
Theory and Simulation of Attractive Nanoparticle Transport in
Polymer Melts
Umi Yamamoto,†,‡ Jan-Michael Y. Carrillo,§ Vera Bocharova,∥ Alexei P. Sokolov,∥,⊥

Bobby G. Sumpter,§ and Kenneth S. Schweizer*,#,%,&

†Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
‡Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
§Center for Nanophase Materials Sciences and Computational Sciences & Engineering Division and ∥Chemical Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
⊥Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
#Department of Materials Science, %Department of Chemistry, and &Frederick Seitz Materials Research Laboratory, University of
Illinois, Urbana−Champaign, Illinois 61801, United States

ABSTRACT: We theoretically study the diffusion of a single attractive
nanoparticle (NP) in unentangled and entangled polymer melts based on
combining microscopic “core−shell” and “vehicle” mechanisms in a dynamic
bond percolation theory framework. A physical picture is constructed which
addresses the role of chain length (N), degree of entanglement, nanoparticle size,
and NP−polymer attraction strength. The nanoparticle diffusion constant is
predicted to initially decrease with N due to the dominance of the core−shell
mechanism, then to cross over to the vehicle diffusion regime with a weaker N
dependence, and eventually plateau at large enough N. This behavior
corresponds to decoupling of NP diffusivity from the macroscopic melt viscosity,
which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a
crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a
characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion.
Complementary simulations for a range of chain lengths and low to moderate NP−polymer attraction strengths are also
performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted
dynamic crossover behavior. When the desorption time is smaller than or comparable to the onset of entangled polymer
dynamics, the NP diffusivity becomes almost chain length independent.

I. INTRODUCTION

Nanoparticle (NP) motion in synthetic and biological polymer
liquids is of fundamental interest in diverse fields of science and
engineering, e.g., for light-weight, easily processable, and low-
cost polymer nanocomposites.1−3 Transport can be complex
since it typically involves multiple time, energy, and length
scales.1−4 For synthetic polymer melts and concentrated
solutions where the polymer−nanoparticle interaction is
repulsive, recent experiments4−12 and simulations13,14 find
nanoparticle diffusivity is a rich function of particle size and
polymer length scales with large violations of the hydrodynamic
Stokes−Einstein (SE) relation. For this problem, Brochard-
Wyart and de Gennes15 pioneered a qualitative scaling
approach based on the idea that particle motion becomes
“decoupled” from the full macroscopic viscosity when its
diameter (2R) is smaller than the entanglement mesh size or
tube diameter, dT, for entangled melts or smaller than the
polymer radius of gyration (Rg) for unentangled melts. The
resulting scaling laws for the particle diffusion constant have
been confirmed by simulations13,14 for small enough repulsive
particles in unentangled melts and lightly entangled melts. A

more advanced scaling approach was constructed and applied
to analyze NP diffusion in polymer solutions.15 For larger NP
regimes where 2R/dT ≳ 1 the possible relevance of hopping as
a new mode of transport and intermediate-time diffusion has
also been investigated.16,17

The problem of repulsive NP transport has also been
quantitatively addressed based on a microscopic, force-level,
self-consistent generalized Langevin equation (SC-GLE)
theory.18,19 It treats in a unified manner the Fickian diffusion
of a single repulsive nanoparticle of any size in entangled and
unentangled polymer melts. Nanoparticle self-motion and
length-scale-dependent polymer relaxation (termed “constraint
release”) enter as two parallel and competing channels of force
relaxation. For entangled melts, NP long-time mobility exhibits
size-dependent non-SE behaviors controlled by (i) fast
nanoparticle motion and length-scale-dependent collective
relaxation of the unentangled matrix for NPs smaller than the
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tube diameter and (ii) polymer relaxation via reptation for NPs
larger than the tube diameter. The two regimes are predicted to
be connected by a relatively sharp, but continuous, prehy-
drodynamic crossover regime at 2R/dT ≈ 1−2 where NP
motion first becomes gradually coupled to the entanglement
network. Physically, “self-consistent” means the dynamic
friction due to polymer forces on a NP can be relaxed via
NP motion, but in turn, NP motion is controlled by the
relaxation of these same polymer forces. In strong contrast to
the analysis of Brochard-Wyart and de Gennes,15 recovery of
hydrodynamic behavior in heavily entangled matrices requires
roughly 2R ≥ 10dT. Theoretical predictions for the diffusion
constant are in good agreement with simulations including the
crossover regime in lightly entangled melts where 2R ≈ dT and
experiments in entangled polymer melts and DNA solu-
tions.7−11

A caveat is that due to its dynamical Gaussian nature, the SC-
GLE approach does not address activated hopping transport
which has been argued to be relevant in a narrow 2R ≈ dT
window in strongly entangled liquids and cross-linked net-
works.17 This hopping problem has been microscopically
addressed using a different theoretical approach, the non-
Gaussian nonlinear Langevin equation (NLE) theory,20 which
predicts it to be important only for a narrow range of 2R/dT ≈
1.4−1.8 for heavily entangled melts. The effect of soft repulsive
polymer−NP interactions on hopping transport has also been
studied.20

Given the above summary of recent theoretical progress, we
view the problem of repulsive NP diffusion in polymer liquids
to be largely solved, at least at zeroth order. Weak polymer−NP
attractions have been treated under the restrictive condition
that desorption times are so fast that the polymer−particle
adsorbed layer is equilibrated on the time scales required to
achieve NP diffusion.18 In this case, attractive forces only
modify local packing of polymers around a NP and local
friction in the SC-GLE approach.
The focus of this paper (referred to as paper I) is a combined

theoretical and simulation study of how the dilute NP diffusion
problem changes if there are strong polymer−particle
attractions leading to potentially long-lived adsorption. The
time scale of the chemically specific elementary polymer
desorption event is crucial, and qualitative changes of NP
diffusion relative to the repulsive particle analogue are expected.
This problem is of high interest in nanocomposites, which
typically require significant polymer−NP attraction to achieve
dispersion, and also in diverse biophysical contexts. We are
especially interested in the case when the NP is small compared
to the polymer radius-of-gyration or (if entangled) the tube
diameter. This situation is studied experimentally in the
companion paper II.21

In section II we develop a theoretical framework for sticky
NP diffusion in polymer melts focusing on small particles.
Multiple different regimes of parameter dependence are
identified in the overall context of two competing transport
mechanisms: “core−shell” and “vehicle”. The focus is on
qualitative behavior. Section III presents a complementary MD
simulation study. A wide range of chain lengths and strength of
NP−polymer attraction are studied. The results are interpreted
based on the developed theoretical framework. The article
concludes with a brief summary in section IV. The Appendix
includes additional simulation data.

II. THEORETICAL MODELS FOR THE DIFFUSION OF
ATTRACTIVE NANOPARTICLES IN POLYMER MELTS
II.A. Two Competing Mechanisms. We propose that the

center-of-mass (CM) diffusivity of a single attractive NP of
radius R dissolved in a homopolymer melt involves two distinct
nonhydrodynamic microscopic mechanisms we call “core−
shell” and “vehicle”. Here we first discuss the qualitative
physical picture with the help of the conceptual schematic of
Figure 1. On the time scale polymer chains are adsorbed

(immobilized) on the NP surface, the entity of interest can be
viewed as a “core−shell” object. Defining an adsorbed layer
thickness as ∼Rg, there are two physically distinct limiting
regimes: (a) R ≫ Rg and (b) R ≪ Rg. For case (a), the
adsorbed shell is essentially space filling, and treating the object
as a sphere with an effective hard core radius of Reff ∼ R + Rg is
sensible, as argued by others.22−24 But for case (b), non-
adsorbed “free matrix” chains can interpenetrate the shell
region, rendering a Reff ∼ R + Rg model questionable to a
degree that depends on the value of Rg/R and whether
polymers are entangled or not.
In both of the above cases, hydrodynamic and non-

hydrodynamic effects can enter. The idea of case (a) has
been successfully employed to understand the slower than bare
(Reff = R) SE diffusion of large silica NPs in poly(2-
vinylpyridine) (P2VP).24 The NP diffusivity was found to be
in good agreement with the radius-renormalized SE relation

πη
=D

k T
R6SE

B

full eff (1)

Figure 1. Schematic of one sticky nanoparticle in a polymer melt
where matrix chain segments (gray and red circles) are adsorbed onto
a NP (blue circle) and (a) the NP radius (R) is larger than radius of
gyration (Rg) so that the adsorbed chains (red circles) form a dense
layer around a NP creating a core−shell object of effective radius Reff ∼
R + Rg (shaded black region) and (b) R ≪ Rg where nonadsorbed
segments significantly interpenetrate the adsorbed layer and the
effective particle picture breaks down. For entangled melts an
additional length scale, the tube diameter (dT) is indicated. (c)
Schematic representation of the “vehicle” mechanism. Initially, a NP
follows the adsorbed chain motion (red circles, shown in left panel)
using it as carrier or vehicle. This transport mechanism is then
randomized by the elementary event of a NP desorbing from a
segment and randomly finding a new vehicle chain (green circles, right
panel) after a characteristic desorption time, τdes.
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where kB is Boltzmann’s constant, T is the absolute temper-
ature, and ηfull is the macroscopic viscosity of the pure polymer
liquid. Similar approaches have been employed to describe the
NP concentration dependence of the nanocomposite viscos-
ity.22,23

Equation 1 is expected to be sensible only if three conditions
apply: (i) case (a) (where R ≫ Rg) holds, (ii) the segmental
desorption time (τdes) is larger than the (a priori unknown)
time scale beyond which Fickian diffusion describes NP motion
(τdiff), and (iii) nonhydrodynamic effects are weak. Condition
(iii) is reasonable for compact core−shell particles larger than
microscopic static and dynamic length scales in the polymer
liquid. These conditions can be violated if NPs become too
small, or polymers become too big, and/or NP−polymer
chemistry results in weaker adsorption and a relatively short
desorption time. A case of high interest here is when R < Rg and
τdes < τdiff; that is, all three of the above conditions are not
satisfied. Small sticky NP motion is then expected to be
facilitated by the segmental desorption process per a “vehicle”
mechanism. Here, the NP moves cooperatively with its local
surroundings using polymer chains as carriers, which are
temporally renewed on the time scale τdes (see Figure 1c).
Repetition of this elementary event randomizes the NP
trajectory, allowing long-time Fickian diffusion. Such a vehicle
model has been successfully employed to describe single ion
diffusion in polymer electrolyte melts25,26 where there is strong
(but noncovalent) coupling between a cation and polymer
backbone. By assuming that the segmental desorption time is
independent of chain length, the cation diffusivity was predicted
to initially decrease with N but eventually plateaus due to the
increased significance of the vehicle mechanismtrends in a
good agreement with experiment.25,26 However, a general
theoretical approach that addresses both variable particle size
and entanglement effects has not been established.
Our aim is to develop a more general, but simple, approach

for the diffusion of a single attractive NP of any size in
unentangled or entangled homopolymer melts by combining
the “core−shell” and “vehicle” concepts. It is built on the
general framework of dynamic bond percolation theory27

combined with standard Rouse and reptation-tube models for
chain and nonlinear polymer melt dynamics28,29 and the SC-
GLE approach.18,19 The problem is rich due to the presence of
many length and time scales. In addition to the unknown NP
diffusion time τdiff, there is the “bare” NP radius (R), chain
radius of gyration (Rg), segmental or alpha relaxation time (τ0),
and polymer−NP desorption time, τdes. For unentangled
polymers, the longest chain Rouse relaxation time (τR) enters.
For entangled melts, there is additionally the entanglement
onset time (τe ≈ Ne

2τ0), reptation time (τrep ≈ (N/Ne)τR), and
tube diameter ( =d N bT e ), where b is the segment length
and Ne the entanglement chain length. The polymer melt
quantities are typically known, in contrast to τdes. The relative
significance of the two diffusion mechanisms is characterized by
a competition of the above length and time scales.
II.B. Theoretical Framework. The dynamic bond

percolation theory originally developed for diffusion in
disordered media27 contains two effects which determine the
tagged particle displacement: (i) NP transport via the
intermediate-time dynamics of its surroundings and (ii)
structural reorganization of the surrounding media which
relaxes this coupling. For our problem, (i) corresponds to
motion of the core−shell object, while (ii) corresponds to the

desorption event that replaces the old polymer vehicle with a
new vehicle. In its simplest implementation, the latter is treated
in a Markovian manner (no memory) so that the NP trajectory
becomes decorrelated with its past after a single desorption
event. In the context of the SC-GLE theory, the total NP−
polymer force time correlation function effectively relaxes on
the single desorption event time scale. Of course, while a NP is
associated with a vehicle, memory effects can be present in the
sense that NP motion is slaved to subdiffusive polymer motions
on short enough time scales.
The above approximate framework implies that the long-time

NP diffusivity follows from its mean-square displacement
(MSD), ⟨δr ⃗2(t)⟩, as:27

∫δ
τ

δ τ= ⟨ ⃗ ⟩ = ⟨ ⃗ ⟩
→∞

∞
D

r t
t

t r t P tlim
( )

6
1

6
d ( ) ( ; )

t
NP

2

des 0

2
0 des des

(2)

where a Poisson distribution for the desorption time is
employed:

τ
τ τ

= −
⎛
⎝⎜

⎞
⎠⎟P t

t
( ; )

1
expdes des

des des (3)

A key input is the MSD of the core−shell object, ⟨δr ⃗2(t)⟩0,
where adsorbed chains are permanently attached. One can then
write per standard polymer models28,29

δ μ⟨ ⃗ ⟩ = +−r t D t t( ) 6 ( )l
2

0 core shell (4)

where Dcore−shell is the long-time diffusivity of the core−shell
object, and μ(t) describes its intermediate-time subdiffusive
motion. Equations 2 and 4 then yield

= +−D D DNP core shell vehicle (5)

where the second term is the contribution of the vehicle
mechanism to NP diffusivity:

∫τ
τμ τ τ τ≡

∞
D P

1
6

d ( ) ( ; )vehicle
des 0

des des
(6)

The characteristic time scale for the vehicle diffusivity is given
by the average desorption time, τdes, and the corresponding
length scale by the nonuniversal average displacement of the
core−shell object on the τdes time scale.

27 The additive form of
eq 5 implies NP diffusivity involves two competing
contributions. To calculate DNP requires a model for Dcore−shell
and μ(t).

II.C. Core−Shell Diffusivity. We briefly discuss a specific
theoretical approach to compute Dcore−shell. First consider the
“large core” regime defined as when R > Rg. Here the adsorbed
pinned chains form an effectively dense layer that increases the
NP radius. In principle, the core−shell object is dynamically
coupled with a melt of nonadsorbed chains via hydrodynamic
and nonhydrodynamic interactions. To leading order, polymer
adsorption enters only via the structure of the adsorbed layer
and how it determines an effective repulsive potential between
the core−shell object and surrounding polymer matrix. This
could be modeled in at least two ways: (i) an effective hard-
core interaction with Reff ∼ R + Rg or (ii) an effective hard core
plus soft repulsion.20 The bare repulsive NP problem is
recovered if segments desorb so fast that they are equilibrated
on the NP diffusion time scale.18

A general way to calculate Dcore−shell can be approached based
on the SC-GLE theory. For repulsive NPs in entangled and
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unentangled melts,14,18,19 the starting point of the SC-GLE
theory is to express NP diffusivity in an additive form:

= +− ‐D D Dcore shell hydro non hydro (7)

The hydrodynamic contribution is given by the radius-
renormalized SE relation (see eq 1), and the nonhydrodynamic
contribution follows from the Einstein relation, Dnon‑hydro =
kBT/ζnon‑hydro where

∫ζ =‐

∞
tK td ( )non hydro

0 (8)

and K(t) is the memory function describing the relaxation of
the NP−polymer force time correlation function.18 How the
SC-GLE approach describes the physics of this quantity was
outlined in the Introduction, and all details are given
elsewhere.14,18,19

A useful limiting case is for very large cores (R ≫ Rg)
corresponding to Reff ≫ 2Rg. SC-GLE theory then reduces to
the radius-renormalized SE result of eq 1 for both unentangled
and entangled melts.18 Moreover, Dcore−shell is expected to
dominate the net NP diffusion since the vehicle mechanism is
irrelevant due to the large separation of relevant length scales.
For the opposite “small core” regime (R ≪ Rg) the concept

of a space-filling core−shell object with Reff ∼ R + Rg breaks
down due to the significant interpenetration of nonadsorbed
segments into the shell region. The NP motion is then likely
sensitive to the dynamics of the adsorbed polymers.
Qualitatively, the diffusivity of the pinned core−shell object
may be more akin (very crudely) to the dynamics of a starlike
polymer (where the NP acts as a branch point) dissolved in a
chain melt.30,31 For unentangled polymers, the nonhydrody-
namic part of Dcore−shell can be estimated based on the Rouse
model for a starlike polymer in a chain melt:30

ζ ζ
=

+
D

k T
fNstar

B

0 NP (9a)

where ζ0 is the segmental friction, f is the number of adsorbed
chains, and ζNP is the short-time friction constant of the NP
core. For entangled melts, NP diffusion is likely controlled by
the constraint release of the surrounding linear chains
whence30,32

∼ ∝ − ⎜ ⎟⎛
⎝

⎞
⎠D

D N

N N
N

N
N

D
( )

( / )star
rep

e
3/2

1 e
5/2

0
(9b)

where D0 ≡ kBT/ζ0 is the segmental diffusion constant and the
reptation-tube model diffusivity law is used.28,29,33 It is
interesting to discuss the relative significance of eqs 9a and
eq 9b compared with the corresponding hydrodynamic
diffusivities. Given the pinned chains are larger than the core,
this is a rather complex problem. If we assume non-free-
draining behavior applies on the scale Reff ∼ R + Rg, then eq 1
applies which yields the following estimates. For unentangled
melts

πη
= ∝

+
∝ −D

k T
R

D
N R R

N
6 ( )hydro

B

full eff

0

g

3/2

(10a)

where the final proportionality is valid when Rg ≫ R. For
entangled melts

∝
+

∝D
D N

N R R
N

N D( )hydro
0 e

2

3
g

e
2

7/2
0 (10b)

where the reptation-tube model viscosity is used and the last
proportionality assumes R ≪ Rg. Thus, for both unentangled
and entangled melts, it seems the hydrodynamic and
nonhydrodynamic contributions to the core−shell diffusivity
are small and comparable and decrease more strongly with N
compared to the R > Rg regime. This suggests as the polymer
size sufficiently exceeds the NP radius, the core−shell diffusivity
rapidly decreases with N and tends to play a minor role in the
total NP diffusivity.
In summary, we suggest the following scenario for the core−

shell diffusivity with decreasing R/Rg. For very large cores (R≫
Rg), Dcore−shell is described by the radius-renormalized SE
relation and dominates the total NP diffusivity. For R > Rg,
both the hydrodynamic and nonhydrodynamic contributions to
Dcore−shell can be important. For larger N such that R < Rg, the
two contributions decrease significantly and likely become
irrelevant, leading to a dynamic crossover for sticky NP
transport via the vehicle mechanism.

II.D. Vehicle Diffusivity. The sub-diffusive part of the
core−shell MSD, μ(t), which enters Dvehicle via eq 5, is generally
not possible to calculate exactly except for a few simple cases34

due to the complications of a nonlinear topology of the core−
shell, entanglements, nonuniversal consequences of NP−
polymer forces, etc. Thus, we focus on a qualitative discussion
of leading-order parameter dependences of Dvehicle, especially its
scaling with N and desorption time. Knowing that the
intermediate-time subdiffusive NP motion is controlled by
adsorbed segments, μ(t) is modeled based on the segmental
MSD of the adsorbed chains. This can be expressed as

μ μ
τ

=
α⎛

⎝⎜
⎞
⎠⎟t

t
( ) 0

0 (11)

where the subdiffusive exponent, 0 < α < 1, depends on what
regime of polymer dynamics is relevant to NP diffusion. For
unentangled melts, and assuming adsorbed chains follow the
same segmental dynamics as free chains in the pure melt, one
uses the Rouse model to obtain

μ τ τ∼ < <t Ab D t t( ) ( ) ,0
1/2

0 R (12a)

τ
≈

⎛
⎝⎜

⎞
⎠⎟D Ab

D
vehicle

0

des

1/2

(12b)

where A is a numerical prefactor arising from the core−shell
topology. Assuming τdes is determined by the local NP−
monomer interaction and is thus N-independent, Dvehicle is
expected to be (largely) independent of chain length since it is
coupled to intermediate-time polymer dynamics and decreases
with τdes in contrast to Dcore−shell. Since we are only interested in
large enough τdes such that the subdiffusive polymer segmental
motion is relevant, the literal τdes → 0 limit in eq 12a and eq
12b is not considered.
For entangled melts, assuming segmental motion controls

the vehicle mechanism, the reptation-tube model28,29,33 yields
in the asymptotic N ≫ Ne limit

μ

τ

σ τ τ

τ τ

≈

<

< <

< <

⎧
⎨
⎪⎪

⎩
⎪⎪

t

b D t t

d D t t

d D t N t

( )

( )

( )

( / )

0
1/2

e

T
2

0
1/4

e R

T 0
1/2

R rep (13a)
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τ
τ τ

τ
τ τ τ

τ
τ τ τ

≈

<

< <

< <

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

D

Ab
D

Ad b D

Ad
D

N

( )
1

vehicle

0

des

1/2

des e

T
2

0
1/4

des

3/4

e des R

T
0

des

1/2

R des rep

(13b)

where A is introduced in the same spirit as in eq 12a. The
parameter dependence of the vehicle diffusivity can vary
depending on a time-scale competition between τdes, τe, τR, and
τrep. One expects Dvehicle is N-independent if τdes < τR, while a
weak (∝ N−1/2) dependence is present for τR < τdes < τrep. Of
course, in the hypothetical long chain limit one can always
achieve τdes < τR, and Dvehicle is asymptotically N-independent.
While eqs 12 and 13 can be regarded as the leading-order

predictions, there are many well-known nonuniversal features
that can change the apparent N scaling of polymer melt
dynamics. (i) The exact solution of the Rouse model predicts a
weak N-dependence for eq 12b at relatively small N.25 (ii)
Segmental diffusivity can depend on N due to the change in
glass transition temperature.35 (iii) The N ≫ Ne limit often
does not apply to experiments or practical simulations. For
example, the subdiffusive exponent in the second regime of eq
13a can be N/Ne dependent and approaches 1/4 from above
only at very large N/Ne.

36−38 The second 1/2 exponent regime
in eq 13a is very hard to observe unless the system is extremely
well entangled.39 In either case, the apparent non-Fickian
exponent in eq 11 becomes larger as N/Ne decreases,
corresponding to faster than asymptotic segmental motion.
Thus, in practice, the parameter dependence of Dvehicle is
expected to be nonuniversal and should deviate from eqs 12
and 13, including an apparent relatively weak N variation due to
nonasymptotic dynamical effects.
II.E. Crossover between Dynamical Regimes. Combin-

ing the results of the above subsections, the total NP diffusivity
for large R > Rg NPs can be written as

πη ζ
= + +

‐
D

k T
c R

k T
DNP

B

full eff

B

non hydro
vehicle

(14a)

and for small R < Rg NPs one has

πη
= + +D

k T
c R

D DNP
B

full eff
star vehicle

(14b)

The additive form of eq 14 suggests that one of the two
competing contributions, the core−shell or vehicle diffusivity,
likely dominates the NP diffusivity for a given system. Recalling
that the N dependence is expected to be weaker for Dvehicle, one
expects the following crossover behavior at fixed polymer−NP
chemistry (τdes).
At sufficiently low N, the core−shell diffusivity makes the

dominant contribution to DNP. The NP diffusivity decreases
with increasing N until Dcore−shell becomes sufficiently reduced
that Dvehicle begins to dominate. Physically, this behavior can
become relevant as Rg > R, although the precise crossover
condition must be nonuniversal and depends at a minimum on
the tube diameter (for entangled melts) and desorption time.
Beyond the onset of importance of the vehicle mechanism, the

N-dependence of DNP gradually weakens and for unentangled
melts, or entangled melts in the first and second dynamical
regimes in eq 13, eventually plateaus as a signature of the
vehicle-dominated diffusion mechanism. Although the N-
independent diffusivity is reminiscent of the predicted (and
observed in simulation) behavior of small repulsive NPs in
unentangled and entangled melts,13−19 here it arises for
different physical reasons. For large enough N, the segmental
desorption time (controls decoupling of NP motion from
polymer dynamics) can be smaller than the long-time relaxation
of the adsorbed chains. Then, the NP diffusivity is only
influenced by relatively short or intermediate-time (N-
independent to leading order) segmental dynamics. In contrast
to the repulsive NP case,14−19 the geometric requirement that
2Reff < dT or Reff < Rg is formally not present if the desorption
time is shorter than the entanglement onset time, although 2Reff
< dT must be satisfied for entangled melts so that the NP
transport becomes insensitive to entanglement effects beyond
the desorption (vehicle diffusion) time scale.
While nonuniversal aspects can enter in the crossover regime,

a generic approach to test the dominance of the vehicle
mechanism is to examine whether the following relation holds:

τ = ≫α−D N( ) constant ( 1)NP des
1

(15)

where we assumed DNP ∼ Dvehicle for large N and used eq 13b.
Equation 15 formally holds for different choices of τdes with the
caveat that α can depend on the relevant polymer dynamics as
determined by the competition between τdes, τ0, and τe. Slowing
down of segmental dynamics near the NP surface may also be
important depending on the strength of NP−polymer
attraction.
The goal of this section was to construct a simple

approximate theoretical framework for the diffusion of small
sticky nanoparticles in polymer melts. We employ it to
qualitatively interpret our simulation results in the following
section and experiment in paper II.21

III. COARSE-GRAINED SIMULATIONS AND
THEORETICAL INTERPRETATION

III.A. Simulation Details. We now study the dynamics of a
model attractive NP in unentangled and entangled melts using
MD simulation. Besides its intrinsic interest, a major advantage
is that several key parameters/quantities that enter the
theoretical framework, such as desorption time and time-
dependent mean-square displacements, are known, in contrast
to experiments. This allows a more incisive test of the
theoretical ideas.
We employ the standard coarse-grained bead−spring

model40 of polymer chains as adopted in ref 14 which studied
repulsive NP transport in polymer melts. Nonbonded pair
interactions between polymer beads are described by a
truncated and shifted Lennard-Jones (LJ) potential with bead
diameter σ (used as unit length), spatial cutoff rc = 2.5σ, and
interaction strength ε (in units of thermal energy). The nearest-
neighbor bonded interaction is a finite extensible nonlinear
elastic (FENE) potential with standard parameters.40 A bond
bending potential, Uθ = kθ(1 + cos θ) with kθ = 0.75 kBT, is
included to reduce the entanglement chain length, Ne, from 85
to 45; the corresponding tube diameter is dT ≈ 7−10σ.14
Initially, several melt simulations with N = 10, 30, 90, 200, and
400 are equilibrated using a combination of canonical MD
simulations and Monte Carlo bond swaps.41 During this step,
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the nonbonded LJ interactions are switched to an athermal or
purely repulsive system by setting rc = 21/6σ.
Nanoparticles are modeled as icosahedrons composed of 12

LJ beads of diameter σ. The vertices of the icosahedron are
connected to adjacent vertices by the same FENE bond as used
for polymers. The icosahedral structure was further maintained
by imposing an angle of θ0 = π/3 for the 20 equilateral triangle
faces, resulting in 60 angles constrained by a harmonic potential
Uhangle = khθ(θ − θ0)

2 with khθ = 200 kBT/rad
2. The equilibrium

bond length of the FENE bond is 0.961σ, and the radius of a
circumscribed sphere around the icosahedron is R = 0.914σ.
This implies a NP to monomer bead diameter ratio of ≈1.8.
This value was chosen to mimic the octaaminophenyl-
silsesquioxane (OAPS) nanoparticles (diameter ∼1.8 nm)
experimentally studied in paper II.21 An attractive site−site
interaction between polymer beads and NP beads is modeled as
a truncated LJ potential with a cutoff at 2.5σ and attraction
strength εnp = 2, 4, 8, and 32 kB; εnp > ε ensures that NPs
remain well dispersed. The number of nanoparticles dispersed
in the polymer matrix is low with a number fraction of 0.0005,
corresponding to an extremely low NP volume fraction of
∼0.0014. We have explicitly verified that this value is small
enough to mimic the infinitely dilute “single” NP limit of
present theoretical interest, as indicated, for example, by the
invariance of the polymer−polymer pair correlation function to
NP−polymer attraction strength. The studied degrees of
polymerization, N, number of nanoparticles, nNP, number of
polymer chains, nchain, and simulation box size, L, are tabulated
in Table 1.

To prepare the system, NPs are first dissolved in the polymer
melt by placing them on a rectangular lattice that spans the
simulation box. This corresponds to a well-dispersed initial
configuration. Prior to the production run, the box size is
equilibrated by performing isothermal−isobaric (NPT) simu-
lations using a Nose−́Hoover thermostat and barostat with
reduced pressure P* = 0. Afterward, canonical (NVT)
simulations are performed using a Langevin thermostat at
reduced temperature T* = 1.0 for the production runs. All
simulations were performed at the Oak Ridge Leadership
Computing Facility (OLCF) using the LAMMPS software
package.42,43 The simulations cover the parameter windows
2R/σ ≈ 2, 2R/dT ≈ 0.2−0.3, Rg/σ ≈ 2−11, N/Ne ≈ 0.2−9, and
εnp/kBT = 2, 4, 8, and 32. Based on DFT calculations, εnp = 4−6
kBT seems most relevant for our experiments on OAPS in
poly(propylene glycol) (PPG) discussed in ref 21. All
simulation results are reported in polymer bead LJ units unless
otherwise noted.
III.B. Polymer−Nanoparticle Adsorption: Packing

Structure and Desorption Time. To characterize NP−
polymer adsorption, the site−site pair correlation function
between a NP bead and a polymer segment, gnp(r), is

computed. Representative results are shown in Figure 2,
along with snapshots of the NP and surrounding polymer melt.

We note that gnp(r) peaks at r ≈ σ with an amplitude that grows
with εnp, thereby demonstrating the strong cohesion between a
NP and the polymer segments. The pair correlation function is
essentially independent of N, as expected in dense polymer
melts.44 The absence of major peaks at larger length scales
indicates that the adsorbed segments are likely randomly
dangling from the NP surface rather than making compact
clusters, supporting the core−shell idea and its nonlinear
(starlike) topology45 (see Figure 2c,d for simulation snapshots).
The segmental desorption time is quantified by first defining

an adsorbed segment as when it is within a certain cutoff
distance from a NPhere chosen to be the location of the first
minimum of gnp(r) which occurs at r ∼ 1.4σ. The desorption
time is then estimated as the average time a given adsorbed
segment stays within that spatial region. This analysis is
performed by (i) assigning a value of n(t) = 1 to all adsorbed
segments and n(t) = 0 otherwise (repeated for all time steps)
and (ii) calculating the time correlation function QD(t) =
⟨n(t)n(0)⟩ considering only those segments with n(0) = 1. The
resulting correlation function is fit with a stretched exponential,
Q0 exp[−(t/τdes)β], to determine τdes. This analysis describes
the simulation data very well with β ranging from 0.36 to 0.58
(see Figure 3a).
For all εnp studied, the desorption time only weakly increases

with N and saturates above N = 100, confirming our
expectation that τdes is an essentially N-independent, chem-
istry-specific quantity (Figure 3b). After saturation, we find a
simple Arrhenius form of τdes ∝ exp(aεnp/kBT) where a ≈ 0.8−
1, a physically intuitive result (plot not shown). Of greater

Table 1. Simulation Parameters: Chain Degree of
Polymerization, Number of Nanoparticles in the Simulation
Box, Number of Chains in the Box, and Box Size

N nNP nchain L(σ)

10 5 1000 22.6
30 15 1000 32.4
90 45 1000 46.7
200 100 1000 60.9
400 100 500 60.9

Figure 2. Site−site pair correlation function between a NP bead and
polymer segment as a function of separation for (a) N = 400 and
different values of εnp and (b) εnp = 8 kBT and different N. Panels (c)
and (d) are simulation snapshots of an icosahedron nanoparticle
(blue) in a polymer matrix of N = 10 and N = 90, respectively. The
polymer segment−NP interaction εnp = 2 kBT, and only adsorbed
polymers, which are mix-colored chains representing one chain per
color, are shown.
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importance is the relationship between the time scales τdes, τe,
and τR. For τR we adopt the value of ref 14; we estimate τe ∼
1.8 × 104−9.7 × 104 based on the time scale where the
segmental MSD reaches the tube diameter squared or attains
the local reptative subdiffusive exponent of 1/4 for long chains.
The simulation data shows that τdes < τR for almost all N with
εnp = 2 and 4 kBT, and for large N (≥200) with εnp = 8 kBT.
Furthermore, τdes is generally smaller than τe for εnp = 2 and 4
kBT and comparable to τe for εnp = 8 kBT. Thus, NP dynamics is
expected to be coupled to only the unentangled Rouse-like
dynamics of adsorbed chains for εnp ≤ 4 kBT and possibly
weakly to entanglements for εnp = 8 kBT.
III.C. Intermediate-Time and Long-Time Dynamics.We

now investigate the microscopic dynamics of the NP center-of-
mass and polymer segments based on calculation of their mean-
square displacement and long-time diffusivity. The polymer
dynamics most directly relevant to the vehicle diffusivity is the
segmental motion of the adsorbed chains, which is also
analyzed.
Figure 4 shows MSD data for the NP, adsorbed segments,

and nonadsorbed (“free”) segments at different values of N and
εnp; for better clarity and resolution of trends, the same results
are replotted in a linear−linear format in the Appendix (Figure
7). For the adsorbed segments, we only include those which
remain adsorbed across the displayed time window. Our key
findings are now summarized based on examining Figures 4 and
7.
For all cases studied, the NP MSD shows the slowest motion

at short times since it is larger than the polymer segments.16,19

This trend is similar to that of the adsorbed segments, while the

MSD of free segments is generally the largest, as expected.
These short-time behaviors are qualitatively unaffected by N
and εnp, although the overall mobility is smaller for larger εnp
since NP−polymer attraction slows down segmental and NP
motion.
In contrast, intermediate- and long-time behaviors are

qualitatively different depending on N and εnp. For small N
(≤30) and all values of εnp, the NP MSD closely agrees with
that of the adsorbed segments at long times. This establishes
the relevance of the core−shell mechanism where the NP and
the adsorbed chains diffuse as a single object. However, for
larger N and εnp ≤ 8 kBT, the NP motion becomes Fickian at an
earlier time than the polymer segments do, and it exhibits a
higher diffusivity. This is consistent with τdes being shorter than
τR for εnp ≤ 8 kBT and indicates the dominance of the vehicle
mechanism. The onset of NP Fickian diffusion is shifted to
longer times with increasing εnp as expected from the vehicle
picture. Finally, for εnp = 32 kBT and N ≥ 100 the NP MSD
does not reach the Fickian diffusion regime as τdes and τR are
both longer than the simulated time window.
The competition between the core−shell and vehicle

controlled dynamics can also be studied via the long-time NP
diffusivity, δ= ⟨ ⃗ ⟩

→∞
D r t tlim ( ) /6

t
NP

2 (Figure 5). At a given εnp,

the NP diffusivity monotonically decreases with polymer chain
length for relatively small values of N (≤90) and then
approaches a plateau at larger N. According to section II, the
former is a manifestation of the core−shell dominated regime,
while the latter demonstrates a crossover to the vehicle-
dominated regime. Note that the N-dependence appears to be
the same for N ≤ 30 for all values of εnp, in agreement with our
theoretical argument that Dcore−shell is independent of τdes
(except for the overall slowdown) and consistent with the
vehicle mechanism of transport. The location of the crossover
corresponds to the chain length where the contribution of
Dvehicle starts to exceed that of Dcore−shell. As expected, this
crossover occurs at a larger N value with increasing εnp due to
weakening of the vehicle diffusion mechanism (recall eqs 12
and 13), which then leads to a wider core−shell dominated
window resulting in a stronger apparent N-dependence when
εnp = 8 kBT. As a side comment, the N

−2 scaling of the polymer
CM diffusivity for N > 100 confirms the emergence of
entangled dynamics in the simulated model.14

III.D. Relevant Polymer Dynamics for the Vehicle
Mechanism. We now discuss how NP−polymer attraction
strength and degree of entanglement determine which polymer
dynamical regime is relevant for the vehicle mechanism and its
scaling with τdes (eq 13). As discussed in section II, a
convenient approach to test the theoretical expectation is
offered by eq 15. It motivates our attempt to find an “optimal”
value of the exponent α that leads to a collapse of DNPτdes

1−α at
sufficiently large N. To exclude the obvious leading-order effect
of an overall slowdown of DNP with increasing εnp, a normalized
diffusivity, DNP* ≡ DNP(εnp)/DNP(εnp = 2 kBT), is adopted and
computed at each N.
Results are shown in Figure 6. Interestingly, we see that a

nearly constant effective exponent of α ≈ 0.5, 0.56, and 0.56
leads to a reasonable collapse of our data when N ≥ 200. This
exponent value strongly suggests that the shorter time
unentangled Rouse dynamics is relevant to the vehicle
mechanism despite the presence of entanglements (N/Ne ≈
4.5−9 for N ≥ 200). Such a result is intuitive for εnp = 2 and 4
kBT for which τdes ≪ τe, but a similar trend is also found for εnp

Figure 3. (a) Time correlation function of polymer segment
association (for 8 kBT adsorption energy) defined in the text for
(from bottom to top) N = 10, 30, 90, 200, and 400. Curves are a
stretched exponential fit of the data, QD(t) = Q0 exp[−(t/τdes)β]. (b)
Segmental desorption time (in LJ unit), τdes, as a function of N for
(from bottom to top) εnp = 2, 4, and 8 kBT. The solid curve is the
characteristic Rouse relaxation time of the pure polymer melt from ref
14.
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= 8kBT where τdes ≈ τe and entanglement effects are present.
The slight variation of α for different εnp may be due to
numerical prefactor differences, the chosen normalization
method of DNP, or another second order effect, none of
which qualitatively affects the behavior. Thus, up to a significant

NP−polymer attraction strength of 8 kBT, one can understand
the N-independent NP diffusivity in the entangled regime
solely in terms of the vehicle mechanism controlled by the
unentangled segmental dynamics.

IV. SUMMARY
We have theoretically studied the diffusion of a single attractive
nanoparticle in unentangled and entangled polymer melts

Figure 4. A log−log plot of the mean-squared displacement (MSD) of the NP center-of-mass (red solid curves), free polymer segments (cyan
dashed curves) and adsorbed polymer segments (magenta dotted curves) for four values of NP−polymer attraction. The vertical lines for εnp = 2, 4,
and 8 kBT indicate the respective desorption τdes values.

Figure 5. A log−log plot of center-of-mass diffusion coefficients of
polymer chains (blue and square data points) and nanoparticles (red
to gray circle data points) for different values of N and εnp. The NP
diffusion constant data decrease from top to bottom as the attraction
strength grows. Dashed cyan line represents a quadratic relationship
between N and D.

Figure 6. Normalized NP diffusivity, DNP* ≡ DNP(εnp)/DNP(εnp = 2
kBT), multiplied by τdes

1−α for εnp = 2 kBT (black squares), 4 kBT (red
circles), and 8 kBT (blue triangles) where α is chosen to be 0.50, 0.56,
and 0.56, respectively.
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based on combining the microscopic “core−shell” and “vehicle”
diffusion mechanisms in a dynamic bond percolation theory
framework.27 In this approach, the former mechanism (which
includes hydrodynamic and nonhydrodynamic contributions)
involves NP diffusion when adsorbed chains are dynamically
pinned. In conjunction with standard polymer physics melt
dynamics models28,29 and the SC-GLE theory,19 a physical
picture was constructed for NP diffusivity as a function of chain
length and NP−polymer attraction strength. Thinking of the
problem in terms of a NP with an effectively larger radius due
to an adsorbed polymer layer was argued to be reasonable if the
NP size is sufficiently large compared to the matrix chains and
the polymer segmental desorption time is longer than the NP
diffusion time. The dependence on polymer chain length was
analyzed. The NP diffusivity for smaller NPs shows a
qualitatively different N-dependence, which initially decreases
with N but tends to saturate at large enough N. This behavior is
in analogy with what is found for the diffusivity of small
repulsive NPs in entangled melts,14−19 though for distinct
physical reasons related to the adsorption−desorption process.

The theoretically proposed diffusion mechanisms were
qualitatively tested against simulations where the segmental
desorption time and dynamic MSD’s were calculated. For lower
NP−polymer attraction strengths, τdes < τe and εnp ≤ 4kBT,
vehicle diffusivity is controlled by the unentangled segmental
relaxation. For the higher attraction strength (8 kBT), the
desorption and entanglement time scales are comparable, but
even in the presence of modest entanglement the NP diffusivity
is well captured by the unentangled melt behavior. We do
caution that these conclusions depend on nonuniversal system
parameters per the theoretical analysis of section II. Future
simulations at higher attractions strengths and/or long matrix
chains that reverse the τdes < τe inequality are required to
provide further insight into how entanglement physics affects
NP transport via the vehicle mechanism. Such simulations
require much larger computational resources and are beyond
the scope of the present work; future studies will explore this
direction. Another major open question is how attractive NP
dynamics evolves beyond the infinitely dilute limit where
polymer-mediated bridging of nanoparticles44 will eventually
become important at sufficiently high loadings.
In the companion paper21 we present experimental measure-

ments of the diffusion of an ∼2 nm nanoparticle in a strongly
attractive polymer melt. Measurements for large sticky silica
nanoparticles are also presented. These data are analyzed using
the theoretical concepts discussed here. We find the “core−
shell” mechanism dominates for large silica NPs (R > Rg). More
interestingly, the experiments on small NPs discovered the
theoretically predicted crossover from the “core−shell”
mechanism at small molecular weight to the “vehicle”
mechanism at higher molecular weight. The obtained results
help to formulate a broader scenario for the diffusion of
nanoparticles in a polymer melt or solution.

■ APPENDIX. SIMULATION DATA FOR
MEAN-SQUARE DISPLACEMENTS

The detailed quantitative behavior of the NP, adsorbed
segment, and free segment MSDs discussed in section III can
be more clearly seen on a linear−linear scale. Figure 7 presents
the analogue of Figure 4 in this format.
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