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ABSTRACT: We investigate the swelling of polymer model
networks prepared at different polymer volume fractions and in
solvents of different quality. We extend the existing theory to
describe residual bond orientations (the vector and the tensor
order parameters) for theta, good, and athermal solvents and put
these relations in context with modulus at preparation conditions
and the equilibrium degree of swelling. We find good agreement
with the assumption of affine swelling for the weakly entangled
networks of our study. The same scaling relations (up to numerical
coefficients) are obtained for the vector order parameter, m, and
the tensor order parameter, S, as a function of the preparation
conditions, network structure, the equilibrium degree of swelling,
Q, and the modulus at swelling equilibrium, G. We obtain m ∝ Q−2

and G ∝ m3/2 for swelling in theta solvents and m ∝ Q−1.08 with G ∝ m2.14 in the good-solvent regime, in both cases independent of
preparation conditions. Modulus and residual bond orientation are related by G ∝ ϕ0m and G ∝ ϕ0

1.23m as a function of the
preparation polymer volume fraction ϕ0 for theta solvents and good solvents, respectively. Computer simulations and experimental
data for the good-solvent regime show good agreement with the predictions.

1. INTRODUCTION
Polymer gels consist of a network structure establishing the
elasticity of the gel and a solvent that can be used to adjust the
volume, and thus material properties like the modulus or the
permeability of the gel. Adding solvents is often advantageous
for synthesis and it allows optimization of the material properties
in a particular application that can be as diverse as sustainable
energy storage, water resource management, responsive
materials, filters, or contact lenses,1,2 to provide just some
examples.

Despite almost a century of academic research on rubber
elasticity and the swelling of polymer networks, several key
features of these materials are still not completely understood.
For instance, widely accepted models for the swelling process of
homogeneous networks are built upon the assumption of an
affine deformation of the network strands.3−5 However,
simulation studies have not confirmed an affine deformation
process on the scale of individual network strands.6,7 From a
theoretical point of view, it was proposed that a crossover in the
swelling of network strands occurs from a subaffine swelling
below the “affine length”8 to an affine swelling on large scales. It
was also argued that subaffine swelling on short scales requires a
des-interspersion of network strands (a reduction of the overlap

number of the polymer strands). In fact, such a process was
necessary to describe the equilibrium swelling of Olympic gels.9

The most direct way to analyze the microscopic processes
during swelling is to monitor this process by computer
simulations. Preceding simulation results on the affinity of
swelling are difficult to interpret, since the analysis focused on
instantaneous conformations6,7 instead of time-averaged con-
formations. Only the latter deform affinely within the classical
models of rubber elasticity.10 The long-time mean-square
displacements (MSD) of the monomers around these positions
are expected to grow during swelling in nonentangled systems
with the same scaling as the size of the elastic chains in a solution
at the same polymer concentration.8 For entangled systems, it is
expected that the virtual chains characterizing the topological
constraints deform affinely and thus, release much of the
entanglement constraints on the chains and network junctions
upon swelling.11 Therefore, it is quite interesting to analyze
chain conformations and the dynamics of the cross-links in the
swollen state. To the best of our knowledge, a detailed
simulation study providing these details of the swelling process

Received: March 22, 2022
Revised: May 3, 2022
Published: July 15, 2022

Articlepubs.acs.org/Macromolecules

© 2022 The Authors. Published by
American Chemical Society

5997
https://doi.org/10.1021/acs.macromol.2c00589

Macromolecules 2022, 55, 5997−6014

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

IN
C

IN
N

A
T

I 
on

 F
eb

ru
ar

y 
29

, 2
02

4 
at

 0
1:

57
:0

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Lang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Reinhard+Scholz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lucas+Lo%CC%88ser"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carolin+Bunk"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nora+Fribiczer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Seiffert"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Bo%CC%88hme"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Bo%CC%88hme"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kay+Saalwa%CC%88chter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.2c00589&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c00589?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c00589?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c00589?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.2c00589?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/mamobx/55/14?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.macromol.2c00589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/toc/mamobx/55/14?ref=pdf


for a broad range of different networks is not at hand. Even for
the preparation state, such information is hard to find and does
not cover a broad range of preparation conditions.12 One
remarkable result of that work was that the MSD of the cross-
links connected by mildly entangled chains were more than 1
order of magnitude smaller than the mean-square end-to-end
distances of the chains. These unexpectedly small cross-link
displacements were confirmed in later works13−15 and discussed
in some more detail in ref 16.

Experimental data provides mainly indirect evidence on the
microscopic processes related to swelling, and it is sometimes
hard to interpret. For instance, it was found that the
entanglement contribution to the modulus should vanish at a
nonzero polymer concentration,17 while it vanishes at zero
concentrations using a different analysis.18 Moreover, the
formation of network defects and cyclic structures is a function
of the overlap of the chains.19,20 Therefore, corrections are
necessary21 to discuss the dependence on the polymer volume
fraction at preparation, ϕ0, which were developed recently22,23

and are still under debate.24

This complex situation can be simplified when using a
heterocomplementary coupling of star polymers that suppresses
the formation of cyclic structures made of an odd number of
elastic strands. This procedure was developed in ref 25 and it
strongly increases the stability of the networks in the vicinity of
the overlap concentration26 while minimizing the corrections to
modulus arising from finite loops27 or other network defects.
Yet, this architecture offers another possibility: the residual bond
orientation of the smallest elastically active cyclic structure in the
network differs significantly from all other elastically active
strands.20 This provides an experimental access to quantify loop
defects in networks. We correct the theoretical discussion of
preceding work28 and derive a full set of relations for different
solvent quality and as a function of ϕ0. These relations allow to
connect with the properties of the dry sample, the fully swollen
state, or samples swollen to equilibrium in solvents of different
quality. The key predictions of theory are the residual
orientations of the chain segments in the networks, which
reflect either a long time average of the orientation vector of
chain segments (the vector order parameter m) or of the
orientation tensor (the tensor order parameter S) in case of a
nondirected orientation. These order parameters range from
zero for nonoriented segments to an upper bound (unity for m
and 3/5 for S) that refers to static segments that cannot move. In
the absence of entanglements, the residual orientation inside
polymer networks is mainly a measure of the force acting on the
chain segments with some corrections related to conforma-
tions.15 In entangled networks, the mobility of the chain
segments plays a vital role and modifies the scaling of the
residual orientations.15 Our predictions are tested with
computer simulations covering mainly the nonentangled good-
solvent limit. Additional experimental data were collected at
preparation conditions and at swelling equilibrium for a set of
networks made of two batches of star polymers that were
coupled using the heterocomplementary amine-oxazinone
reaction as described earlier29,30 for Sakai’s heterocomplemen-
tary coupling scheme. These data are also compared with the
model predictions.

This work is structured as follows. In Section 2, we briefly
describe the simulation method, the samples, and the data
analysis. Further details on data analysis can be found in the
Appendix. In Section 3, we analyze to what extent swelling refers
to an affine displacement of the cross-link positions. Section 4

deals with the elastic properties and the residual bond
orientations in the preparation state. We develop the theory
and compare with data from simulations and experiment.
Section 5 discusses equilibrium swelling and residual bond
orientations in the swollen state. Here, we present simulation
and experimental data in comparison with scaling predictions for
bond orientations and the degree of swelling. A detailed
derivation of all scaling predictions of this section can be found
in the Appendix along with scaling predictions of the bond
orientation in deswollen networks. All results are put into a
broader context in Section 6, with the key findings summarized
at the end of this work.

2. SIMULATIONS, EXPERIMENTS, AND DATA
ANALYSIS
2.1. Simulations. Simulations are performed with the bond

fluctuation model (BFM)31,32 in the framework of LeMon-
ADE33,34 on graphical processing units (GPU). The BFM is
suitable for the coarse-grained simulations of a broad variety of
systems like melts, solutions, hyper-branched molecules,
brushes, and other problems of polymer physics.35−38 Since
this method is very efficient, it was frequently used to model
polymer networks and their swelling.7,39−41

In the BFM, a monomer is modeled by cubes occupying 8
adjacent lattice sites of a simple cubic lattice. A coarse grained
polymer is established by monomers connected through bonds
which comply with a set of 108 bond vectors. Within one Monte
Carlo-Step (MCS), it is attempted to move each monomer to
one of the six nearest neighboring positions on the lattice under
the constraints of the excluded volume of other monomers and
the set of allowed bond vectors to the connected monomers.
Polymers are either entangled or not, depending on the choice of
the bond vectors32,42 for moves along the lattice directions. We
have chosen the same bond vector set as in preceding work43 in
order to model entangled polymers. Empty lattice sites serve as
an implicit a-thermal solvent. Boundary conditions were set to
nonperiodic to allow subsequent swelling of the networks by
placing the samples in a larger simulation container.

We created solutions of star polymers at concentrations
varying by more than 1 order of magnitude from below the
overlap volume fraction ϕ* up to melt conditions. For our
simulation model, these are reached30,32 at ϕ ≳ 0.4 and a volume
fraction of ϕ = 0.5 was considered previously as “standard” to
simulate “melts”.44−46

After insertion of the star polymers, the samples were relaxed
over 107 Monte Carlo Steps (MCS). For obtaining a rough idea
of polymer relaxation times in units of MCS, we mention that
chains with N = 82 segments relax faster than 106 MCS at the
largest densities studied, see for example ref 47. The degrees of
polymerization of the two batches of star polymers were chosen
to be roughly comparable to the recent experiments30 and to
preceding works on tetra-PEG networks.20,25 We use a
heterocomplementary coupling between the two batches of
stars25 at stoichiometric conditions to eliminate the formation of
pending loops.20,26 When connected, the number of chain
segments between two star centers, N, reaches values of N = 23,
43, and 82 (number of monomers between star centers is N −
1). All M stars carry four arms, f = 4, and all systems are reacted
up to a conversion of exactly p = 0.95 using the same algorithm
as described in ref 27. The advantage of this procedure is that
corrections regarding conversion and kinetics cancel for
analyzing the simulation data.48 Enforcing constant p leads to
somewhat different trends with respect to the experiments.
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There, reactions are usually carried out over similar time spans,
tending to lower conversions at lower concentrations. The
parameters and key results of all simulations are summarized in
Table 1.

Swelling simulations on a lattice are almost impossible when
using period boundary conditions, since one would have to
introduce additional lattice layers inside the network to enlarge
the volume. The addition of extra lattice layers leads to bonds
outside of the fixed bond vector set of the simulation model
causing the chains to break. In order to avoid such problems, for
each line of Table 1, a network was prepared in nonperiodic
boundaries. After cross-linking, these networks were relaxed
over 2.5 × 109 MCS and a snapshot of the conformations was
taken every 106 MCS for all samples in a box with L = 256. For
the samples in boxes L = 512, we collected data over 108 MCS in
intervals of 105 MCS. In a subsequent step of the simulations, all
networks were placed into a larger simulation container and
swollen to equilibrium within the 108 MCS of this run. In
equilibrium, we repeated the analysis with the same time
window and frequency as in the preparation state.
2.2. Data Analysis. Regarding notation, we distinguish

between preparation state, reference state (a polymer solution at
the same polymer volume fraction ϕ), dry state (ϕ = 1), and
equilibrium swelling. Variables or observables in these states are
distinguished by an index “0”, “ref”, and “dry”, respectively, while
the equilibrium state carries no index. Thus, ϕ0 is the polymer
volume fraction at preparation, Rref is the reference chain size of a
polymer in a solution with same volume fraction as the
equilibrium ϕ, Gdry is the modulus in the dry state, whereas m0 is
the vector order parameter at preparation conditions.
Alternatively, the vector order parameter is called the “residual
bond orientation” or simply “order parameter” in literature, thus
also in this work. The key variables to characterize the networks
are the average number of segments between two network
junctions, N, the junction functionality, f, and the effective
polymer volume fraction at preparation, ϕ1 (see below for
distinction between ϕ0 and ϕ1). Further examples to explain the
notation are given in the caption of Table 1.

The weight fraction of sol, wsol, is computed as the weight
fraction of all clusters except for the largest one. The weight
fraction of the elastically active material, wact, is determined using
the definition of Scanlan and Case.49,50 For the full sample, we
determine the fractions of stars with exactly 4 connections to 4
different stars, I4, and the stars with exactly one double link to the
same partner and two connections to two other stars, I2R2, see
ref 26 for more details. These two species dominate the different
types of connectivity among the star polymers for a broad range
of concentrations,26 see Table 1. Both can be quantified with a
special proton NMR technique, that is, proton multiple-
quantum (MQ) NMR.20

In our analysis of chain conformations, we focus on active
chains I that are not part of a double or a multiple link (“ideal
connections”). Sample averages over all chains show systematic
shifts due to the increasing fraction of R2 with increasing
dilution. The ensemble average chain size is computed as R2,
time-averaged square size of individual chains (averaged over
the sample in a second step) are denoted as ⟨R⟩2, and the time-
averaged MSD of the active cross-links around their time-
averaged position is given as δR2. All sizes are normalized by the
particular mean-square size of a bond in the simulation
container, b0 or b, to cancel the concentration dependence of
the bond length.

The average residual bond orientation is extrapolated toward
infinite time as described in ref 51, see also the Appendix. Similar
to preceding work,20,27 we provide data for the vector order
parameter m averaged over all segments, for the “ideal”
connections (strand is the only connection between a pair of
stars) inside the active material, m(I), and for all “double links”,
m(R2), (two connections between the same pair of stars) inside
the network. Table 1 contains all data for preparation state and
equilibrium swelling, respectively.

The hard boundaries of the simulation container lead to a
drop of the concentration of the polymer solution in its vicinity.
The polymer volume fraction is near zero directly at the
boundary and increases within a correlation length ξ to an
effective average polymer volume fraction ϕ1 > ϕ0. Therefore,
we have used the same algorithm for determining Q (described
in the Appendix) also for the samples in the preparation
container to compute the effective polymer volume fraction
during the cross-linking process, ϕ1. The Appendix shows one
example for this analysis.
2.3. Experiments. In parallel to the simulations, we

conducted several experiments described in detail in a second
paper.30 In brief, two batches of star polymers (oxazinone-
terminated tetra-arm star poly(ε-caprolactone) and amino-
terminated tetra-arm poly(ethylene glycol)) were synthesized
and reacted in a heterocomplementary fashion at different
concentrations in different cosolvents (tetrahydrofuran, toluene,
and chloroform) using the coupling mechanism described in ref
29. As shown in ref 30, these networks develop near model
character similar to the tetra-PEG approach proposed originally
by Sakai25 and an equilibrium swelling behavior that is
equivalent to homopolymers, if a good cosolvent for both
polymers is used.

In the present work, we combine data from ref 30 and
additional measurements to check the key results of our scaling
discussion. Rheological measurements were performed on an
Anton Paar modular compact rheometer of type MCR 302
(Anton Paar, Graz, Austria) equipped with a plate−plate
geometry of type PP25 with a plate diameter of 25 mm. A
Peltier plate was used to control the temperature and a solvent
trap was used to prevent evaporation of the solvent. Gels were
prepared from homogenized equimolar mixtures of stock
solutions of both functionalized star polymers in a mold fitting
exactly the dimension of the probe geometry. The mixture was
allowed to react overnight at room temperature. Frequency
sweeps were carried out at a shear strain of γ = 0.01 with
frequencies in the range of ω = 0.5−100 rad s−1. The equilibrium
degree of swelling of the gels used for rheology and of additional
samples was measured gravimetrically and converted into a
volume swelling degree. Residual bond orientations were
derived from proton MQ NMR experiments using the Baum-
Pines sequence,52 and performed on a Bruker MiniSpec mq20.
Samples were measured in the preparation state and at swelling
equilibrium with swelling directly from the preparation state.
The data was evaluated using the 3 component-model published
by Lange et al.20 combined with a grid-search-based
optimization method for the actual process of fitting the data,
whose application on MQ data is described in ref 30. Results of
this approach are estimates for the component fractions of ideal
connections and I2R2, and the residual dipolar coupling among
the protons.
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3. IS SWELLING AN AFFINE PROCESS?
One important feature of the affine53,54 and the phantom
model55,56 of rubber elasticity is that the time-averaged positions
of all network junctions deform affinely with the sample
geometry. For isotropic swelling, the macroscopic deformation
factor λ is related to the volume changes upon swelling

= =V
V0

1/3
0

1/3i
k
jjjjj

y
{
zzzzz

i
k
jjjj

y
{
zzzz

(1)

between preparation at ϕ0 and measurement at an arbitrary
volume fraction ϕ. Here, V is the sample volume at swelling
equilibrium and V0 the sample volume at preparation conditions.
The volume of the dry sample, Vdry is used to define the
equilibrium degree of swelling

=Q
V

Vdry (2)

The local deformation of individual network chains is affine
within the affine or phantom model, thus,

=R R0 (3)

In the following, Ne is the degree of polymerization of an
entangled strand. Many models on entangled networks assume
that the virtual chains describing topological constraints deform
affinely with the sample deformation (for instance, the
constrained junction model,57,58 the nonaffine tube mod-
els,11,59−61 or the slip-tube model62). In consequence, the
effective tube diameter, a, deforms nonaffinely11

a bNe
1/2 1/2 (4)

leading to the prediction of a rather weak concentration
dependence of the tube diameter in networks upon swelling11

a ( / )0
1/6

(5)

We drop coefficients of order unity for scaling relations, which is
expressed by using “ ≈ ” instead of “=” in the corresponding
equations. Entangled solutions develop a much stronger
dependence of the tube diameter on the polymer volume
fraction, since the chains in the solution can fully adjust
conformations to the interactions with the solvent, while the
entanglement constraints in a network are fixed at preparation
conditions.63

We analyze the affinity of the swelling process for the
innermost 50% of all chains by focusing on the deformation of
the “ideal connections” between active network junctions. This
restriction allows for a simpler analysis as compared to using all
active chains: in the latter case, the different number fraction of
I2R2 as a function of the overlap of the star polymers leads to an
additional drift of the average chain size as a function of ϕ0.
Affinity of the swelling process is checked by dividing the
“microscopic” change in volume per chain, ⟨R⟩3/⟨R0⟩3, (based
upon the time-averaged chain sizes) with the macroscopic
volume change Qϕ0, see Figure 1. We performed this analysis
considering either ϕ0 or ϕ1 as polymer volume fraction at
preparation.

Subaffine, ϕ0Q ⟨R⟩3/⟨R0⟩3 < 1, or affine deformations, ϕ0Q
⟨R⟩3/⟨R0⟩3 = 1 on the microscopic scale are expected from
theoretical arguments for entangled and nonentangled samples,
respectively, while superaffine swelling is a nonphysical process
(chains would stretch locally more than necessary to swell the
sample to swelling degree Q). Using ϕ0 for the polymer volume

fraction produces such nonphysical results. Plotting the data
with ϕ1 provides a transition from an affine swelling near the
overlap polymer volume fraction where entanglements are least
important to a weakly subaffine swelling process for large overlap
numbers where all data remains near ϕ0Q ⟨R⟩3/⟨R0⟩3 = 1 or
below. According to Figure 1, roughly 90% of the volume change
can be explained by an affine deformation of the time-averaged
network strands. The change in the time-averaged chain size
agrees with the affine prediction within 5% for all samples of our
study. Therefore, in the remainder of this work, we assume that
swelling of weakly entangled networks (as in our study) is an
affine process to a very good approximation. Moreover, we keep
on using ϕ0 to denote preparation conditions in all equations to
stay consistent with literature notation. However, for all plots we
use ϕ1 instead of ϕ0 in order to avoid nonphysical results. The
error of the simulation data is typically comparable to the symbol
size or smaller with one exception. This is visible in a rather low
scatter of the data sets all plots where collapse of the data on a
universal curve is observed. All figures with simulation data
contain two samples per N with almost identical ϕ1 that differ by
a factor of 8 in volume at preparation conditions. The typical
situation is that the two data points corresponding to this pair of
systems are overlapping indicating only minor finite size
corrections.

Before we proceed, we first check to which extent the
networks of our study qualify as “ideal” reference systems. To
put all data on a universal scale regarding connectivity, we
introduce the overlap polymer volume fraction ϕ*. For networks
connected by junctions with a low functionality f, in the spirit of
De Gennes work,64 ϕ* can be estimated by the overlap
condition of the network strands

* N
v
v
K

6 3
1 3i

k
jjj y

{
zzz (6)

Here, v is the excluded volume parameter characterizing the
quality of the solvent, vK is the volume of a Kuhn segment, and ν
is the Flory exponent with65 ν ≈ 0.5876. For our simulation

Figure 1. Test of affine microscopic deformations using time-averaged
chain conformations in the preparation state, ⟨R0⟩ and at swelling
equilibrium, ⟨R⟩. Open symbols show analysis based upon ϕ0, which is
the nominal polymer volume fraction in the total simulation box. Full
symbols show analysis based upon ϕ1, which is the polymer volume
fraction in the inner part of the container as determined by the
algorithm that analyzes the polymer volume fraction of swollen samples,
see Appendix A for more details. The dashed line indicates affine
deformations. Data below this line refers to subaffine deformation on
the scale of individual network strands, data above this line refers to a
nonphysical superaffine behavior.
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model, there is30 v/vK ≈ 0.39 and (vK/ v)6ν−3 ≈ 1.64. Thus, the
x-axis in Figure 2 corresponds roughly to the overlap number of

the elastic strands at preparation conditions, ϕ1/ϕ*. The
collapse of the data demonstrates that networks with the same
overlap at preparation conditions develop an equivalent
structure. wact is nearly constant for ϕN3ν−1 > 1. We expect a
similar trend for experimental data if the conversion is very high,
p ≈ 1, and nearly constant as in our case. Since wact is
approximately constant for ϕN3ν−1 > 1, the cycle rank per chain
as a first order estimate of the elastic contribution per network
chain is also nearly constant. The weight fraction of the stars in
I2R2 connectivity is becoming significant around and below the
overlap threshold, see Figure 2 also regarding a sketch of the I2R2
and the I4 connectivity. Recall that small loops like R2 reduce the
modulus and increase the MSD of the cross-links.23 A
measurable drop of modulus and an increase of junction
fluctuations around the overlap volume fraction is expected
based upon these predictions for decreasing ϕ. Data at large
overlap numbers are less affected by these corrections. Notably,
I4 and I2R2 establish more than 80% of all stars in the systems
with ϕ1N3ν−1 > 1. This qualifies these networks for a quantitative
analysis of these structures via NMR. Altogether, the networks
are nearly ideal, in particular at large overlap of the stars, and we
expect only small corrections for the phantom contribution to
modulus and the junction fluctuations becoming more
significant when approaching the overlap threshold.

The second fundamental aspect that we address is the way
how the tube confinement changes upon swelling. For this
analysis, we focus on the MSD of the network junctions. These
are confined by entanglements and the constraints arising from
the phantom modulus. For the entanglement constraints at
preparation condition we assume66,67

=N N( ) ( 1)e e 0
4/3

(7)

For simplification, here, we have written down only the scaling in
theta solvents, since the exponent for good solvents is almost
identical numerically.63 For an f-functional junction within an
ideal phantom model network (no finite loops), network
constraints are modeled by f virtual strands containing K = ( f −
1)N/( f − 2) segments each.23,63 We assume that the

connectivity of the system does not change much with dilution
as we have enforced p = 0.95 for our simulations, and wact is
nearly constant for the systems of interest with ϕ1N3ν−1 > 1.
Thus, to first order, K is constant. Cross-link MSDs increase with
dilution predominantly through a swelling of the network
chains, as described by the change of the reference size of the
same chain in a polymer solution at ϕ0,63
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where
** v

vK (9)

is the crossover concentration between the concentrated regime,
ϕ0 > ϕ**, and the semidilute good-solvent regime, ϕ** > ϕ0 >
ϕ*. For our simulation model, we have30,32 ϕ** ≈ 0.39, thus all
of our networks were prepared in the good-solvent regime. The
cross-link confinement, b0

2/δR0
2, is the inverse of the cross-link

MSDs. For this confinement, we adapt preceding work16 in a
simplified form. We consider that the virtual chains representing
the surrounding phantom network and the entanglements are
independent and can be superimposed to establish the measured
net confinement

+
=

b
R

f f

f N

f

N

( 2)

( 1) 2 ( 0.5)
0
2

0
2

0
0.23

0

c 0 (10)

The first term refers to the swelling of the chains that enlarges
cross-link displacements. The second term considers that the
tube confinement of f/2 infinitely long chains is superimposed at
an f-functional network junction,16 where Nc(ϕ0 = 0.5) is the
extrapolated entanglement constraint for “melt” conditions as in
preceding simulations,16 and the ϕ0

α term with an expected63,66

exponent of α ≈ 1/(3ν − 1) ≈ 1.31 explicitly models the
concentration dependence of this constraint.

Preceding work16 used a more complex form of eq 10 based
upon a recursion in order to consider also the entanglement
constraints acting on the next generations of attached network
junctions. For simplicity, here we have omitted these details.
Omitting the recursion leads to a small overestimation for Nc(ϕ0
= 0.5) when using Nc(ϕ0 = 0.5) as an adjustable parameter.
Recall that Nc describes the tube confining potential15,16 and not
the entanglement degree of polymerization. The coefficient
connecting Ne and Nc depends on the particular model for
entangled polymers and must not be unity, see for example refs
8,16,59.

To reduce the number of adjustable parameters, we use the
average number of elastically active branches per junction as the
effective junction functionality of the networks at long times.
This quantity is nearly constant for ϕ0N3ν−1 ≳ 1 and corresponds
roughly to f ≈ 4wact ≈ 3.68 for the corresponding samples. Figure
3 shows a reasonable agreement between the simulation data
and eq 10 in the light of the approximations employed. For
testing the exponent α, we have fitted the data for N = 82 using
Nc(ϕ0 = 0.5) and α as adjustable parameters providing Nc(ϕ0 =
0.5) = 19.4 ± 0.8 and α = 1.35 ± 0.07. The exponent agrees with
the theoretical prediction α ≈ 1.31 within the error bar. Our
result for Nc exceeds the result of the preceding analysis16 only
by about 20%, mainly due to omitting the recursion and since we
used average data for chains between arbitrary star centers inside
the elastically active material instead of focusing on connections

Figure 2. Squares show the weight fraction of the elastically active
material, wact, the circles display the weight fraction of star polymers
with 4 connections to 4 different stars, I4, and the triangles are the
weight fraction of stars that participate in a smallest loop, I2R2. The
corresponding connectivities are also sketched in the Figure, where the
red dots are connections to other molecules and the gray lines indicate
the continuation of the structure in the network.
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between active junctions with four active connections. The
assumption of a roughly constant N to model the phantom
contribution breaks down in the vicinity of ϕ*, leading to a
reduced junction confinement. In the simulation data in Figure
3, this is at the point (roughly at ϕ0N3ν−1 ≈ 1) where the data
start to depart from the predicted behavior.

The expected change in the cross-link MSDs upon swelling is
rather small. For the entanglement constraints, one expects a
change of order (ϕ0Q)1/6, see eq 4, while the constraints arising
from network connectivity (phantom modulus) grow ∝
(ϕ0Q)0.23, see eqs 8 and 10. Altogether, a growth with an
effective power in the range of 0.2 is expected. Indeed, our data
in Figure 4 fit a power-law with a slightly larger exponent. This

deviation is caused by the larger MSDs of the cross-links near the
sample boundary: their impact propagates inward and is more
pronounced in the set of samples that was prepared in the
smaller box (the transition between both data sets is clearly
visible by the vertical jump of the data for a given N at nearly the
same ϕ0). Therefore, the result for the exponent β in Figure 4 is
an upper bound for the true change in the cross-link MSDs upon
swelling. Thus, the swelling of the MSDs of cross-links is
subaffine, β < 1/3, as expected theoretically.

Altogether, our results demonstrate that swelling of weakly
entangled networks is well approximated by an affine
deformation process. In section 5, we use this observation to

derive scaling relations connecting preparation conditions with
the swollen state.

4. PREPARATION CONDITIONS
Let us consider model networks with a monodisperse
distribution of the molar mass between the network junctions
at a high conversion p ≈ 1. As most polymers have no director
along the chain segments, experimental NMR data is typically
analyzed using the residual dipolar coupling that is proportional
to the tensor order parameter S. The tensor order parameter is
given by

= [ ]S
1
2

(3 cos 1)2
(11)

Here, θ is the angle between R and the instantaneous orientation
of a chain segment, ⟨···⟩ denotes a time average of all
conformations of a single chain, while [···] denotes a sample
average. The computation of scaling relations for the tensor
order parameter is based upon28
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that we present here in a simplified form ignoring corrections to
scaling. β0 is a constant that depends on the scaling of chain
conformations, and b is the root-mean-square size of a Kuhn
segment. There is β0 = 3 for ideal chains with ν = 1/2. For
isolated chains, the term in the [···] brackets is proportional to
the force acting on the chain. In ref 28 eq 12 was tested explicitly
with computer simulation data for swollen chains in the
stretching limit, ⟨R⟩ > bNν, where the tension blobs become
smaller than the size of the swollen coil. For smaller
deformations, ⟨R⟩ < bNν, the deformation behavior of the
chains is linear with the force.68,69 This latter regime refers to the
situation where the tension blob size surpasses the chain size (for
single chain deformation) and thus, the correlation length of the
chain.

For nearly ideal polymer networks (or gels), the network
defects establish only the minority of the network volume. In
such systems, the correlation length (the length scale of excluded
volume repulsion) cannot significantly exceed the size of a
tension blob (the length scale of the elastic restoring forces).
Both are essentially equivalent at swelling equilibrium5 whereby
the correlation length decreases while the tension blobs grow
upon drying the sample.63 Both preparation state and
equilibrium swelling refer, therefore, to the weak deformation
limit with a linear relation between force and time-averaged size
of the chains (the exponent inside the square brackets of eq 12 is
unity). This was first demonstrated in ref 70 where it was found
that S ∝ R2/N2.

The vector order parameter m of a given Kuhn segment in a
polymer is given by the time-averaged orientation of this bond
vector. In the absence of entanglements and excluded volume
interactions, one obtains15,71

=
R

m
b N

el
2

2
el
2 (13)

Here, Rel is the end-to-end vector of an elastic chain with Nel
segments. Combining this with eq 12, we obtain

S m
3
5 (14)

Figure 3. Inverse cross-link MSDs (Symbols). Data for N = 82 was fit
with eq 10 providing Nc(ϕ0 = 0.5) = 19.4 ± 0.8 and α = 1.35 ± 0.07.
These parameters were kept fixed to plot the theoretical lines for N < 82.

Figure 4. Ratio between the cross-link MSDs at swelling equilibrium
and at preparation conditions. The continuous line is a fit using (ϕ1Q)β

with β ≈ 0.25 ± 0.01, the dashed lines shows (ϕ1Q)1/6 for comparison.
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up to numerical corrections for scaling. We expect that this
equation holds for nearly ideal networks in the preparation state
and at swelling equilibrium since the tension blobs remain larger
or equal to the correlation length as discussed above. As the
vector order parameter m is simpler to compute, we focus on
expressions for m in our discussion below.

The modulus of a sample determines the volume that stores
an elastic energy equivalent to the thermal energy kBT, where kB
is the Boltzmann constant and T the absolute temperature. In
practice, this volume is converted into an effective elastic strand
containing Nel Kuhn segments by use of the affine network
model prediction for modulus

=G
k T

Nv0
B

K el
0 (15)

Within the framework of the affine network model, one
identifies a network strand with an elastic contribution of kBT,
that is Nel = N, whereby the chain ends are considered to be fixed
in space. In the phantom network model, the restrictions for the
network junctions arise from network connectivity, with
corrections mainly related to the conformation in which the
chain is linked to the network.24 For our scaling analysis below,
we skip these details as long as they concern only the coefficient
relating the phantom modulus prediction with the affine model
prediction. Significant corrections to scaling may arise for large
amounts of inactive material, see section “swelling equilibrium”
in ref 72, since network defects contribute to the osmotic
pressure but not to modulus. As a benchmark for mapping the
phantom model onto the affine model, we quote here only the
result for perfect networks without finite loops where all
junctions have exactly f connections to other junctions:

=N
f

f
N

2el
(16)

For entangled networks, the elastic strand is the number of
segments contributing kBT to modulus. It is expected that the
deformation of the network strands turns into an affine
deformation for chain sections containing Nel segments.8 Recall
also that our analysis has shown that swelling is well
approximated by an affine deformation of the elastic strands.
Therefore, we simply consider strands of Nel segments as basic
elastic units of the network, and we assume that deformation on
the length scale of these strands is affine. Below, we keep in mind
that Nel ≠ N and depends on the model of rubber elasticity. This
is expressed in the equations by using Nel instead of N where
appropriate.

At preparation conditions, the ensemble average end-to-end
distance of a network strand is a function of the solvent quality
and the polymer volume fraction. Approximately ideal chain
conformations

R bN0
1/2 (17)

independent of ϕ0 are observed within the concentrated regime
covering polymer volume fractions ϕ > ϕ**. Within the good-
solvent regime, ϕ* < ϕ0 < ϕ**, the chain size is a function of the
polymer volume fraction,64
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When averaging m in eq 13 over a large ensemble of chains
with end-to-end distances Rel with approximately random walk
statistics, one obtains for the concentrated regime, ϕ0 > ϕ**,
that

[ ]R b N0
2 2

el (19)

Combining this average with eq 13 leads to

m
N
1

0
el (20)

Thus, at preparation conditions ϕ0 > ϕ**, modulus and the
order parameter are related by

G
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m
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K
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Note that the corrections to the scaling of chain conformations
lead here also to a coefficient of order unity connecting the
modulus with the order parameter.15

In the semidilute regime, ϕ* < ϕ0 < ϕ**, we expect an order
parameter of

[ ]

**

R
m

b N

N Nv
v

0
0

2

2
el
2

K 0

(2 1)/(3 1)

el
1 0

0.23

el
1

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

(22)

related to modulus at preparation conditions via a slightly
stronger dependence on ϕ0,
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The equations above define the basic relations between
modulus, order parameter, and the preparation conditions that
can be tested by computer simulations and in experiments.
Indeed, a weak negative power-law for the concentration
dependence of the order parameter m0 is found in the
simulations at intermediate concentrations, see Figure 5. The
absolute of the exponent is smaller than predicted due to
corrections in modulus, which grow weakly with the number
fraction of I2R2 in the system, as discussed in the preceding
section. The point ϕ0N3ν−1 ≈ 1 is roughly at the place where the
data drop from this power-law toward small ϕ0, whereas for the
largest ϕ0, there is either the predicted saturation of m0 visible for
ϕ0 ≳ ϕ** or even a small increase, indicating the onset of
entanglement effects on the residual bond orientations.

For experimental data, we expect further corrections to the
behavior observed in Figure 5. As discussed in the preceding
sections, we expect that conversion of the reactive groups grows
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weakly with ϕ0. Together with a reduction of R2I2 and an
increase of I4 for growing ϕ0, this leads to a modulus that grows
faster than ∝ ϕ even in the absence of a dominating contribution
of entanglements. In fact, experimental studies73 find that
moduli of the corresponding tetra-PEG gels grow with an
apparent power of approximately 1.3 as a function of ϕ0
somewhat above the overlap concentration. Our rheology data
in Figure 6 for a similar concentration range (c* is here around

60 g/L) fits to an exponent of 1.22 ± 0.05, in good agreement
with ref 73. This turns the predicted weak negative power of
−0.23 for the residual bond orientation effectively into a nearly
constant or weakly increasing behavior. In fact, a small positive
power of 0.07 was found in literature20 for ideal connections
(“single links”) inside tetra PEG gels.

We have analyzed the residual dipolar coupling, Dres, with
MQ-NMR for two sets of experiments that refer to different
preparation conditions in the concentration range, see Figure 7.
Analysis and sample preparation are described in detail in ref 30.
Note that Dres is proportional to the tensor and the vector order
parameter.71,74 The data carry a significant error, but fit best to a
concentration independent behavior. Altogether, these obser-
vations support eq 23 for the good-solvent regime.

Finally, the samples with the largest N at the largest ϕ0 in
Figure 5 show a weak deviation toward larger residual bond

orientations, which we attribute to the onset of entanglement
effects. For entangled systems, it is expected15,75 that m ∝
(NNe)‑1/2, where Ne is the entanglement degree of polymer-
ization (in numbers of Kuhn segments) in a melt of long chains
of the same polymer. This scaling is derived using the “return-to-
origin hypothesis”.76 Ne is expected to grow with dilution ∝
ϕ−4/3 in the concentrated regime and ∝ ϕ−1/(3ν−1) in the
semidilute regime.63 Therefore, we expect
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is our expectation for the entangled semidilute regime. Note that
N instead of Nel must be used here, since the N-dependence of m
arises from the longitudinal motion of the chain segments along
the confining tube.

Altogether, the available experimental data and our
simulations support the proposed scaling model of residual
bond orientations in the preparation state. The residual bond
orientation is proportional to modulus, G ∝ m, with G ∝ ϕ0 and
G ∝ ϕ1.23 for the concentrated and the good-solvent regimes,
respectively. These relations can be used to perform a first
analysis of the concentration dependence of the modulus in the
preparation state by NMR or computer simulations if a direct
measurement of modulus is difficult. The results of this section
are now combined with the scaling model of swelling
equilibrium5 to provide scaling relations for the swollen state.

5. EQUILIBRIUM SWELLING
Swelling equilibrium is characterized by a balance of osmotic
and elastic contributions to the free energy. Thus, the modulus
of the gel at swelling equilibrium, G, is equivalent to the osmotic
pressure kT/ξ3 at this polymer volume fraction. The osmotic
pressure is only a function of ϕ and determines the modulus at
swelling equilibrium5

Figure 5. Sample averaged order parameter m0 (open symbols) and the
order parameter of the “ideal” connections m0(I) (full symbols) as a
function of ϕ0. The dashed lines indicate a constant level of m0 for
comparison, the continuous line is a power-law fit to the m0(I) data at
intermediate ϕ0 leading to small negative powers between −0.07 and 0.

Figure 6. Experimental data for the storage modulus of as-prepared gels
synthesized at different polymer concentrations.

Figure 7. Experimental data for the residual bond order in terms of Dres,
in the preparation state for two series of networks prepared in
deuterated toluene. Full symbols refer to ideal connections, open
symbols are double links.
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This general result holds independently of network architecture
or preparation conditions, and it is the key to understand the
elastic properties at swelling equilibrium. Recall that the
athermal limit is obtained for v ≈ b3.

The different scaling of chain conformations within the
semidilute and the concentrated regimes leads to two different
scaling regimes for the modulus. The concentration dependence
of the modulus is best discussed by generalizing eq 15 to the
Panyukov form
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Here, R0 is the undeformed reference size of the chain at
preparation conditions, and λ describes the deformation of the
chains with respect to R0. Rref is the reference chain size of a
polymer chain in a polymer solution with the same solvent at a
polymer volume fraction ϕ. It is given by inserting ϕ instead of
ϕ0 into eq 18, if ϕ < ϕ**, while it is ideal otherwise.

The different scaling regimes of Rref and R0 imply that we have
to discuss three different cases:

(a) Swelling in theta solvent, ϕ** < ϕ < ϕ0, where both Rref
and R0 remain nearly ideal,

(b) the “intermediate” case ϕ < ϕ** < ϕ0 where Rref refers to
swollen chains, while R0 remains ideal, and

(c) swelling in a good solvent ϕ < ϕ0 < ϕ** where both Rref
and R0 refer to the swollen chain conformations.

The Appendix contains a complete discussion and derivation
of the results including analytical expressions for all exponents.
Below, we summarize these computations in compact form for
all three regimes providing numerical exponents based upon ν ≈
0.5876 for good solvent for convenience.

From top to bottom in each equation, the results refer to cases
(a−c) above. The modulus as a function of polymer volume
fraction scales as

**G
k T

N
( )

v
( )B

K el

0
2/3 1/3

0
2/3 0.56 0.23

0
0.44 0.56

l

m
oooooooo

n
ooooooo (28)

the equilibrium degree of swelling is approximately
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whereas the vector order parameter as a function of polymer
volume fraction is
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At swelling equilibrium, the vector order parameter becomes
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which can be expressed as a function of the equilibrium degree of
swelling
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and leads to a relation between order parameter and modulus at
swelling equilibrium
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The first two of these equations have been derived first in ref.,5

while the rest are new results of this work.
The equilibrium degree of swelling, Q, as a function of ϕ0 is

shown in Figure 8. We have scaled the concentration axis by

N(3ν−1) and normalized swelling by the scaling of the swelling
degree of networks strands at ϕ*. This produces a collapse of the
data around the overlap concentration and below, while the data
above this threshold follows slightly different apparent power-
laws with a weakly increasing power γ for larger N. Our
simulations refer to swelling in the good-solvent regime.
According to eq 29, we would expect Q ∝ ϕ0

−1/4 for our data.

Figure 8. Equilibrium degree of swelling, Q, as a function of the
polymer volume fraction at preparation conditions, ϕ0. The continuous
lines are fits of the data with a power-law decay Q ∝ ϕ0

−γ providing an
effective exponent γ = 0.36 ± 0.01 for N = 23, γ = 0.39 ± 0.01 for N = 43,
and γ = 0.42 ± 0.01 for N = 82. The dashed line is a power-law ϕ0

−1.07and
the thin black continuous line indicates a power-law with γ = −1/4.
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For entangled systems, one could expect that the equilibrium
degree of swelling is reached if the swollen affine strands are at
overlap, enforcing des-interspersion of temporary entangle-
ments on a smaller scale. This situation would refer to a scaling

Q N N( ) ( )e 0
(3 1)

e 0
1/(3 1) (3 1)

0
1

(34)

which is clearly a stronger dependence on ϕ0 as compared to the
entanglement free limit. The trend of our data for increasing N
does not contradict such a scaling limit. However, due to the
slowly changing power it is questionable whether this
asymptotic scaling can be reached within the experimentally
accessible range of N.

The final and most universal test of our scaling relations for
the residual bond orientation is given in Figure 9, where the

vector order parameter is shown as a function of the equilibrium
degree of swelling. In this plot, subtle points of the dependence
of Q on ϕ0 become irrelevant as corrections to modulus are
compensated through the swelling equilibrium by plotting the
data as a function of Q. The collapse of the simulation data and
the agreement with the predicted scaling speaks for itself. The
figure also contains data for MQ-based residual dipolar
couplings that were scaled to overlap with m. The experimental
data carries a considerable uncertainty but fits qualitatively to
the simulation data at large Q. Recall that conversion is not
constant for the experimental data. Therefore, we expect a
somewhat stronger decay as a function of Q similar to the trend
of the simulation data at the largest Q, where cyclic defects
impact the scaling.

6. DISCUSSION
The results of the above sections provide additional insights
when compared with preceding work in literature. In ref 70, it
was shown that the residual bond orientation decreases for low
degrees of swelling before it runs through a minimum and starts
to rise in a nearly affine fashion toward swelling equilibrium.
This observation was confirmed in subsequent work.28,77

Various explanations for this effect have been discussed
including swelling heterogeneities78 or a possible release of
topological constraints due to swelling.70 In Figure 4, we have
shown that the cross-link MSDs grow slowly with the
(equilibrium) degree of swelling ∝ (ϕ0Q)β, with an exponent
that should not exceed β ≈ 0.25. Clearly, the affine and phantom
models of rubber elasticity provide no possibility to explain this
behavior. In the framework of the constrained junction model,
we may approximate for the swelling process that

=
[ + ]

m R
b N

Q

b N n Q

( )

2 ( )

2

2
comb

0
2/3

2
0 0 (35)

Here, n0 is the degree of polymerization of the virtual chain that
describes the cross-link fluctuations (after disconnecting the N-
mer between) in the preparation state. Ncomb is the effective
combined chain made of the two virtual chains to the
nonfluctuating elastic background. This combined chain grows
with dilution approximately like Ncomb ≈ N + 2n0(ϕ0Q)β. Since
dm/ dQ > 0 for all N and n0, a release of the constraints acting on
the network junctions alone cannot explain the observation of a
minimum. A similar reasoning for entangled chains arrives at the
same qualitative result. Thus, the minimum of the residual
dipolar coupling requires an additional explanation like a des-
interspersion process of chains or a rearrangement of the
confining tubes, unless this observation is caused by an
incomplete averaging of the segment orientations79 at high
polymer volume fractions.

An observation made in this context was the shift and an
apparent broadening of the distribution of the segment
orientations during swelling.78 In order to test whether such a
broadening occurs or not, we plot in Figure 10 the residual bond

orientations of the elastically active segments for three samples
with an almost identical equilibrium degree of swelling. The
distributions of the order parameters of the three swollen
samples essentially fall on top of each other, except for a small
difference at the left flank of the peak. This difference is caused
by the correlation hole of the star centers, which is a function of
the overlap of the stars at preparation conditions27,51,80 causing a
stronger depletion of the shortest end-to-end distances the
smaller the overlap of the star polymers at preparation. Except
for this detail, there is no systematic broadening of the
distributions at the same degree of swelling. This means that
an apparent broadening (when changing from preparation

Figure 9. Average order parameter m in the simulations (open
symbols) and residual dipolar coupling of the experiments (full
symbols) as a function of the equilibrium degree of swelling, Q. The line
shows the predicted scaling of m = cQ−1.08 with coefficient c = 0.81 ±
0.01 as the only adjustable parameter to fit the simulation data. The
numerical error of the simulation data is comparable to symbol size. Dres*
is the residual dipolar coupling of the experiments multiplied by a
numerical factor to obtain overlap with m in the plot. The “rheology
samples” are the samples of Figure 6 except for one that was damaged
during transport. Samples CN7−1/3 are charge 7 or ref 30 at
concentrations of roughly c* and 3c*.

Figure 10. Comparison of the normalized distribution of the residual
bond orientations at preparation conditions (dashed lines) and at
equilibrium swelling (continuous lines).
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conditions to equilibrium swelling) actually results from a
contraction of the distribution toward the preparation state.
Such a behavior was predicted for entangled networks,15,75

where the contraction results from the longitudinal Rouse
modes of the chain segments along the confining tubes allowing
the chain segments to sample tube sections with different
orientations. Interestingly, there is no such contraction of the
distributions in the swollen state, since the N = 23 sample was
cross-linked at the overlap threshold and does not significantly
increase Q upon swelling. This also means that these
longitudinal Rouse modes must be damped out at swelling
equilibrium for the samples with a larger N. This latter point fits
well into the scaling picture proposed above: at swelling
equilibrium, the size of a tension blob is the same as the
correlation length. Thus, entangled chains at swelling equili-
brium have reached a “fully stretched” state of correlation
volumes, which damps out the longitudinal motion of the
correlation volumes along the confining tube.

The three data sets in Figure 10 have approximately the same
Q even though N differs by a factor of almost 4. Therefore, the c*
theorem proposed by De Gennes64 cannot be correct. In the c*
theorem, it was conjectured that swelling equilibrium is reached
after a full des-interspersion of the network strands removing all
entanglements between the chains. Such a process would lead to
an equilibrium degree of swelling of

* = *Q N
1 3 1

(36)

with an equilibrium chain size of R ≈ bNν in good solvents at
swelling equilibrium, independent of preparation conditions.
Since the tension blob is then not smaller than the correlation
length, we can proceed as above. For the order parameter at
swelling equilibrium we obtain that

* *m R
b N

N Q( )
2

2 2
2 2 (2 2)/(3 1)

(37)

which is exactly the same dependence derived using our scaling
approach, see eq A21. The reason behind this equivalence is that
in both cases one establishes an equilibrium between tension
blobs and correlation volumes. The only “mistake” of the c*
theorem is to propose that this must occur at the length scale of
the network strand, N, instead of the elastic strand inside the
swollen system.

Previously, a different relation S ∝ Q−1.5 was considered to
support the c* theorem.81 Another theoretical work28 derived a
similar relation S ∝ Q s

−1.46 where Qs = V/V0 was defined with
respect to preparation conditions instead of the dry state.
Interestingly, both works came − as we do − with their personal
set of data, supporting their theory. A dependence of ∝ Qs

−x

translates into a proportionality ∝ (ϕ0Q)−x, since ϕ0 = Vdry/V0.
Thus, the observed scaling is not universal in Q due to the
additional dependence on ϕ0. However, modulus at swelling
equilibrium must be a universal function of Q independent of
preparation conditions, since modulus compensates the osmotic
pressure, see eq 26. Moreover, the segment orientations are also
a universal function of Q, since the segment orientations are
dominated by the properties of the tension blobs, which scale
universally with the modulus. This universality is satisfied in our
approach, see eq 32, but not in ref 28.

An observation of S ∝ Q−1.5 in an experiment, however,81 can
stem from several reasons (or a combination of these). First,
there might be a crossover from theta to good-solvent conditions

when small Q are involved, leading to an effective power
intermediate between −2 for theta solvents and −1.08 for the
good-solvent limit. For randomly cross-linked networks
prepared at the same polymer volume fraction, one obtains a
larger degree of swelling by reducing the density of cross-links.
For a random cross-linking process, this is equivalent to
increasing the weight fraction of pending chains,54,82 thus
reducing in turn the weight fraction of the elastically active
material, wact. The series of networks with N = 23 contains extra
data points for which wact is significantly decreasing with
decreasing ϕ0. A power-law fit to the four data points with wact <
0.9 leads to an effective power of −1.35 ± 0.1, significantly closer
to the scaling observed in ref 81. This demonstrates that a
consideration of network defects is crucial for discussing data on
equilibrium swelling.72,79 This proves the advantage of using
model architectures like heterocomplementary coupled stars to
test and to develop theory.

7. SUMMARY
We have presented large-scale computer simulations and
experimental data on the equilibrium swelling of model
networks and compared these with a new scaling model of the
residual bond orientations in swollen networks. Networks were
prepared using a heterocomplementary coupling of star
polymers to suppress the formation of pending loops. Solutions
of four-arm star polymers were prepared at different volume
fractions of the polymer, and for the simulations also with
different degrees of polymerization of the star polymers. The
analysis of network structure showed that only minor
corrections to scaling can be expected when focusing on
networks beyond overlap of the stars, ϕ0N3ν−1 > 1. In the
simulations, the affinity of the swelling process was analyzed
based upon time-averaged chain conformations. This analysis
revealed only minor deviations from an affine swelling process.
These deviations grow with the overlap number of the star
polymers at preparation conditions, hinting toward entangle-
ments as the possible origin. From a theoretical perspective,
scaling relations were derived for the residual bond orientation
at preparation conditions and at equilibrium swelling. The
prediction G0 ∝ m0ϕ0

1.23 at preparation conditions relates
modulus at preparation conditions, G0, with the residual bond
orientation, m0, and the change in the equilibrium chain
conformations at preparation conditions. This prediction agrees
with our experimental data and preceding work. For swelling in
theta solvents, we predict that m ∝ Q−2 and G ∝ m3/2. Upon the
basis of the same principles, we derived that m ∝ Q−1.08 with G ∝
m2.14 in the good-solvent regime. All results at swelling
equilibrium are predicted to remain independent of preparation
conditions. The agreement of our simulation data with the
scaling relation m ∝ Q−1.08 is superb. Our set of experimental
data supports this scaling relation as well. Together with the
known scaling relations for modulus at swelling equilibrium, this
agreement strongly supports our model. However, our
simulation data show also that significant corrections to scaling
may arise in networks with a less well-defined structure
containing a larger fraction of defects.

■ APPENDIX
Throughout the Appendix, we use definitions and terms as
introduced in the main text. In the first subsection, we provide
additional information on the analysis of the simulation data.
The following three subsections contain the explicit derivation
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of the scaling results that were presented in simplified form in
Section 5 of the main part of this work. The last part of the
Appendix describes the model predictions in case of an affine
deswelling.
A. Analysis of Simulation Data
The average residual bond orientation is analyzed by
extrapolation towards infinite time as introduced in ref 51. Let
t be the number of the sample snapshots (t = 1, 2, ...). The
running average of the residual bond orientations of a certain
class of chain segments is computed from the average
coordinates of the monomers up to snapshot t as described in
ref 15. These data are plotted vs 1/t and extrapolated towards t
→ ∞, as shown in Figure A1.

The equilibrium degree of swelling, Q, and the effective
volume fraction inside the preparation box, ϕ1, were determined
using the following algorithm. From each snapshot of the
sample, linear volume fraction profiles of the swollen gel are
computed in each direction. Then, for each direction the
following steps are performed independently in all directions:
(1) the average polymer volume fraction is computed inside the
simulation box (2) then from all six sides of the simulation box
inwards, the position is determined at which this average level is
surpassed for the first time. (3) These positions are used to
define a smaller box for which the average polymer volume
fraction is computed. (4) Step 2 and 3 are repeated twice, but
now each time searching for the point where 90% of the average
density are reached for defining the boundary.

We have checked with randomly selected snapshots of the
volume fraction profile that the above algorithm converges
towards a reasonable description of the polymer volume fraction
inside the sample. Figure A2 contains one example where the
“last” box of the above algorithm is shown together with the
estimate of the average volume fraction along a particular axis of
the sample (the true volume fraction inside the “last” box is
significantly larger since the boundary zones are cut in each
direction). The polymer volume fraction in the last box of
swollen systems is used to compute an estimate of Q (or of ϕ1)
with respect to ϕ = 1. The equilibrium degree of swelling Q is
shown in Figure A3 as a function of the snapshot number t.
Except for increasing noise in samples with larger equilibrium
degree of swelling, there is no systematic drift of Q as a function
of t for all samples, indicating sufficient equilibration of the
samples prior to measurement.

For swollen systems, drift and rotation of the full sample were
subtracted in the following way. First, at preparation conditions,
the elastically active cross-links within the lowest 64 and the
highest 64 lattice layers in each direction were marked providing
6 sets of marked cross-links where cross-links next to corners of
the sample show up in three sets simultaneously. For each
snapshot of the swollen system, the center of mass of the active
network was determined, and all coordinates were computed
with respect to this center of mass. Next, the centers of mass of
each of the six sets of marked cross-links are computed. These
latter coordinates are used to compute orientation vectors in
each spatial direction. Then, the ortho-normal basis with the
smallest angular difference to these orientation vectors is
computed. Finally, all coordinates of the swollen system are
expressed using this coordinate system for analyzing R̅2 and δR2

in the swollen state. Without these corrections, δR2 is
significantly overestimated for the smallest samples due to the
very long simulation runs of our study. The same analysis was
applied for the preparation state in order to avoid a systematic
bias due to a different data treatment.

Figure A1. Extrapolation of the residual bond orientations of the
network with N = 82, L = 512, and M = 9600 in the swollen state. Data
concern either all segments, the segments within “ideal” connections
inside the elastically active material, or the segments in R2 loops.

Figure A2. One-dimensional volume fraction profile in the full box
along the x-axis of the as-prepared gels at low polymer volume fraction
with N = 43 and L = 512. All profiles are averages over all 1000
snapshots of the sample. The vertical lines indicate the dimension of the
“last” box for analyzing ϕ1 (the dashed horizontal line for the
preparation state of the sample with M = 2400).

Figure A3. Equilibrium degree of swelling, Q, as a function of the
number of the snapshot t (taken every 105 MCS) after equilibration.
Data for samples with N = 82 and L = 512. Lines refer to M = 1600,
2400, 3200, 4800, 6400, and 9600 (from top to bottom). Horizontal
lines show the average Q of all snapshots.
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B. Swelling in Theta Solvents and within the Concentrated
Regime, ϕ** < ϕ < ϕ0
Here, both Rref and R0 remain ideal, see eq 17. Therefore, from
eq 26 one obtains
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(A1)

Within the affine approximation of swelling, the squared chain
size is stretched by a factor of λ2, providing

m R
b N

R
b N

N( )
2

2
el
2

2
0
2

2
el
2

0
2/3

el
1i

k
jjjj

y
{
zzzz

(A2)

Swelling equilibrium is found by balancing modulus with
osmotic pressure, see eq 26, giving an equilibrium degree of
swelling5 of

=Q N
1
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3/8
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(A3)

Therefore, the order parameter at swelling equilibrium reads
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(A4)

This relation can be expressed as a function of Q after solving eq
A3 for Nel,

m Q 2 (A5)

The result is independent of preparation conditions and
network architecture, similar to the general expression for
modulus at swelling equilibrium, eq 26. The latter can be written
as a function of the equilibrium degree of swelling
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Thus, in the concentrated regime, modulus and order parameter
have a rather simple and general relation at swelling equilibrium
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C. Swelling in the Intermediate Regime, ϕ < ϕ** < ϕ0
In this regime, chain size is ideal at preparation conditions and
given by eq 17, while the reference chain size in the swelling
equilibrium is swollen and follows eq 18 at polymer volume
fraction ϕ. This leads to63
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because of ϕ < ϕ**. Since the final state is in the good-solvent
regime, we balance this expression for modulus with the good-
solvent branch of eq 26:
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In practice, the equilibrium degree of swelling is often used to
estimate the degree of polymerization of the elastic strand,

**N Q ( )el
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0
2/3

(A10)

We assume that the deformation of the elastic strand is affine
with the sample geometry starting from ideal chain con-
formations at preparation conditions ϕ0 > ϕ**. In swelling
equilibrium, the vector order parameter becomes
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This result can be expressed as a function of the equilibrium
degree of swelling using eq A10
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which is independent of ϕ0 but depends only on the solvent
quality included in ϕ** and on the equilibrium degree of
swelling, Q.

The modulus at swelling equilibrium is written as a function of
preparation conditions by inserting ϕ = Q−1 into the good-
solvent branch of eq 26. This gives
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Let us rearrange eq A12

** [ ]Q m ( )3 /(3 1) 3 /(2 2) 3 (4 2)/ (3 1)(1 )

and insert this relation into the above equation for G. This
provides the missing relation between modulus and vector order
parameter
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D. Swelling in the Good-Solvent Regime, ϕ < ϕ0 < ϕ**
In the good-solvent regime, the reference chain sizes in the
swollen and preparation state, Rref and R0, are described by eq 18.
Using the same arguments as above, this leads to
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The above expression needs to match the osmotic pressure at
equilibrium swelling in the good-solvent regime. Balancing the
good-solvent branch of eq 26 with eq A15, one obtains

= **Q N ( )1
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(A16)

As in the preceding cases, the degree of polymerization of the
elastic strand can be estimated as
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The vector order parameter is only related to chain size at
swelling equilibrium. We assume that the square chain size
deforms affinely by a factor of λ2 from preparation conditions:
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providing
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At swelling equilibrium, ϕ = Q−1, this becomes
**m N( )0
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For expressing m as a function of Q, we insert eq A17 for Nel.
This gives

**

**

m Q

Q

( )

( )

(8 4)/(3 1) (2 2 )/(3 1)

0.92 1.08
(A21)

which is again independent of preparation conditions, ϕ0. The
dependence on Q is the same as in the intermediate case, only
the dependence on ϕ** is different, since now both preparation
state and swelling equilibrium are below ϕ**.

The relation between modulus at swelling equilibrium and
preparation conditions is revealed by inserting ϕ = Q−1 into eq
A15
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Therefore, the relation between modulus and order parameter at
swelling equilibrium is
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This is the same relation as for the intermediate case regarding
the dependence on m, with a clearly stronger dependence on
ϕ**.
E. Dried Gels
Gels can be dried, and it is interesting to estimate the properties
of the dry samples based upon the preparation conditions or
swelling equilibrium. In this section, we provide the expected

scaling relations connecting modulus and the order parameter in
the dry state with swelling equilibrium and preparation
conditions. For this purpose, we assume that de-swelling or
drying leads to an approximately affine displacement of the
network junctions as in the preceding sections. We further
discuss only the non-entangled limit. The opposite limit of
entangled chains is more complex as the entanglement
constraints come closer and lead to modified entanglement
contributions to modulus depending on the model for the
entangled chains, which is beyond our scope. The scaling
relations below hold only for samples that remain mobile in the
dried state and neither go through a glass transition nor
crystallize.
Drying from Theta Solvents: ϕ** < ϕ < ϕ0. Setting ϕ = 1 in

eq A1 and using eq A3 leads to
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A similar reasoning applies for the order parameter of deswollen
gels. Again, we use that m is proportional to the squared size of
the elastic strands, which is assumed to deform affinely.
Moreover, this provides for ϕ = 1 a universal relation with the
equilibrium degree of swelling
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Comparing with the expression for Gdry, we see that this relation
is in accord with eq A7 for ϕ = 1, suggesting that eq A7 holds for
any intermediate degree of partial swelling and equilibrium
degree of swelling as long as the samples remain within the
concentrated regime or swell and dry with theta solvents.
Drying for the Intermediate Regime, ϕ < ϕ** < ϕ0. The

order parameter of the network at preparation conditions is
given by eq 20. It decreases affinely with sample size upon
drying, see the first part of eq A25, but in the intermediate
regime, it develops a different relation with the equilibrium
degree of swelling. Thus,
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Similarly, the dry modulus depends on the preparation state as
given by the first part of eq A24, while for relating Gdrywith Q, we
first insert eq A10 and recall that extrapolating modulus up to ϕ
= 1 along eq A8 underestimates dry modulus by a factor of
(ϕ**)−(2ν−1)/(3ν−1), since the reference chain size no more
shrinks for ϕ > ϕ**. Thus,

**

G
k T
N b

k T
b

Q ( )

dry
B

el
3 0

2/3

B
3

4/(9 3) (6 3)/(3 1)

(A27)

Comparing the expressions for modulus and order parameter in
the dry state, we find that

**

G
k T
N b

k T
b

m ( )

dry
B

el
3 0

2/3

B
3 dry

(2 1)/(3 1)

(A28)

where the extra ϕ** term displays exactly the above correction
for extrapolating modulus up to ϕ = 1.
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Drying for Samples Prepared in the Good-Solvent Regime,
ϕ0 < ϕ**. In the dry state, ϕ = 1, eq A19 becomes

**

**

m N

Q

( )

( )

dry 0
1/(9 3) (2 1)/(3 1)

el
1

4/(9 3) (8 4)/(3 1)
(A29)

When extrapolating modulus at swelling equilibrium across ϕ**
up to ϕ, we recover eq A27 for the dry modulus as a function of
Q in the intermediate case. Similarly, we expect the very same
relation for the dry order parameter as a function of Q as before,
eq A26. This leads again to

**

**

G
k T
b

m

k T
b N

( )

( )

dry
B

3 dry
(2 1)/(3 1)

B
3

el
0
1/(9 3) (4 2)/(3 1)

(A30)

However, this relation depends in a different form on ϕ0 and
ϕ** as compared to the intermediate case, see eq A28.
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