is proportional to the Debye radius

rD up to logarithmic corrections. The effective surface

charge density in this high salt concentration regime is

dsz
fN

R2
Ksz

fN

r2
D

; high salt rD !
ffiffiffiffiffiffiffiffiffi
fN=s

p
(4.17)

and can be much larger than the bare surface charge

density s. The polymer surface coverage GzðsC
dsÞ=f increases with increasing the salt concentration.

Polyelectrolyte chains in the adsorbed layer begin

to overlap when the cell size R becomes comparable

with the size of polyelectrolyte chains Re. At low salt
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concentrations, rD O
ffiffiffiffiffiffiffiffiffi
fN=s

p
, the crossover to semi-

dilute adsorbed layer occurs at the surface charge

number density equal to

s
� z

1

b2u2=3f 1=3N
(4.18)

The estimated value of the crossover surface charge

number density for a solution of chains consisting of

NZ102 Kuhn monomers with 10% of these mono-

mers being charged (fZ0.1) adsorbing from an

aqueous solutions with the Bjerrum length lBZ7 A

is s*z10K3 AK2. At high salt concentration regime

the crossover to semidilute regime occurs at rDzRe.

Note that the dependence of the cell size and

surface overcharging in two-dimensional dilute

adsorbed layer is similar to the case of adsorption of

multivalent ions at oppositely charged surface (see for

review Ref. [63]).
4.3.2. Semidilute adsorbed layers

Above the overlap surface number charge density

s* the adsorbed polymers arrange themselves into a

two-dimensional semidilute polyelectrolyte solution,

with the spacing between neighboring chains x (see

Fig. 41). The intrachain electrostatic repulsion leads

to chain stretching along the adsorbing surface on

length scales larger than electrostatic blob size D0
e . At

the length scales smaller than x the polyelectrolyte

configuration is that of an extended array of gx=g
0
e

electrostatic blobs. At these length scales the chain

has the same conformation as in the semidilute

polyelectrolyte solution discussed in Section 3.2.

The electrostatic contribution to the total energy can

again be divided into the repulsive and attractive parts

(see Eq. (4.7)). The electrostatic energy of the

adsorbed layer is
Fig. 41. Schematic sketch of an adsorbed layer in semidilute 2D

regime. Reproduced with permission from Dobrynin, A.V.,

Deshkovski, A., & Rubinstein, M. Macromolecules 34, 1964–

1972 (2001). [209] Copyright 2001, American Chemical Society.
Ucell

kBT
zSlBrDfg

x

fg
x

2x4
expðKx=rDÞK

s

x2

� �
(4.19)

Minimizing this electrostatic energy with respect to

the distance between chains x and taking into account

that the number of monomers in a correlation blob is

gx zx=ðbu1=3f 2=3Þ one obtains the equation (similar to

the Eq. (4.8)) relating the distance between chains x to

the Debye radius rD, and surface charge number

density s

f 1=3

bu1=3x
1 C

x

2rD

� �
expðKx=rDÞzs (4.20)

At low salt concentrations (rDOx) the distance

between chains (the correlation length of the two-

dimensional semidilute polyelectrolyte solution)

xz
f 1=3

u1=3bs
; low salt rD O f 1=3=ðu1=3bsÞ (4.21)

is inversely proportional to the surface charge number

density s. The surface overcharging ds in this regime

dszs
x

rD

� �
z

f 1=3

u1=3brD

; low salt rD O f 1=3=ðu1=3bsÞ

(4.22)

is inversely proportional to the Debye radius rD, and is

independent on the bare surface charge number

density s.

At higher salt concentrations the solution of Eq.

(4.20) is

xzrD ln
f 1=3

u1=3srDb

� �
zrD; high salt rD!f 1=3=ðu1=3bsÞ

(4.23)

Here, the distance between chains x scales linearly

with the Debye screening length rD up to

logarithmic corrections. Thus, the distance between

chains decreases as salt is added to the solution.

The surface overcharging by adsorbed polyelec-

trolytes has the same functional form as the

overcharging for the low salt regime, Eq. (4.22)

(up to logarithmic corrections).

The thickness D of the polyelectrolyte chains in

semidilute adsorbed layer follows the same scaling

dependence as one derived for a dilute adsorption

regime, DwsK1/3 (see Eq. (4.15)).
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The electrostatic blobs start to overlap at the salt

concentrations for which the cell size x is on the order

of the electrostatic blob size D0
e . This overlap between

electrostatic blobs occurs for the surface charge

number density

se z
fg0

e

ðD0
eÞ

2
z

f

b2
(4.24)

For higher surface charge densities the adsorbed

polyelectrolyte chains form a three-dimensional

adsorbed layer. The estimated value of this crossover

surface charge number density for our example is on

the order of se z6!10K3 AK2 At this crossover

surface charge number density the intrachain electro-

static repulsion is on the order of the electrostatic

attraction to the adsorbing surface.

The surface overcharging and the cell size depen-

dence for the two-dimensional adsorbed layer are

similar to the ones derived for rigid polyelectrolytes in

Refs. [63,207]. This is due to the fact that at the length

scales, D0
e !r!x a polyelectrolyte chain can be

considered as rod-like. The surface overcharging and

cell size are determined by the chain properties at the

length scales up to the correlation length x.

It is interesting to point out that in the case of

polyelectrolyte adsorption from poor solvent for

polymer backbone [211] there are two different

regimes in semidilute adsorbed layer—string-con-

trolled and bead-controlled regimes. In the string-

controlled regime the distance between chains is

larger than the string length and there are many

beads per each correlation area. While in the bead

controlled regime there is one bead per each

correlation area. This unique structural property of

semidilute adsorbed layer closely resembles two

regimes in semidilute solution of necklaces dis-

cussed in Section 3.2.6.

4.4. Three-dimensional self-similar adsorbed layers [209]

At high surface charge densities (sOse) the

electrostatic attraction to a charged surface becomes

strong enough to compress polyelectrolyte chains on

the length scales smaller than the electrostatic blob

size D0
e. The polyelectrolyte chains form a concen-

trated polymer solution near the charged surface. In

this regime, the electrostatic interactions of polyelec-

trolytes with the effective field created by other
polymer chains dominate over the electrostatic self-

energy of the chain, therefore the polymer density

distribution and the electrostatic potential can be

obtained in the framework of the mean-field approxi-

mation. Within this approximation the polymer

density c(z) and small ions density ca(z) depends

only on the distance z from the charged surface. This

approximation is correct as long as the local polymer

concentration c(z) is higher than concentration inside

an electrostatic blob, bK3u1/3f2/3.

In this regime, the local polymer concentration is

obtained by balancing the electrostatic attraction to

the charged surface with three-body monomer–

monomer repulsive interactions in a Q-solvent for

polymer backbone

b6cðzÞ3 zfcðzÞ4ðzÞ0cðzÞzbK3
ffiffiffiffiffiffiffiffiffiffiffi
f 4ðzÞ

p
(4.25)

The concentration of the salt ions in the adsorbed

layer satisfies the Boltzmann distribution

cGðzÞ Z cs exp½H4ðzÞ� z
4ðzÞ/1

cs½1H4ðzÞ� (4.26)

where cs is the bulk salt concentration. The

electrostatic potential is given by the Poisson equation

d24ðzÞ

dz2
Z 4plB½fcðzÞCcKðzÞKcCðzÞ�z

4ðzÞ

r2
D

C
4puf 3=2

b2

ffiffiffiffiffiffiffiffiffi
4ðzÞ

p
(4.27)

together with the boundary condition at the charged

surface

d4ðzÞ

dz
zZ0 ZK4plBs
�� (4.28)

The solution of the second-order differential Eq.

(4.27) leads to the following expression for polymer

density profile in the adsorbed layer

cðzÞzbK3
ffiffiffiffiffiffiffiffiffiffiffi
f 4ðzÞ

p

Z
16p

3

uf 2r2
D

b5
sinh2 DKz

4rD

� �
(4.29)

Here, the thickness D of the adsorbed layer is obtained

from the boundary condition

64p

9

uf 3r3
D

b3
sinh3 D

4rD

� �
cosh

D

4rD

� �
Z sb2 (4.30)
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The equation for the polymer density profile is

simplified at low salt concentrations (D!rD)

cðzÞz
uf 2ðDKzÞ2

b5
(4.31)

The polymer density profile (Eq. (4.31)) is self-similar

(a power law) from the outer edge of the layer zZD

inward (towards the adsorbing surface). Thus, the

adsorbed layer can be considered to be built of blobs

with size x(z) gradually increasing with distance z

from the surface (see Fig. 42). The number of

monomers in a concentration blob is determined

from the fact that these blobs are space-filling,

c(z)zg(z)/x(z)3, and statistics of a chain inside a

blob is Gaussian, x(z)zbg(z)1/2. The size of the space-

filling blobs in a Q-solvent is the length scale at which

three-body interaction energy is on the order of the

thermal energy kBT. These blobs are multivalent ions

with valency fg(z). Each blob interacts with the

external electrostatic potential 4(z) with the energy

fg(z)4(z) on the order of the thermal energy kBT.

In this regime the thickness D of the adsorbed layer

is

Dzb5=3uK1=3fK1s1=3 zD0
eðs=seÞ

1=3 (4.32)

The thickness of the adsorbed layer D increases with

the surface charge number density as s1/3.

Both salt ions and polyelectrolyte chains contribute

to screening of the surface charge. Inside the three-

dimensional adsorbed layer the addition of salt

decreases the polymer adsorbed amount, because the

salt ions also take part in the screening of the surface

charge. The typical excess of the salt charge density

dcs(z) in the adsorbed layer is

dcsðzÞzcKðzÞKcCðzÞzcs4ðzÞ (4.33)
Fig. 42. Schematic sketch of the adsorbed layer in 3D regime.

Reproduced with permission from Dobrynin, A.V., Deshkovski, A.,

& Rubinstein, M. Macromolecules 34, 1964–1972 (2001). [209]

Copyright 2001, American Chemical Society.
A typical value of the electrostatic potential 4(z) in the

adsorbed layer can be estimated as that of a planar

capacitor with surface charge number density s and

distance between plates D, 4(z)zlBsD. Multiplying

the excess charge density by the layer thickness D one

obtains the counterion surface excess

Gsalt zdcsDzlBcssD2 zsD2=r2
D (4.34)

Thus, the fraction D2=r2
D of the surface charge is

screened by the salt ions leaving only the fraction

1KD2=r2
D of the surface charge for polyelectrolytes to

screen.

However, the mean-field description of the

adsorbed layer is not accurate within the distance D0
e

from the outer edge of the adsorbed layer. At these

distances from the outer boundary the fluctuations of

the polymer density bK3(uf2)1/3 become larger than

the average polymer density c(z) given by Eq. (4.31).

This outer layer can be considered as a two-

dimensional melt of electrostatic blobs with size D0
e.

The effective surface charge density Ds experienced

by the last layer of thickness D0
e is on the order of

magnitude of the threshold value se. The surface

overcharging due to this strongly fluctuating layer of

electrostatic blobs is the same as in the case of

semidilute adsorbed layer at the crossover surface

charge density (see Eq. (4.22)). Thus, the total

overcharging of the adsorbing surface by polyelec-

trolytes is

dsz
f 1=3

u1=3brD

Ks
D2

r2
D

; low salt rD OD (4.35)

where the first term describes the surface over-

charging by the outer layer of thickness D0
e and the

second term describes the polymeric underscreening

inside the adsorbed layer (salt contribution to the

surface screening). Surface overcharging ds exhibits

non-monotonic salt concentration dependence. Over-

charging first increases and then decreases with

increasing salt concentration (decreasing the Debye

radius rD).

At low salt concentrations the thickness of the

adsorbed layer D saturates at the surface charge

number density of the order of sion zbK2uK1=2f 3=4.

Counterions start to dominate screening of the surface

charge for higher surface charge number densities. In

the vicinity of the substrate within the layer of
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thickness hzbuK1=2f 3=4 the polymer concentration is

almost constant and is equal to bK3f1/2. At this

polymer concentration there is on average one charge

per each correlation blob of size b/f1/2. Further

increase of polymer concentration will lead to

increase of the monomer–monomer repulsive inter-

actions without providing sufficient screening of the

surface charge by adsorbed chains (see for details

[209]).

Fig. 43 displays the dependence of the thickness of

the adsorbed layer D on surface charge number

density s in different adsorption regimes at low salt

concentrations. The layer thickness exhibits non-

monotonic dependence on the surface charge density

s. Initially it is inversely proportional to surface

charge number density s. Then, it decreases with

increasing the surface charge density as sK1/3. In this

regime the thickness of the adsorbed layer is

determined by the energy gain due to electrostatic

attraction to the charged surface and the confinement

entropy loss due to chain compression. Within the

interval of the surface charge densities se!s!sion

the equilibrium thickness of the adsorbed layer

increases with increasing surface charge density as

s1/3. In this regime the thickness of the adsorbed layer

is determined by the balance between electrostatic
Fig. 43. Non-monotonic dependence of the thickness D of the

adsorbed layer on the surface charge density. Reproduced with

permission from Dobrynin, A.V., Deshkovski, A., & Rubinstein, M.

Macromolecules 34, 1964–1972 (2001). [209] Copyright 2001,

American Chemical Society.
attraction to the charged surface and monomer–

monomer repulsion. Finally, the thickness of the

adsorbed layer D saturates at the surface charge

density s on the order of sion. At this high surface

charge densities the surface counterions dominate

screening of the surface potential.
4.5. Effect of the image forces and short-range

interactions on polyelectrolyte adsorption

In the description of the polyelectrolyte adsorp-

tion presented above it was assumed that the

dielectric constant of the solvent 3 and that of the

substrate 31 are the same. However, in many

experimental situations, such as adsorption of

polyelectrolyte chains from water onto clay,

polymer latex particles or at the water/air inter-

face, the dielectric constant of the solvent 3 is

larger than that of the surface 31. The presence of

the charge in the medium with dielectric constant

3 near the surface with the dielectric constant 31

causes polarization of both media. The result is

the appearance of the image charge at the

symmetric positions with respect to the dielectric

boundary with magnitude [21]

q0 Z
3K31

3 C31

� �
q (4.36)

If the dielectric constant of the substrate is

much smaller than the dielectric constant of the

solvent 31/3 which is usually the case for the

adsorption of polyelectrolytes from aqueous sol-

ution onto polymeric substrates, the magnitude of

the image charge q 0 is almost equal to the valence

of charge q (see Fig. 44(a)). This leads to the

effective repulsion of the test charge from the

dielectric boundary. However, if the dielectric

constant of the adsorbing substrate is larger than

the dielectric constant of the solvent the valence

of the image charge is opposite to the test charge

creating an additional attraction to the adsorbing

surface (see Fig. 44(b)). The example of this is the

adsorption of polyelectrolytes at metallic surface

with infinite dielectric constant, 31ZN.

The electrostatic interaction between two charges

located at points r1 and r2 above the dielectric
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Fig. 44. A test charge near a dielectric boundary.
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Fig. 45. Schematic representation of a test charge qe near a charged

boundary with dielectric constant (a) 31/3 and (b) 31[3 (metallic

boundary).
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boundary in a salt solution can be approximated as

Uelectr

kBT
zq1q2

lB expðKjr1Kr2j=rDÞ

jr1 Kr2j

�

C
3K31

3 C31

� �
lB expðK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1Kr2Þ

2 C4z1z2

p
=rDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1Kr2Þ
2 C4z1z2

p
!

(4.37)

where the first term describes the direct electrostatic

interaction between charges q1 and q2 while the

second term represents interaction between a charge

and the image of other charge (see for details [223]).

The electrostatic potential energy given by Eq. (4.37)

does not take into account the self-interaction between

charges and their own images. Thus, each charge near

the adsorbing charged substrate with the dielectric

constant different from that of the solvent, does not

only interact with the ‘real’ charges but also with their

images. If there are ionized groups at dielectric

boundary (a charged substrate), the dielectric inter-

face also creates an image charge for each ionized

surface group. In this case, the total electrostatic

interaction between a test charge with valence q

located at distance z from the oppositely charged

substrate with surface charge density s can be written

in the following form

UsubsðzÞ

kBT
zK

4plB3srD

ð3 C31Þ
expðKz=rDÞ

C
lB

4z

3K31

3 C31

� �
expðK2z=rDÞ (4.38)

where the first term describes the interaction between

the test charge and the charged substrate (including

the substrate charge image) while the second term
corresponds to the electrostatic interaction between

the test charge and its image. In the case when the

dielectric constant of the substrate is much lower than

the dielectric constant of the solvent, 31!3 the image

charges double the surface charge density (see

Fig. 45(a)).

However, if the opposite inequality holds 31[3

(metallic substrate) the first term in Eq. (4.38)

disappears and the interaction of a test charge with

the surface is controlled by attraction to its image. The

disappearance of the first term should not be surprising

because for each surface charge there is an image

charge of the opposite sign located below the surface

boundary (see Fig. 45(b)). Thus, approaching test

charge ‘sees’ an array of dipoles. Electrostatic

interaction of a charge with an array of dipoles is

weaker than interaction with a charged surface.

Let us now describe the adsorption of polyelec-

trolyte chains at a charged dielectric substrate with

31!3. In this case each adsorbed polyelectrolyte chain

will have a similarly charged image chain. This will

lead to doubling of the electrostatic repulsion between

adsorbed polyelectrolyte chains given by Eq. (4.6)

and doubling of the electrostatic attraction of a chain

to the charged surface given by Eq. (4.5). However, in

addition to these two terms there is another

contribution to the layer electrostatic energy, which

is due to the interaction of a chain with its own image.
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This interaction can be estimated as electrostatic

interaction between two charged rods of similar

charge separated by a distance 2d, where d is the

distance between the adsorbed chain and the substrate.

The interaction of the polyelectrolyte chain with its

image in the low salt concentration regime (Re!rD) is

Uimage

kBT
z

lBðfNÞ2

Re

ln
Re

2d

� �
z

N

g0
e

(4.39)

Neglecting the logarithmic term, the interaction of the

polyelectrolyte chain with its image is on the order of

the chain’s self-energy. Thus, the presence of a

dielectric boundary is reduced to the additional short-

range repulsive interaction between charged mono-

mers and the substrate.

The electrostatic energy of the dilute adsorbed

layer (Eq. (4.7)) can be rewritten by taking into

account all three contributions (electrostatic repulsion

from the adsorbed chains, attraction to the charged

substrate, and repulsion from the image chain)

Ucell

kBT
zSlBrDfN

fN

R4
expðKR=rDÞK

2s

R2

� �
C

SN

g0
eR2

(4.40)

The equilibrium distance R between adsorbed chains

is obtained by minimizing Eq. (4.40) with respect to R

fN

R2
expðKR=rDÞ 1 C

R

4rD

� �
zsK

f

u

� �1=3 1

2brD

(4.41)

The electrostatic repulsion from the image chain

(the last term on the right-hand side of the Eq.

(4.41)) reduces the effective surface charge number

density s. The solution of Eq. (4.41) disappears if

the expression on the right-hand side becomes

negative. This corresponds to the chain desorption

taking place at the values of the Debye radius rD

smaller than rdes
D

rD !rdes
D z

f

u

� �1=3

sK1 (4.42)

This eliminates a part of the dilute adsorption

regime in comparison with the case of equal

dielectric constants of both media, 3Z31 (see

Section 4.3.1). However, in the interval of the

Debye radius and surface charge densities s such
that rD Ordes
D the scaling relations between the ionic

strength dependence of the cell size, polymer

surface coverage and surface number charge density

s and the Debye radius rD have the same power

laws as the scaling relations derived in Section

4.3.1. Note that in the case of 31!3 the surface is

undercharged by adsorbed polyelectrolytes. This

undercharging is due to strong additional repulsion

between adsorbed chain and its image

dsz
fN

R2
Ksz

1

lBrDfN

3

4

ðfNÞ2

R
K

N

2g0
e

� �

zK
f

u

� �1=3 1

rDb
; low salt (4.43)

In the derivation of Eq. (4.43) we have used Eq.

(4.42) by expanding the left-hand side of this

equation into the power series of R/rD.

The adsorption energy of a polyelectrolyte chain at

a charged dielectric substrate with 31!3 includes

electrostatic repulsion from the adsorbed chains,

attraction to the charged substrate, and repulsion

from the image chain

3ads

kBT
zlBrDfN

2fN

R2
expðKR=rDÞK2s

� �
C

N

g0
e

(4.44)

The factor two in front of the first and the second

terms on the right-hand side of Eq. (4.44) accounts for

interaction of a chain with adsorbed chains and

surface charge images. We can simplify this equation

by solving Eq. (4.41) for s and substituting this

solution into Eq. (4.44). This leads to

3ads

kBT
zK

lBðfNÞ2

2R
expðKR=rDÞ z

R=rD/1
K

lBðfNÞ2

2R

zKlBðfNÞ3=2s1=2 (4.45)

The adsorption energy is much larger than the thermal

energy kBT for the interval of the surface charge

densities sOsWC (see Section 4.3, Eq. (4.4)).

In the semidilute adsorption regime the cell size is

on the order of the two-dimensional solution

correlation length x. The description of the semidilute

adsorbed layer in the presence of the dielectric

boundary is similar to the description for the dilute

adsorbed layer. The dielectric boundary can be taken

into account by doubling the terms on the right-hand
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side of Eq. (4.17) and adding the contribution due to

the interaction between a section of a chain within the

correlation length x and its image, Sgx=ðg
0
ex2Þ. The

equilibrium cell size in semidilute adsorption regime

after these modifications is given by the following

equation

f 1=3

u1=3bx
expðKx=rDÞ 1 C

x

2rD

� �
zsK

f

u

� �1=3 1

2brD

(4.46)

The right-hand side of Eq. (4.46) is the same as in the

case of the dilute adsorbed layer (see Eq. (4.41)).

Thus, the presence of the dielectric boundary simply

renormalizes the surface charge number density. This

renormalization of the surface charge density results

in desorption of polyelectrolyte chains at high salt

concentrations for which rD !rdes
D (Eq. (4.42)). It is

interesting to point out that the presence of the

dielectric boundary will not affect the properties of the

adsorbed layer in the 3D adsorption regime, sOf/b2.

In this regime, the electrostatic interaction between

chains and the surface is always stronger than

intrachain interactions (chain’s electrostatic self-

energy).

Monte Carlo simulations of the effect of the dielectric

boundary on the adsorption of strongly charged

polyelectrolytes at oppositely charged planar surface

were performed by Messina [224]. These simulations

have shown that image forces appearing due to the

dielectric discontinuity at the adsorbing substrate lead to

the decrease in polymer surface coverage which

precludes the surface overcharging by adsorbed

polyelectrolytes. However, the surface charge image

was not taken into account in this work [224]. As we

have shown in the beginning of this section the presence

of the dielectric boundary also doubles the surface

charge increasing the electrostatic attraction between a

charged substrate and polyelectrolyte chains by the

factor of two. Cheng and Lai [225] studied a single chain

adsorption at the charged substrate with high dielectric

constant. In the framework of the ground state

dominance approximation they found that adsorption

at low ionic strengths is the first order transition with the

monomer density at the surface scaling linearly with the

surface charge density.

The polymer surface coverage can also be changed

by adjusting the affinity of the polymer backbone and
adsorbing substrate - so-called effect of the short-range

interactions between adsorbing substrate and poly-

electrolyte chains. These interactions can be taken

into account by introducing the additional energy gain

per monomer due to the contact between the polymer

backbone and the surface [212]. In 2D dilute and

semidilute adsorption regimes the term describing the

short-range interaction between the substrate and the

polymer chain is similar to the expression describing

interaction of the polyelectrolyte with its image at

dielectric boundary (with 31O3 for attraction, see Eq.

(4.39)). The strength of the short-range attractive

interactions per monomer can be estimated asKkT32
vw,

where KkT3vw is the monomeric contact energy. In

the case of the strong affinity between the polymer

backbone and the adsorbing surface, the thickness of

the two-dimensional adsorbed layer is determined by

the short-range interactions and is inversely pro-

portional to the magnitude of the contact energy 3vw

The polymer surface coverage in the two-dimensional

adsorbed layers is controlled either by the balance

between electrostatic attraction to the substrate and

electrostatic repulsion between adsorbed chains at low

salt concentrations or by short-range attraction and

electrostatic repulsion at intermediate and high salt

concentrations. The polymer surface coverage in 2D

adsorption regimes is inversely proportional to the

Debye radius rD. In the three-dimensional adsorbed

layer the short-range interactions change the boundary

condition at the polymer–surface interface leading to

the enhancement of the polyelectrolyte adsorption

with increasing polymer–surface interactions (see for

details [212]). The strong short-range attractive

interaction between the substrate and the polymer

backbone can even lead to the adsorption of

polyelectrolytes at a similarly charged surface.

However, this is possible when the short-range

attractive interactions between the substrate and the

polymer backbone are stronger than the electrostatic

repulsion between similarly charged chains and the

surface. The desorption transition occurs when both

interactions are on the same order of magnitude.

4.6. Comparison with experiments

The theory of polyelectrolyte adsorption described

in Sections 4.3 and 4.4 predicts two qualitatively

different regimes of polyelectrolyte adsorption [209].
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At lower surface charge densities adsorbed polyelec-

trolyte chains form two-dimensional adsorbed layers.

Electrostatic repulsion between polyelectrolytes

within these layers localizes chains in the dilute

regime (or sections of the chains in the semidilute

regime) in the centers of the corresponding Wigner–

Seitz cells (see Figs. 40 and 41). The cell size is

obtained by the optimization of the electrostatic

repulsion between chains and their attraction to the

uniformly charged background. The electrostatic self-

energy of a polyelectrolyte chain in this regime

dominates over its attraction to the charged surface

and over the electrostatic repulsion between chains.

The adsorbed chains form a three-dimensional

adsorbed layer at higher surface charge densities. The

electrostatic attraction of polyelectrolytes to the

charged surface is stabilized by the short-range

repulsion between monomers in this layer. Chains

near the charged surface form a semidilute polyelec-

trolyte solution with concentration decreasing with

distance from the surface (see Fig. 42). The polymer

density distribution in 3D adsorbed layer is described

in the framework of the mean-field approximation

assuming that the electrostatic interaction of a

polymer with the effective field created by the surface

and other chains dominates over the electrostatic self-

energy of the chain.

The screening of the electrostatic repulsion

between adsorbed polyelectrolyte chains in solutions

with added salt results in large overcompensation of

the surface charge for two-dimensional adsorbed

layers—the screening-enhanced adsorption. At

higher salt concentrations this overcompensation of

the surface charge by the 2D adsorbed layer is

independent of the original surface charge and

depends only on the linear charge density along the

polyelectrolyte chains (fraction f of charged mono-

mers) and increases proportional to square root of

ionic strength (see Fig. 46). The polyelectrolyte

surface excess in 3D adsorbed layers increases

(screening-enhanced adsorption) at low ionic strength

and decreases (screening-reduced adsorption) at

higher ionic strength exhibiting a maximum (see

Fig. 46).

Both increase and decrease of the adsorbed amount

with salt concentration for polyelectrolytes with

different fractions of charged monomers f was found

by Durand et al. [226] for adsorption of cationic
polyacrylamides (copolymers of acrylamide and

acrylate with a quaternary ammonium groups) on

montmorillonite. For polyelectrolytes with fraction of

charged monomers fZ0.01 the adsorbed amount

decreases with increasing salt concentration, for fZ
0.05 there was no salt effect, while for polyelec-

trolytes with fZ0.13 and fZ0.2 the adsorbed amount

increases with increasing salt concentration. This

trend in the dependence of the adsorbed amount on

salt concentration is consistent with the predictions of

the polyelectrolyte adsorption model [209]. The

crossover value of the surface charge density between

2D and 3D adsorbed layers shifts into the region of

high surface charge densities with increasing fraction

of the charged monomers f on polymer chain. Thus,

for low fraction of charged monomers f!0.05

adsorbed polyelectrolytes form 3D adsorbed layer

with polymer surface excess decreasing with increas-

ing salt concentration (screening-reduced adsorption).

Polymer surface coverage is independent of salt

concentration for the sample with fZ0.05 indicating

that the surface charge density in these experiments is

very close to the crossover value between 2D and 3D

adsorbed layers. The adsorbed polyelectrolytes form a

two-dimensional adsorbed layer at the same surface

charge density for fractions of charged monomers fO
0.05. The polymer surface excess in two-dimensional

adsorbed layer increases with increasing salt concen-

tration (screening-enhanced adsorption).

The screening-reduced adsorption was also

observed by other groups [226–232]. The screening-

enhanced adsorption was reported by Kawaguchi
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et al. [233] for adsorption of completely quaternized

poly(4-vinyl-N-n-propylpyridinium bromide) on

silica, and by Bonekamp [234] for adsorption of

polylysine onto silver-iodide crystal and on glass. The

linear dependence of the polymer surface excess on

the square root of salt concentration was reported by

Kawaguchi et al. [233] and by Marra et al. [235] for

adsorption of polystyrene sulfonate on weakly

charged silica at pHZ2. This dependence of the

polymer surface excess is in good qualitative

agreement with the prediction for polyelectrolyte

adsorption in 2D adsorbed layer (see Fig. 46).

The non-monotonic dependence of the polymer

surface coverage on the salt concentration with weak

maximum around 10K1–10K2 M was observed by

Bonekamp [234] for adsorption of polylysine on

silica. This effect may be explained by the two

opposite tendencies predicted by the model for 3D

adsorbed layer (see Fig. 46): (i) the increase of the

polymer surface excess due to the screening of

electrostatic self-energy of adsorbed polyelectrolytes;

(ii) the decrease of polymer surface excess in the 3D

adsorbed layer due to the screening of the surface

charge by salt ions.

The latest progress in the theory of polyelectrolyte

adsorption provides an opportunity to apply these

results to describe multilayer self-assembly in a wide

range of salt concentrations. Unfortunately, so far,

there have been only few attempts to describe

polyelectrolyte multilayer formation. Solis and Olvera

de la Cruz [236] developed a model of spontaneous

equilibrium layering of a mixture of positively and

negatively charged polymers close to a charged wall

due to their chemical incompatibility. Netz and

Joanny [207] proposed a scaling model of multilayer

formation in semiflexible polyelectrolytes. However,

this model is lacking the interdigitation and complex

formation between polyelectrolyte chains in neigh-

boring layers. Castelnovo and Joanny [237] took into

account the strong interpenetration of polyelectrolyte

chains in consecutive layers by incorporating the

complex formation between oppositely charged

polyelectrolytes into self-consistent field equations,

describing polymer density profile in the adsorbed

layers. The recent computer simulations of multilayer

assembly [238,239] indicate the important role of

ionic pairs in the stabilization of the multilayered

structure and of the kinetics of deposition process.
The formation of ionic pairs between polyelectrolyte

chains forming multilayers was recently taken into

account by Park et al. [240] and by Lefaux et al. [241].

These models show promising results predicting

correct salt concentration dependence of multilayer

growth by sequential adsorption and by spin casting

methods. However, the new developments in this

direction are needed before the consistent theoretical

model of multilayer assembly will emerge.
5. Conclusions and outlook

In this paper we have presented an overview of

different theoretical models of polyelectrolytes in

solutions and at charged substrates. In dilute salt-free

polyelectrolyte solutions in a Q-solvent for polymer

backbone the chain size is determined by the balance

of chain elasticity and electrostatic repulsion between

charged monomers. This leads to stronger than linear

dependence of the chain size on the degree of

polymerization. The chain is non-uniformly stretched

experiencing stronger deformation in the middle than

at its ends. Solvent quality is an important factor

controlling chain’s conformations. Polyelectrolytes in

poor solvents have necklace-like structures of beads

connected by narrow strings. This structure appears as

a result of optimization of electrostatic and hydro-

phobic interactions between monomers. Increase of

polymer concentration leads to the reduction of the

polyelectrolyte effective charge and the decrease of its

size due to counterion condensation. The counterion

condensation phenomenon is driven by the electro-

static attraction between ionized group and counter-

ions. For polyelectrolytes in a poor solvent,

counterion condensation could occur in an ava-

lanche-like fashion destabilizing polyelectrolyte sol-

ution and leading to its phase separation. The osmotic

pressure in polyelectrolyte solutions is mainly

controlled by small ions over the wide range of

polymer concentrations. In semidilute solutions, the

value of the osmotic coefficient could be used to

estimate a fraction of free counterions. As in the case

of neutral polymers, the semidilute polyelectrolyte

solutions are characterized by the main length scale—

the solution correlation length. In salt-free solutions,

this is also a length scale of screening of electrostatic

interactions. Scaling theory, PRISM, and field
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theoretical models predict the same limiting scaling

laws for salt and polymer concentration dependence

of the solution correlation length and chain size. This

agreement is assuring and confirms the existence of

the single length scale controlling solution properties.

The predictions of theoretical models are also in good

qualitative and sometimes even quantitative agree-

ment with experimental data and results of the

computer simulations.

While there is significant progress in predicting the

static properties of polyelectrolyte solutions, their

dynamics is far from being completely understood.

The dynamics of polyelectrolyte solution utilizes the

same scaling assumption as ones used in solutions of

neutral polymers. It strongly relies on the existence of

the single length scale where both hydrodynamic and

electrostatic interactions are screened. The screening

of these interactions happens at the distances

comparable with the solution correlation length.

This assumption was confirmed by the effective

medium calculations performed by Muthukumar

[242,243] and by recent experiments [127]. The

important issue that still remains unresolved is the

nature of entanglements in polyelectrolyte solutions.

Can we simply transfer the notion of topological

constraints used in solutions of neutral polymers to

polyelectrolyte solutions? There are some experimen-

tal indications that this hypothesis is violated leading

to a weaker than theoretically expected N-dependence

of the entanglement concentration [127]. Computer

simulations of entangled polyelectrolyte solutions

should be able to provide a definite answer to these

questions. The non-linear dynamics of polyelectrolyte

solutions was completely ignored by theoreticians.

This area of research is the most valuable for polymer

processing. Another interesting issue that awaits

theoretical understanding is the origin of the so-called

slow modes in polyelectrolyte solutions [244–248].

The new direction of the research that took off during

the last 5 years is the effect of multivalent ions on

complexation in solutions of charged polymers [249–

253]. The interest to this problem was stimulated by the

importance of this phenomenon to biological systems.

Many bacteriophages use multivalent cations to

package their DNA into compact and ordered forms.

This phenomenon is known as DNA condensation

[254]. It turns out that the DNA is not the only

polyelectrolyte capable of forming complexes. Other
stiff polyelectrolytes such as F-actin and tobacco mosaic

virus are capable offorming laterally ordered aggregates

(bundles) in the presence of multivalent counterions.

The strong salt effect on complexation supports the

electrostatic nature of this process. The complexation of

multivalent ions with polyelectrolytes is qualitatively

different from the phenomena of counterion conden-

sation discussed in this review. The new physical

phenomenon that exists in systems with multivalent ions

is the strong correlations between multivalent ions

[218–221,255,256] (see for review Ref. [63]). The

correlation effects can become so strong that multivalent

ions invert the charge of polyelectrolyte (overcharge it)

leading to effective attraction between originally

similarly charged species. (This effect is similar to the

surface overcharging by adsorbed polyions discussed in

Section 4.2. The multivalent ions position themself

along the polymer backbone in the correlated fashion

with equilibrium distance between them being deter-

mined by attraction to the oppositely charged monomers

of the polymer backbone and by the repulsion from

other multivalent ions.) The strong correlation between

multivalent ions is the main reason for bundle formation

and growth. Future progress in this area will have a

significant impact on our understanding of electrostatic

interactions between charged polymers and colloids,

micelles, proteins, charged lipid membranes, and

charged surfaces.

We have not discussed the properties of poly-

ampholyte solutions (solutions of charged polymers

carrying both positively and negatively charged

groups). In these systems, the electrostatics is

responsible for both attractive and repulsive inter-

actions that lead to a variety of new and unusual

phenomena. Together with R.H. Colby, we have just

published the review of recent developments in this

area of polymer science and recommend it to

interested readers [257].

We have identified two qualitatively different

regimes of polyelectrolyte adsorption. At lower

surface charge densities adsorbed polyelectrolyte

chains form two-dimensional adsorbed layers. The

electrostatic attraction to the charged substrate and

electrostatic repulsion between adsorbed chains are

the leading factors controlling the structure of these

layers. At higher surface charge densities the adsorbed

chains form three-dimensional adsorbed layers. Here,

the electrostatic attraction between polyelectrolytes
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and the charged surface is stabilized by the short-

range repulsion between monomers in these layers.

This picture of polyelectrolyte adsorption is in good

qualitative agreement with experimental data.

We hope that topics discussed in this review will

help readers to understand the basics of modern theory

of polyelectrolytes in solutions and at interfaces and

will be useful in future studies of more complicated

ionic systems such as polyelectrolyte gels [258,259],

polyelectrolyte brushes [260], computer simulations

of polyelectrolytes [73], and multilayer formation by

charged molecules [15,16].
Acknowledgements

We acknowledge the support of the NSF DMR-

0305203 (A.V.D.), CHE-9876674 (M.R.), ECS-

0103307 (M.R.) and of the donors of the Petroleum

Research Fund, administered by the American

Chemical Society under the grant PRF#39637-AC7

(A.V.D.). M.R. also acknowledges financial support

of the NASA University Research, Engineering, and

Technology Institute on Bio Inspired Materials award

NCC-1-02037.
References

[1] Forster S, Schmidt M. Polyelectrolytes in solution. Adv

Polym Sci 1995;120:51–133.

[2] Barrat JL, Joanny JF. Theory of polyelectrolyte solutions.

Adv Chem Phys 1996;94:1–66.

[3] Schmitz KS. Macroions in solution and colloidal suspension.:

VCH Publishers; 1993.

[4] Tanford C. Physical chemistry of macromolecules. New

York: Wiley; 1961.

[5] Oosawa F. Polyelectrolytes. New York: Marcel Dekker;

1971.

[6] Polyelectrolytes. New York: Marcel Dekker; 1993.

[7] Radeva T. Physical chemistry of polyelectrolytes. New York:

Marcel Dekker; 2001.

[8] Doi M, Edwards SF. The theory of polymer dynamics.

Oxford: Clarendon Press; 1989.

[9] de Gennes PG. Scaling concepts in polymer physics. Ithaca,

NY: Cornell University Press; 1979.

[10] Rubinstein M, Colby RH. Polymer physics. New York:

Oxford University Press; 2003.

[11] Fuoss RM. Viscosity function for polyelectrolytes. J Polym

Sci 1948;3:603.
[12] Decher G. Multilayer films (polyelectrolytes) In: The

polymeric materials encyclopedia: synthesis, properties and

applications. Boca Raton, FL: CRC Press; 1996.

[13] Decher G. Fuzzy nanoassemblies: toward layered polymeric

multicomposites. Science 1997;277:1232–7.

[14] Decher G, Eckle M, Schmitt J, Struth B. Layer-by-layer

assembled multicomposite films. Curr Opin Colloid Interface

Sci 1998;3:32–9.

[15] Hammond PT. Recent explorations in electrostatic multilayer

thin film assembly. Curr Opin Colloid Interface Sci 1999;4:

430–42.

[16] Schonhoff M. Self-assembled polyelectrolyte multilayers.

Curr Opin Colloid Interface Sci 2003;8:86–95.

[17] Schonhoff M. Layered complexes: physics of formation and

molecular properties. J Phys Condens Matter 2003;15:

R1781–R808.

[18] Frenkel D, Smit B. Understanding molecular simulations.

San Diego: Academic Press; 2001.

[19] Rapaport DC. The art of molecular dynamics simulation.

New York: Cambridge University Press; 1995.

[20] Kuhn W, Kunzle O, Katchalsky A. Verhalten polyvalenter

fadenmolekelionen in losung. Helv Chim Acta 1948;

1994–2037.

[21] Landau LD, Lifshitz EM. Electrodynamics of continuous

media. Reading, MA: Addison-Wesley; 1984.

[22] Grosberg AY, Khokhlov AR. Statistical physics of macro-

molecules. New York: AIP Press; 1994.

[23] de Gennes P-G, Pincus P, Brochard F, Velasco RM. Remarks

on polyelectrolyte conformation. J Phys (France) 1976;37:

1461–76.

[24] Khokhlov AR, Khachaturian KA. On the theory of weakly

charged polyelectrolytes. Polymer 1982;23:1793–802.

[25] Dobrynin AV, Colby RH, Rubinstein M. Scaling theory of

polyelectrolyte solutions. Macromolecules 1995;28:

1859–71.

[26] Liao Q, Dobrynin AV, Rubinstein M. Molecular dynamics

simulations of polyelectrolyte solutions: nonuniform stretch-

ing of chains and scaling behavior. Macromolecules 2003;36:

3386–98.

[27] Migliorini G, Rostiashvili V, Vilgis TA. Weak violation of

universality for polyelectrolyte chain: variational theory and

simulations. Eur Phys J E 2001;4:475–87.

[28] Castelnovo M, Sens P, Joanny JF. Charge distribution on

annealed polyelectrolytes. Eur Phys J E 2000;1:115–25.

[29] Ullner M, Jonsson B, Widmark PO. Conformational proper-

ties and apparent dissociation constants of titrating polyelec-

trolytes: Monte Carlo simulations and scaling arguments.

J Chem Phys 1994;100:3365–6.

[30] Katchalsky A, Eisenberg H. Molecular weight of polyacrylic

and polymethacrylic acid. J Polym Sci 1951;6:145–54.

[31] Morawetz H. Revisiting some phenomena in polyelec-

trolyte solutions. J Polym Sci Part B Polym Phys 2002;40:

1080–6.

[32] McQuarrie DA. Statistical mechanics. New York: Harper &

Row; 1976.

[33] Rayleigh L. Philos Mag 1882;14:184.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–1118 1113
[34] Dobrynin AV, Rubinstein M, Obukhov SP. Cascade of

transitions of polyelectrolytes in poor solvent. Macromol-

ecules 1996;29:2974–9.

[35] Hooper HH, Beltran S, Sassi AP, Blanch HW, Prausnitz JM.

Monte Carlo simulations of hydrophobic polyelectrolytes.

Evidence for a structural transition in response to increasing

chain ionization. J Chem Phys 1990;93:2715–23.

[36] Higgs PG, Orland H. Scaling behavior of polyelectrolytes

and polyampholytes: simulation by an ensemble growth

method. J Chem Phys 1991;95:4506–18.

[37] Chodanowski P, Stoll S. Monte Carlo simulations of

hydrophobic polyelectrolytes: evidence of complex config-

urational transitions. J Chem Phys 1999;111:6069–81.

[38] Lyulin AV, Dunweg B, Borisov OV, Darinskii AA.

Computer simulation studies of a single polyelectrolyte

chain in poor solvent. Macromolecules 1999;32:3264–78.

[39] Solis FJ, Olvera de la Cruz M. Variational approach to

necklace formation in polyelectrolytes. Macromolecules

1998;31:5502–6.

[40] Balazs AC, Singh C, Zhulina E, Chern SS, Lyatskaya Y,

Pickett G. Theory of polymer chains tethered at interfaces.

Prog Surf Sci 1997;55:181–269.

[41] Migliorini G, Lee N, Rostiashvili V, Vilgis TA. Polyelec-

trolyte chains in poor solvent, a variational description of

necklace formation. Eur Phys J E 2001;6:259–70.

[42] Tamashiro MN, Schiessel H. Stepwise unwinding of

polyelectrolytes under stretching. Macromolecules 2000;33:

5263–72.

[43] Vilgis TA, Johner A, Joanny JF. Stretching necklaces. Eur

Phys J E 2000;2:289–300.

[44] Vilgis TA, Johner A, Joanny JF. Polyelectrolyte gels in poor

solvent: elastic moduli. Eur Phys J E 2000;3:237–44.

[45] Holm C, Joanny JF, Kremer K, Netz RR, Reineker P,

Seidel C, et al. Polyelectrolyte theory. Adv Polym Sci 2004;

166:67–111.

[46] Limbach HJ, Holm C, Kremer K. Structure of polyelec-

trolytes in poor solvent. Europhys Lett 2002;60:566–72.

[47] Khokhlov AR. On the collapse of weakly charged

polyelectrolytes. J Phys A 1980;13:979–87.

[48] Raphael E, Joanny J-F. Annealed and quenched polyelec-

trolytes. Europhys Lett 1990;13:623–8.

[49] Dobrynin AV, Rubinstein M. Counterion condensation and

phase separation in solutions of hydrophobic polyelectro-

lytes. Macromolecules 2001;34:1964–72.

[50] Manning GS. Limiting laws and counterion condensation in

polyelectrolyte solutions 1. Colligative properties. J Chem

Phys 1969;51:924–33.

[51] Manning GS. Counterion condensation theory constructed

from different models. Physica A 1996;231:236–53.

[52] Manning GS. The critical onset of counterion condensation:

A survey of its experimental and theoretical basis. Ber

Bunsen Ges Phys Chem Chem Phys 1996;100:909–22.

[53] Manning GS, Ray J. Counterion condensation revisited.

J Biomol Struct Dyn 1998;16:461–76.

[54] Muthukumar M. Theory of counter-ion condensation on

flexible polyelectrolytes: adsorption mechanism. J Chem

Phys 2004;120:9343–50.
[55] Kramarenko EY, Khokhlov AR, Yoshikawa K. A three-state

model for counterions in a dilute solution of weakly charged

polyelectrolytes. Macromol Theory Simul 2000;9:249–56.

[56] Katchalsky A, Alexandrowicz Z, Kedem O. Polyelectrolyte

solutions. In: Conway BE, Barradas RG, editors. Chemical

physics of ionic solutions. London: Wiley; 1966. p. 295–346.

[57] Alexandrowicz Z, Katchalsky A. Colligative properties of

polyelectrolyte solutions in excess of salt. J Polym Sci Part A

1963;1:3231–60.

[58] Alfrey T, Berg PV, Morawetz H. The counterion distribution

in solutions of rod-shaped polyelectrolytes. J Polym Sci

1951;7:543–51.

[59] Fuoss RM, Katchalsky A, Lifson S. The potential of an

infinite rod-like molecule and the distribution of counterions.

Proc Natl Acad Sci USA 1951;37:579–86.

[60] Deshkovski A, Obukhov S, Rubinstein M. Counterion phase

transitions in dilute polyelectrolyte solutions. Phys Rev Lett

2001;86:2341–4.

[61] Liao Q, Dobrynin AV, Rubinstein M. Molecular dynamics

simulations of polyelectrolyte solutions: osmotic coefficient

and counterion condensation. Macromolecules 2003;36:

3399–410.

[62] Netz RR, Orland H. Variational charge renormalization in

charged systems. Eur Phys J E 2003;11:301–11.

[63] Grosberg AY, Nguyen TT, Shklovskii BI. Colloquium: the

physics of charge inversion in chemical and biological

systems. Rev Mod Phys 2002;74:329–45.

[64] Gonzalez-Mozuelos P, Olvera de la Cruz M. Ion conden-

sation in salt-free dilute polyelectrolyte solutions. J Chem

Phys 1995;103:3145–57.

[65] Flory PJ. Molecular configuration of polyelectrolytes.

J Chem Phys 1953;21:162–3.

[66] Schiessel H, Pincus P. Counterion-condensation-induced

collapse of highly charged polyelectrolytes. Macromolecules

1998;31:7953–9.

[67] Schiessel H. Counterion condensation on flexible

polyelectrolytes: dependence on ionic strength and

chain concentration. Macromolecules 1999;32:

5673–80.

[68] Brilliantov NV, Kuznetsov DV, Klein R. Chain collapse and

counterion condensation in dilute polyelectrolyte solutions.

Phys Rev Lett 1998;81:1433–6.

[69] Limbach HJ, Holm C. End effects of strongly charged

polyelectrolytes: a molecular dynamics study. J Chem Phys

2001;114:9674–82.

[70] Stevens MJ, Kremer K. The nature of flexible linear

polyelectrolytes in salt-free solution—a molecular-dynamics

study. J Chem Phys 1995;103:1669–90.

[71] Micka U, Holm C, Kremer K. Strongly charged, flexible

polyelectrolytes in poor solvents: molecular dynamics

simulations. Langmuir 1999;15:4033–44.

[72] Micka U, Kremer K. Strongly charged flexible polyelec-

trolytes in poor solvents—from stable spheres to necklace

chains. Europhys Lett 2000;49:189–95.

[73] Dobrynin AV. In: Kotelyanskii M, Theodorou DN, editors.

Simulation methods for polymers. New York: Marcel

Dekker; 2004. p. 259–312.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–11181114
[74] Winkler RG, Gold M, Reineker P. Collapse of polyelec-

trolyte macromolecules by counterion condensation and ion

pair formation: a molecular dynamics simulation study. Phys

Rev Lett 1998;80:3731–4.

[75] Limbach HJ, Holm C. Conformational properties of poor

solvent polyelectrolytes. Comput Phys Commun 2002;147:

321–4.

[76] Ulrich S, Laguecir A, Stoll S. Titration of hydrophobic

polyelectrolytes using Monte Carlo simulations. J Chem

Phys 2005;122:0949111–0949119.

[77] Odijk T. Polyelectrolytes near the rod limit. J Polym Phys

Part B Polym Phys 1977;15:477–83.

[78] Skolnick J, Fixman M. Electrostatic persistence length of a

wormlike polyelectrolyte. Macromolecules 1977;10:944–8.

[79] Odijk T. Possible scaling relations for semidilute polyelec-

trolyte solutions. Macromolecules 1979;12:658–93.

[80] Netz RR, Orland H. Variational theory for a single

polyelectrolyte chain. Eur Phys J B 1999;8:81–98.

[81] Ha BY, Thirumalai D. Persistence length of flexible

polyelectrolyte chains. J Chem Phys 1999;110:7533–41.

[82] Manghi M, Netz RR. Variational theory for a single

polyelectrolyte chain revisited. Eur Phys J E 2004;14:67–77.

[83] Li H, Witten TA. Fluctuations and persistence length of

charged flexible polymers. Macromolecules 1995;28:

5921–7.

[84] Liverpool TB, Stapper M. The scaling behaviour of screened

polyelectrolytes. Europhys Lett 1997;40:485–90.

[85] Schmidt M. Numerical evaluation of the electrostatic

persistence length of polyelectrolytes. Macromolecules

1991;24:5361–4.

[86] Barrat JL, Joanny J-F. Persistence length of polyelectrolyte

chains. Europhys Lett 1993;24:333–9.

[87] Ha BY, Thirumalai D. Electrostatic persistence length of a

polyelectrolyte chain. Macromolecules 1995;28:577–81.

[88] Edwards SF, Singh P. Size of polymer molecule in solution.

J Chem Soc Faraday Trans II 1979;75:1001–19.

[89] Muthukumar M. Double screening in polyelectrolyte

solutions: limiting laws and crossover formulas. J Chem

Phys 1996;105:5183–99.

[90] Ghosh K, Carri GA, Muthukumar M. Configurational

properties of a single semiflexible polyelectrolyte. J Chem

Phys 2001;115:4367–75.

[91] Bratko D, Dawson KA. A mean field approach to the

structure of polyelectrolytes. J Chem Phys 1993;99:5352–64.

[92] Reed CE, Reed WF. Monte-Carlo electrostatic persistence

length compared with experiment and theory. J Chem Phys

1991;94:8479–86.

[93] Seidel C. Polyelectrolyte simulation. Ber Bunsen Ges Phys

Chem Chem Phys 1996;100:757–63.

[94] Schafer H, Seidel C. Structure of polyelectrolytes in

solutions. A Monte Carlo study. Macromolecules 1997;30:

6658–61.

[95] Ullner M, Jonsson B, Peterson C, Sommelius O,

Soderberg B. The electrostatic persistence length calculated

from Monte Carlo, variational and perturbation methods.

J Chem Phys 1997;107:1279–87.
[96] Micka U, Kremer K. The persistence length of polyelec-

trolyte chains. J Phys Condens Matter 1996;8:9463–70.

[97] Micka U, Kremer K. Persistence length of the Debye-Huckel

model of weakly charged flexible polyelectrolyte chains.

Phys Rev E 1996;54:2653–62.

[98] Tricot M. Comparison of experimental and theoretical

persistence length of some polyelectrolytes at various ionic

strengths. Macromolecules 1984;17:1698–703.

[99] Reed CE, Reed WF. Monte-Carlo study of light-scattering by

linear polyelectrolytes. J Chem Phys 1992;97:7766–76.

[100] Forster S, Schmidt M, Antonietti M. Experimental and

theoretical investigation of the electrostatic persistence

length of flexible polyelectrolytes at various ionic strengths.

J Phys Chem 1992;96:4008–14.

[101] de Nooy AEJ, Besemer AC, van Bekkum H, van Dijk J,

Smit JAM. TEMPO-mediated oxidation of pullalan and

influence of ionic strength and linear charge density on the

dimensions of the obtained polyelectrolyte chain. Macro-

molecules 1996;29:6541–7.

[102] Nishida K, Urakawa H, Kaji K, Gabrys B, Higgins JS.

Electrostatic persistence length of NaPSS polyelectrolytes

determined by a zero average contrast SANS technique.

Polymer 1997;38:6083–5.

[103] Tanahatoe JJ. Dynamic light scattering of flexible higly

charged polyelectrolytes at infinite dilution. J Phys Chem B

1997;101:10442–5.

[104] Beer M, Schmidt M, Muthukumar M. The electrostatic

expansion of linear polyelectrolytes: effect of gegenions, co-

ions, and hydrophobicity. Macromolecules 1997;30:8375–85.

[105] Nguyen TT, Shklovskii BI. Persistence length of a

polyelectrolyte in salty water: Monte Carlo study. Phys

Rev E 2002;66.

[106] Everaers R, Milchev A, Yamakov V. The electrostatic

persistence length of polymers beyond the OSF limit. Eur

Phys J E 2002;8:3–14.

[107] Ullner M, Woodward CE. Orientational correlation function

and persistence lengths of flexible polyelectrolytes. Macro-

molecules 2002;35:1437–45.

[108] Bordi F, Cametti C, Tan JS, Boris DC, Krause WE,

Plucktaveesak N, et al. Determination of polyelectrolyte

charge and interaction with water using dielectric spec-

troscopy. Macromolecules 2002;35:7031–8.

[109] Bordi F, Colby RH, Cametti C, De Lorenzo L, Gili T.

Electrical conductivity of polyelectrolyte solutions in the

semidilute and concentrated regime: the role of counterion

condensation. J Phys Chem B 2002;106:6887–93.

[110] Pfeuty P. Conformation des polyelectrolytes ordre dans les

solutions de polyelectrolytes. J Phys France Coll 1978;39:

C2-149.

[111] Rubinstein M, Colby RH, Dobrynin AV. Dynamics of

semidilute polyelectrolyte solutions. Phys Rev Lett 1994;73:

2776–9.

[112] Drifford M, Dalbiez JP. Light scattering by dilute solutions of

salt-free polyelectrolytes. J Phys Chem 1984;88:5368.

[113] Nierlich M, Williams CE, Boue F, Cotton JP, Daoud M,

Farnoux B, et al. Small angle neutron scattiring by semidilute

solutions of polyelectrolytes. J Phys (Paris) 1979;40:701.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–1118 1115
[114] Nierlich M, Boue F, Lapp A. Radius of gyration of a polyion

in salt free polyelectrolyte solutions measured by SANS.

J Phys (Paris) 1985;46:649–58.

[115] Kakehashi R, Yamazoe H, Maeda H. Osmotic coefficients of

vinylic polyelectrolyte solutions without added salt. Colloid

Polym Sci 1998;276:28–33.

[116] Kakehashi R, Maeda H. Donnan equilibria of simple

electrolytes in polyelectrolyte solutions. J Chem Soc Faraday

Trans 1996;92:3117–21.

[117] Kakehashi R, Maeda H. Donnan equilibria of simple

electrolytes in polyelectrolyte solutions. 2. Extension to

polycations and the effect of charge densities. J Chem Soc

Faraday Trans 1996;92:4441–4.

[118] Raspaud E, de Conceicao M, Livolant F. Do free DNA

counterions control the osmotic pressure? Phys Rev Lett

2000;84:2533–6.

[119] Hansen PL, Podgornik R, Parsegian AV. Osmotic properties

of DNA: critical evaluation of counterion condensation

theory. Phys Rev E 1997;64:0219071–0219074.

[120] Reddy M, Marinsky JA. A further investigation of the

osmotic properties of hydrogen and sodium polystyrenesul-

fonate. J Phys Chem 1970;74:3884–91.

[121] Wang L, Bloomfield VA. Osmotic pressure of polyelctrolytes

with added salt. Macromolecules 1990;23:804–9.

[122] Koene RS, Nicolai T, Mandel M. Scaling relations for

aqueous polyelectrolyte-salt solutions. 3. Osmotic pressure

as a function of molar mass and ionic strength in the

semidilute regime. Macromolecules 1983;16:231–7.

[123] Takahashi A, Kato N, Nagasawa M. The osmotic pressure of

polyelectrolyte in neutral salt solutions. J Phys Chem 1970;

74:944.

[124] Kavassalis TA, Noolandi J. New view of entanglements

in dense polymer systems. Phys Rev Lett 1987;59:

2674–7.

[125] Kavassalis TA, Noolandi J. A new theory of entanglements

and dynamics in dense polymer systems. Macromolecules

1988;21:2869–79.

[126] Kavassalis TA, Noolandi J. Entanglement scaling in polymer

melts and solutions. Macromolecules 1989;22:2709–20.

[127] Boris DC, Colby RH. Rheology of sulfonated polystyrene

solutions. Macromolecules 1998;31:5746–55.

[128] Oostwal MG, Blees MH, de Bleijser J, Leyte JC. Chain self-

diffusion in aqueous salt-free solutions of sodium poly(-

styrenesulfonate). Macromolecules 1993;26:7300–8.

[129] Oostwal MG, Odijk T. Novel dynamic scaling hypothesis for

semidilute and concentrated solutions of polymers and

polyelectrolytes. Macromolecules 1993;26:6489–97.

[130] Dobrynin AV, Rubinstein M. Hydrophobic polyelectrolytes.

Macromolecules 1999;32:915–22.

[131] Essafi W. PhD Thesis, Paris; 1996.

[132] Spiteri MN, Boue F, Lapp A, Cotton JP. Persistence length

for a PSSNa polyion in semidilute solution as a function of

the ionic strength. Phys Rev Lett 1996;77:5218–20.

[133] Spiteri MN, Boue F, Lapp A, Cotton JP. Polyelectrolyte

persistence length in semidilute solution as a function of the

ionic strength. Physica B 1997;234:303–5.
[134] Heitz C, Rawiso M, Francois J. X-ray scattering study of a

poly(methacrylic acid) sample as a function of its neutral-

ization degree. Polymer 1999;40:1637–50.

[135] Waigh TA, Ober R, Williams CE, Galin JC. Semidilute and

concentrated solutions of a solvophobic polyelectrolyte in

nonaqueous solvents. Macromolecules 2001;34:1973–80.

[136] Qu D, Baigl D, Williams CE, Mohwald H, Fery A.

Dependence of structural forces in polyelectrolyte solutions

on charge density: a combined AFM/SAXS study. Macro-

molecules 2003;36:6878–83.

[137] Baigl D, Ober R, Qu D, Fery A, Williams CE. Correlation

length of hydrophobic polyelectrolyte solutions. Europhys

Lett 2003;62:588–94.

[138] Aseyev VO, Klenin SI, Tenhu H, Grillo I, Geissler E.

Neutron scattering studies of the structure of a polyelec-

trolyte globule in a water-acetone mixture. Macromolecules

2001;34:3706–9.

[139] Lee MJ, Green MM, Mikes F, Morawetz H. NMR spectra of

polyelectrolytes in poor solvents are consistent with the pearl

necklace model of the chain molecules. Macromolecules

2002;35:4216–7.

[140] Kiriy A, Gorodyska G, Minko S, Jaeger W, Stepanek P,

Stamm M. Cascade of coil-globule conformational tran-

sitions of single flexible polyelectrolyte molecules in poor

solvent. J Am Chem Soc 2002;124:13454–62.

[141] Minko S, Kiriy A, Gorodyska G, Stamm M. Single flexible

hydrophobic polyelectrolyte molecules adsorbed on solid

substrate: transition between a stretched chain, necklace-like

conformation and a globule. J Am Chem Soc 2002;124:

3218–9.

[142] Liao Q, Dobrynin AV, Rubinstein M. Molecular dynamics

simulations of polyelectrolytes in poor solvent. Submitted for

publication.

[143] Khokhlov AR, Nyrkova IA. Compatability enhancement and

microdomain structuring in weakly charged polyelectrolyte

mixtures. Macromolecules 1992;25:1493–502.

[144] Muthukumar M. Phase diagram of polyelectrolyte solutions:

weak polymer effect. Macromolecules 2002;35:9142–5.

[145] Borue VY, Erukhimovich IY. A statistical theory of

weakly charged polyelectrolytes: fluctuations, eqaution of

state, and microphase separation. Macromolecules 1988;

21:3240–9.

[146] Vilgis TA, Borsali R. Mean-field theory of concentrated

polyelectrolyte solutions. Phys Rev A 1991;43:6857–73.

[147] Mahdi KK, Olvera de la Cruz M. Phase diagrams of salt-free

polyelectrolyte semidilute solutions. Macromolecules 2000;

33:7649–54.

[148] Ermoshkin AV, Olvera de la Cruz M. Polyelectrolytes in the

presence of multivalent ions: gelation versus segregation.

Phys Rev Lett 2003;90.

[149] Orkoulas G, Kumar SK, Panagiotopoulos AZ. Monte Carlo

study of coulombic criticality in polyelectrolytes. Phys Rev

Lett 2003;90:048303.

[150] Volk N, Vollmer D, Schmidt M, Oppermann W, Huber K.

Conformation and phase diagrams of flexible polyelectro-

lytes 2004.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–11181116
[151] Joanny J-F, Leibler L. Weakly charged polyelectrolytes in a

poor solvent. J Phys 1990;51:545–57.

[152] Braun O, Boue F, Candau F. Microphase separation in

weakly charged hydrophobic polyelectrolytes. Eur Phys J E

2002;7:141–51.

[153] Dormidontova EE, Erukhimovich IY, Khokhlov AR.

Microphase separation in poor-solvent polyelectrolyte

solutions—phase-diagram. Macromol Theory Simul 1994;

3:661–75.

[154] Chang RW, Yethiraj A. Strongly charged flexible polyelec-

trolytes in poor solvents: molecular dynamics simulations

with explicit solvent. J Chem Phys 2003;118:6634–47.

[155] Yethiraj A. Conformational properties and static structure

factor of polyelectrolyte solutions. Phys Rev Lett 1997;78:

3789–92.

[156] Yethiraj A. Theory for chain conformations and static

structure of dilute and semidilute polyelectrolyte solutions.

J Chem Phys 1998;108:1184–92.

[157] Yethiraj A, Shew CY. Structure of polyelectrolyte solutions.

Phys Rev Lett 1996;77:3937–40.

[158] Schweizer KS, Curro JG. PRISM theory of the strucuture,

thermodynamics, and phase transitions of polymer liquids

and alloys. Adv Polym Sci 1994;116:319–77.

[159] Laria D, Wu D, Chandler D. Reference interaction site model

polaron theory of the hydrated electron. J Chem Phys 1991;

95:4444–53.

[160] Zherenkova LV, Kriksin YA, Talitskikh SK, Khalatur PG.

Application of the integral equation theory to rodlike

polyelectrolytes in a poor solvent. Polym Sci Ser A 2002;

44:791–9.

[161] Hofmann T, Winkler RG, Reineker P. Integral equation

theory approach to rodlike polyelectrolytes: counterion

condensation. J Chem Phys 2001;114:10181–8.

[162] Hofmann T, Winkler RG, Reineker P. Influence of salt on the

structure of polyelectrolyte solutions: an integral equation

theory approach. J Chem Phys 2003;119:2406–13.

[163] Shew CY, Yethiraj A. Self-consistent integral equation

theory for semiflexible chain polyelectrolyte solutions.

J Chem Phys 2000;113:8841–7.

[164] Shew CY, Yethiraj A. Integral equation theory for the

structure of DNA solutions. J Chem Phys 2002;116:5308–14.

[165] Zherenkova L, Khalatur P, Yoshikawa K. Self-consistent

integral equation theory for semiflexible polyelectrolytes in

poor solvent. Macromol Theory Simul 2003;12:339–53.

[166] Hofmann T, Winkler RG, Reineker P. Self-consistent

integral equation theory for solutions of finite extensible

semiflexible polyelectrolyte chains. J Chem Phys 2003;118:

6624–33.

[167] Muthukumar M. Double screening in polyelectrolyte

solutions: limiting laws and crossover formulas. J Chem

Phys 1996;105:5183–99.

[168] Wang Q, Taniguchi T, Fredrickson GH. Self-consistent field

theory of polyelectrolyte systems. J Phys Chem B 2004;108:

6733–44.

[169] Kawaguchi M, Takahashi A. Polymer adsorption at solid

liquid interfaces. Adv Colloid Interface Sci 1992;37:

219–317.
[170] Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Gasgove T,

Vincent B. Polymer at interfaces. London: Chapman and

Hall; 1993.

[171] Bajpai AK. Interface behaviour of ionic polymers. Prog

Polym Sci 1997;22:523–64.

[172] Lyklema J. Fundamentals of interface and colloid science:

solid-liquid interfaces. London: Academic Press; 1995.

[173] Netz RR, Andelman D. Neutral and charged polymers at

interfaces. Phys Rep Rev Sect Phys Lett 2003;380:1–95.

[174] Wiegel FW. Adsorption of a macromolecule to a charged

surface. J Phys Condens Matter 1977;10:299.

[175] Wiegel FW. In: Phase transition and critical phenomena VII.

New York: Academic; 1983.

[176] Odijk T. Binding of long flexible chain to a rod-like

macromolecule. Macromolecules 1980;13:1542–6.

[177] Muthukumar M. Adsorption of a polyelectrolyte chain to a

charged surface. J Chem Phys 1987;86:7230–5.

[178] Muthukumar M. Pattern-recognition by polyelectrolytes.

J Chem Phys 1995;103:4723–31.

[179] Kong CY, Muthukumar M. Monte Carlo study of adsorption

of a polyelectrolyte onto charged surfaces. J Chem Phys

1998;109:1522–7.

[180] Ellis M, Kong CY, Muthukumar M. Polyelectrolyte

adsorption on heterogeneously charged surfaces. J Chem

Phys 2000;112:8723–9.

[181] Borisov OV, Zhulina EB, Birshtein TM. Polyelectrolyte

molecule conformation near charged surface. J Phys II 1994;

4:913–29.

[182] Yamakov V, Milchev A, Borisov O, Dunweg B. Adsorption

of a polyelectrolyte chain on a charged surface: a Monte

Carlo simulation of sealing behavior. J Phys Condens Matter

1999;11:9907–23.

[183] Beltran S, Hooper H, Blanch H, Prausnitz J. Monte Carlo

study of polyelectrolyte adsorption—isolated chains on a

planar charged surfaces. Macromolecules 1991;24:

3178–84.

[184] Hoeve CA. Theory of polymer adsorption at interfaces.

J Polym Sci 1971;C34:1–10.

[185] Hoeve CA. The general theory of polymer adsorption at a

surface. J Polym Sci 1970;C30:361–7.

[186] Hesselink FTh. On the theory of polyelectrolyte adsorption.

The effect of adsorption behavior of the electrostatic

contribution to the adsorption free energy. J Colloid Interface

Sci 1977;60:448–66.

[187] Scheutjens JM, Fleer GJ. Statistical theory of the adsorption

of interacting chain molecules. 1. Partition function, segment

density distribution, and adsorption isotherm. J Phys Chem

1979;83:1619–35.

[188] Scheutjens JM, Fleer GJ. Statistical theory of the adsorption

of interacting chain molecules. 2. Train, loop, and tail size

distribution. J Phys Chem 1980;84:178–90.

[189] van der Schee HA, Lyklema J. Lattice theory of polyelec-

trolyte adsorption. J Phys Chem 1984;88:6661–72.

[190] Evers O, Fleer GJ, Scheutjens JMH, Lyklema J. Adsorption

of weak polyelectrolytes from aqueous solution. J Colloid

Interface Sci 1986;111:446–54.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–1118 1117
[191] Bohmer MR, Evers O, Scheutjens JMH. Weak polyelec-

trolytes between two surfaces—adsorption and stabilization.

Macromolecules 1990;23:2288–301.

[192] Vermeer AWP, Leermakers FAM, Koopal LK. Adsorption of

weak polyelectrolytes on surfaces with a variable charge. Self-

consistent-field calculations. Langmuir 1997;13:4413–21.

[193] Dahlgren MA, Leermakers FAM. Depletion zones in

polyelectrolyte systems—polydispersity effects and colloidal

stability. Langmuir 1995;11:2996–3006.

[194] Varoqui R, Johner A, Elaissari A. Conformation of weakly

charged polyelectrolyte at a liquid solid interface. J Chem

Phys 1991;94:6873–8.

[195] Varoqui R. Structure of weakly charged polyelectrolyte at a

solid-liquid interface. J Phys II 1993;3:1097–108.

[196] Varoqui R. Structure and stability of weakly charged

polyelectrolyte at a solid-liquid interface In: Macro-ion

characterization, ACS simposium series. vol. 548 1994 p.

421–35.

[197] Borukhov I, Andelman D, Orland H. Scaling laws of

polyelectrolyte adsorption. Macromolecules 1998;31:

1665–71.

[198] Chatellier X, Joanny JF. Adsorption of polyelectrolyte

solutions on surfaces: a Debye-Huckel theory. J Phys II

1996;6:1669–86.

[199] Borukhov I, Andelman D, Orland H. Polyelectrolyte

solutions between charged surfaces. Europhys Lett 1995;

32:499–504.

[200] Borukhov I, Andelman D, Orland H. Effect of polyelectrolyte

adsorption on intercolloidal forces. J Phys Chem B 1999;103:

5042–57.

[201] Borukhov I. Adsorption of polyelectrolytes and inter-

colloidal forces. Physica A 1998;249:315–20.

[202] Yethiraj A. Forces between surfaces immersed in polyelec-

trolyte solutions. J Chem Phys 1999;111:1797–800.

[203] Carignano MA, Dan N. Density inhomogeneities of highly

charged polyelectrolyte solutions confined between

uncharged and nonadsorbing walls. Langmuir 1998;14:

3475–8.

[204] Barford W, Ball R, Nex CM. A nonequilibrium configuration

theory of polyelectrolyte adsorption. J Chem Soc Faraday

Trans I 1986;82:3233–44.

[205] Barford W, Ball R. Towards a complete configurational

theory of nonequilibrium polymer adsorption. J Chem Soc

Faraday Trans I 1987;83:2515–23.

[206] Stuart MAC, Hoogendam CW, deKeizer A. Kinetics of

polyelectrolyte adsorption. J Phys Condens Matter 1997;9:

7767–83.

[207] Netz RR, Joanny JF. Adsorption of semiflexible polyelec-

trolytes on charged planar surfaces: charge compensation,

charge reversal, and multilayer formation. Macromolecules

1999;32:9013–25.

[208] Dobrynin AV, Deshkovski A, Rubinstein M. Adsorption of

polyelectrolytes at an oppositely charged surface. Phys Rev

Lett 2000;84:3101–4.

[209] Dobrynin AV, Deshkovski A, Rubinstein M. Adsorption of

polyelectrolytes at oppositely charged surfaces. Macromol-

ecules 2001;34:3421–36.
[210] Dobrynin AV. Effect of solvent quality on polyelectrolyte

adsorption at an oppositely charged surface. J Chem Phys

2001;114:8145–53.

[211] Dobrynin AV, Rubinstein M. Adsorption of hydrophobic

polyelectrolytes at oppositely charged surfaces. Macromol-

ecules 2002;35:2754–68.

[212] Dobrynin AV, Rubinstein M. Effect of short-range inter-

actions on polyelectrolyte adsorption at charged surfaces.

J Phys Chem B 2003;107:8260–9.

[213] Nguyen TT, Grosberg AY, Shklovskii BI. Screening of a

charged particle by multivalent counterions in salty

water: strong charge inversion. J Chem Phys 2000;113:

1110–25.

[214] Nguyen TT, Grosberg AY, Shklovskii BI. Macroions in salty

water with multivalent ions: giant inversion of charge. Phys

Rev Lett 2000;85:1568–71.

[215] Joanny JF. Polyelectrolyte adsorption and charge inversion.

Eur Phys J B 1999;9:117–22.

[216] Joanny JF, Castelnovo M, Netz R. Adsorption of charged

polymers. J Phys Condens Matter 2000;12:A1–A7.

[217] Borisov OV, Hakem F, Vilgis TA, Joanny JF, Johner A.

Adsorption of hydrophobic polyelectrolytes onto oppositely

charged surfaces. Eur Phys J E 2001;6:37–47.

[218] Shklovskii BI. Wigner crystal model of counterion induced

bundle formation of rodlike polyelectrolytes. Phys Rev Lett

1999;82:3268–71.

[219] Shklovskii BI. Screening of a macroion by multivalent ions:

correlation-induced inversion of charge. Phys Rev E 1999;60:

5802–11.

[220] Rouzina I, Bloomfield VA. Competitive electrostatic

binding of charged ligands to polyelectrolytes: planar

and cylindrical geometries. J Phys Chem 1996;100:

4292–304.

[221] Netz RR. Electrostatistics of counter-ions at and between

planar charged walls: from Poisson-Boltzmann to the strong-

coupling theory. Eur Phys J E 2001;5:557–74.

[222] Safran S. Statistical thermodynamics of surfaces, inter-

faces and membranes. Reading, MA: Addison-Wesley;

1994.

[223] Netz RR. Debye-Huckel theory for interfacial geometries.

Phys Rev E 1999;60:3174–82.

[224] Messina R. Effect of image forces on polyelectrolyte

adsorption. Phys Rev E 2004;70:0518021–0518029.

[225] Cheng C-H, Lai P-Y. Adsorption transition of a polyelec-

trolyte on a high-dielectric charge substrate. Phys Rev E

2004;70:0618051–0618054.

[226] Durand G, Lafuma F, Audebert R. Adsorption of cationic

polyelctrolytes at clay-colloid interface in dilute aqueous

suspensions–effect of the ionic strength of the medium. Prog

Colloid Polym Sci 1988;266:278–82.

[227] Hendrickson E, Neuman RD. Polyacrylamide adsorption

from very dilute solutions. J Colloid Interface Sci 1986;110:

243–51.

[228] Pelton RH. Electrolyte effects in the adsorption and

desorption of a cationic polyacrylamide on cellulose

fibers. J Colloid Interface Sci 1986;111:475–85.



A.V. Dobrynin, M. Rubinstein / Prog. Polym. Sci. 30 (2005) 1049–11181118
[229] Durand-Piana G, Lafuma F, Audebert R. Flocculation and

adsorption properties of cationic polyelectrolytes toward Na-

montmorillonite dilute suspensions. J Colloid Interface Sci

1987;119:474–80.

[230] Wang TK, Audebert R. Adsorption of cationic copolymers of

acrylamide at the silica water interface—hydrodynamic layer

thickness measuremenrts. J Colloid Interface Sci 1988;121:

32–41.

[231] Davies RJ, Dix LR, Toprakcioglu C. Adsorption of poly-l-

lysine to mica powder. J Colloid Interface Sci 1989;129:

145–52.

[232] Shubin V, Linse P. Effect of electrolytes on adsorption of

cationic polyacrylamide on silica—ellipsometric study and

theoretical modeling. J Phys Chem 1995;99:1285–91.

[233] Kawaguchi M, Kawaguchi H, Takahashi A. Competitive and

displacement adsorption of polyelectrolyte and water-soluble

nonionic polymer at the silica surface. J Colloid Interface Sci

1988;124:57–62.

[234] Bonekamp, BC. PhD thesis, Wagenningen Agricultural

University, The Netherlands; 1984.

[235] Marra J, van der Schee HA, Fleer GJ, Lyklema J. In:

Ottiwel R, Rochester CH, Smith AL, editors. Adsorption in

solutions. London: Academic Press; 1983. p. 245.

[236] Solis FJ, Olvera de la Cruz M. Surface-induced layer formation

in polyelectrolytes. J Chem Phys 1999;110:11517–22.

[237] Castelnovo M, Joanny J-F. Formation of polyelectrolyte

multilayers. Langmuir 2000;16:7524–32.

[238] Messina R, Holm C, Kremer K. Polyelectrolyte adsorption

and multilayering on charged colloidal particles. J Polym Sci

Part B Polym Phys 2004;42:3557–70.

[239] Panchagnula V, Jeon J, Dobrynin AV. Molecular dynamics

simulations of electrostatic layer-by-layer self-assembly.

Phys Rev Lett 2004;93:037801-1.

[240] Park SY, Barrett CJ, Rubner MF, Mayes AM. Anomalous

adsorption of polyelectrolyte layers. Macromolecules 2001;

34:3384–8.

[241] Lefaux CJ, Zimberlin JA, Dobrynin AV, Mather PT.

Polyelectrolyte spin assembly: influence of ionic strength

on the growth of multilayered thin films. J Polym Sci Part B

Polym Phys 2004;42:3654–66.

[242] Muthukumar M. Theory of viscoelastic properties of

polyelectrolyte solutions. Polymer 2001;42:5921–3.

[243] Muthukumar M. Dynamics of polyelectrolyte solutions.

J Chem Phys 1997;107:2619–35.

[244] Sedlak M. Dynamic light scattering from binary mixtures of

polyelectrolytes. I. Influence of mixing on the fast and slow

polyelectrolyte mode behavior. J Chem Phys 1997;107:

10799–804.
[245] Sedlak M. Dynamic light scattering from binary mixtures of

polyelectrolytes. II. Appearance of the medium polyelec-

trolyte mode upon mixing and comparison with experiments

on binary mixtures of neutral polymers. J Chem Phys 1997;

107:10805–15.

[246] Sedlak M. Mechanical properties and stability of multi-

macroion domains in polyelectrolyte solutions. J Chem Phys

2002;116:5236–45.

[247] Sedlak M. Long-time stability of multimacroion domains

in polyelectrolyte solutions. J Chem Phys 2002;116:

5246–55.

[248] Sehgal A, Seery TAP. The ordinary-extraordinary transition

revisited: a model polyelectrolyte in a highly polar organic

solvent. Macromolecules 1998;31:7340–6.

[249] Kotz J, Kosmella S, Beitz T. Self-assembled polyelectrolyte

systems. Prog Polym Sci 2001;26:1199–232.

[250] Huang CI, Olvera de la Cruz M. Polyelectrolytes in

multivalent salt solutions: monomolecular versus multi-

molecular aggregation. Macromolecules 2002;35:976–86.

[251] Dubois E, Boue F. Conformation of poly(styrenesulfonate)

polyions in the presence of multivalent ions: small-angle

neutron scattering experiments. Macromolecules 2001;34:

3684–97.

[252] Solis FJ, Olvera de la Cruz M. Flexible linear polyelec-

trolytes in multivalent salt solutions: solubility conditions.

Eur Phys J E 2001;4:143–52.

[253] Potemkin II, Vasilevskaya VV, Khokhlov AR. Associating

polyelectrolytes: finite size cluster stabilization versus

physical gel formation. J Chem Phys 1999;111:2809–17.

[254] Bloomfield VA. DNA condensation by multivalent cations.

Biopolymers 1997;44:269–82.

[255] Rouzina I, Bloomfield VA. Macroion attraction due to

electrostatic correlation between screening counterions. 1.

Mobile surface-adsorbed ions and diffuse ion cloud. J Phys

Chem 1996;100:9977–89.

[256] Levin Y. Electrostatic correlations: from plasma to biology.

Rep Prog Phys 2002;65:1577–632.

[257] Dobrynin AV, Colby RH, Rubinstein M. Polyampholytes.

J Polym Sci Part B Polym Phys 2004;42:3513–38.

[258] Qiu Y, Park K. Environment-sensitive hydrogels for drug

delivery. Adv Drug Deliv Rev 2001;53:321–39.

[259] Elliott GF, Hodson SA. Cornea, and the swelling of

polyelectrolyte gels of biological interest. Rep Prog Phys

1998;61:1325–65.

[260] Ruhe J, Ballauff M, Biesalski M, Dziezok P, Grohn F,

Johannsmann D, et al. Polyelectrolyte brushes. Adv Polym Sci

2004;165:79–150.


	Theory of polyelectrolytes in solutions and at surfaces
	What are polyelectrolytes?
	Polyelectrolytes in dilute solutions
	Flory theory and scaling model of a polyelectrolyte chain
	Non-uniform stretching of polyelectrolyte chains
	Polyelectrolyte chain in a poor solvent for polymer backbone
	Polyelectrolyte chains at finite concentrations and counterion condensation
	Effects of added salt on chain conformations and electrostatic persistence length

	Semidilute polyelectrolyte solutions
	Overlap concentration
	Scaling model of semidilute polyelectrolyte solutions
	Phase separation in polyelectrolyte solutions
	PRISM and self-consistent field methods

	Adsorption of polyelectrolytes
	A brief historic overview of theoretical models of polyelectrolyte adsorption
	Why self-consistent field method based on Poisson-Boltzmann approach does not work for polyelectrolyte adsorption
	Two-dimensional adsorbed layers [209]
	Three-dimensional self-similar adsorbed layers [209]
	Effect of the image forces and short-range interactions on polyelectrolyte adsorption
	Comparison with experiments

	Conclusions and outlook
	Acknowledgements
	References


