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S1. Determination of Overlap Concentration

The overlap concentration can be determined from the peak in the static correlation length &, obtained from the Zimm plot in
the SLS measurements: "2
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where K = (4n?n?/A§N,)(dn/dc)? is an optical constant (n: refractive index, 1o: wavelength of the incident light, Ny:
Avogadro constant), ¢ is the mass concentration of SDS, R, is the Rayleigh ratio, M,, is the weight average molecular weight,
and q is the scattering vector. The overlap concentration is estimated to be around Cgpg = 0.15 wt% from Fig. S1.
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Figure S1. Static correlation length &, as a function of Cspg obtained from SLS measurements.

S2. Determination of Relaxation Times in DLS

Normalized intensity autocorrelation functions for Cspg below 1 wt% are shown in Fig. S2. At 0.1 wt%, below the overlap
concentration 0.15 wt%, the function exhibits single mode of decorrelation. Above the overlap concentration, a slower mode
appears and its amplitude increases with concentration. For the wormlike micelles in semidilute regime, two main decorrela-
tion modes and one more mode can be found.> We fitted thus the normalized field autocorrelation functions gV (t) with a
three-component stretched exponential function, which is empirically known to fit well the multimodal autocorrelation of
polymer solutions and gels:?
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where A; is the amplitude, 7; is the characteristic time, «; is the stretch exponent related to the polydispersity of the charac-
teristic time. The mode having the smallest characteristic time is taken as fast mode, and the mode having the slowest relaxa-
tion time is taken as slow mode. Between these two larger modes, an intermediate mode with a small amplitude (4 less than
0.1 at most of the concentration and angle) is found. This mode presumably corresponds to the Rouse mode,? however, ex-
perimental precisions do not allow us to further investigate the mode. As an example, the fitting curve for the intensity auto-

correlation g@®(t) — 1 = {g(l)(t)}z for Cgpg = 6 Wt% found in Fig. 1a is shown in Fig.S3.
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Figure S2. Normalized intensity autocorrelation function g® (t) of SDS/AI(NOs)s aqueous solutions
at different SDS concentrations. Scattering angle: 90°.
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Figure S3. Normalized intensity autocorrelation function g® (t) of SDS/AI(NO:s)s aqueous solutions at Cspg = 6 Wt%.
Solid curve shows the fitting curve with the multicomponent stretched exponential function. Scattering angle: 90°.



S3. Supporting Figures
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Figure S4. (a) 1/7¢ and (b) 1/7, as functions of g2. In (a), the slope represents
the collective diffusion coefficient D.
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Figure S5. Viscoelastic moduli and complex viscosity obtained from oscillatory shear macrorheology.
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Figure S6. Polymer contribution to complex modulus obtained by DWS microrheology and macrorheology.
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Figure S7. Polymer contribution to complex modulus obtained from (a) DWS and (b) DLS measurements.
Dashed lines serve as visual guides for the Zimm mode (5/9 power law) and the bending mode (3/4 power law).
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Figure S8. Zimm plots from static light scattering measurements of SDS/A1(NO3)3 solutions.
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