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We evaluate the wavevector dependent (short-time) diffusion coefficient D(k) for spherical 
particles in suspension, by extending a previous study of selfdiffusion (which corresponds to the 
case of large k). Our analysis is valid up to high concentrations and fully takes into account the 
many-body hydrodynamic interactions between an arbitrary number of spheres, as well as the 
resummed contributions from a special class of correlations. Results obtained which agree well with 
available experimental data. 

1. Introduction 

In a previous paper  1) (hereafter referred to as I) we calculated the concen- 
tration dependence of the (short-time) selfdiffusion coefficient for spherical 
particles suspended in a fluid. This quantity, denoted by Ds, is the large-k limit 
of the wavevector  dependent  diffusion coefficient D(k) ,  which describes the 
initial decay of the dynamic structurefactor measured by inelastic light- or 
neutron-scatteringZ3). In our analysis x) we resummed the contributions due to 
hydrodynamic interactions between an arbitrary number  of spheres. By includ- 
ing at most two-point correlations between the spheres, we obtained in paper  I 

a reasonable agreement  with experimental  results 4) for Ds for volume fractions 
~b ~ 0.3. At  higher concentrations the calculated values were too large, indicat- 
ing the importance of higher order  correlations. 

The extension to paper  I presented here in twofold: (i) we extend the 
formalism to diffusion at arbitrary values of the wavevector:  (ii) we resum to 
all orders the contributions f rom a special class of correlations. 

The  (short-time) wavevector  dependent  diffusion coefficient D ( k )  may be 
expressed in terms of the mobilities of the spheres2). To  linear order  in the 
density only two-sphere hydrodynamic interactions need to be considered and 
results for D ( k )  to this order  have been obtained by Russel and Glendinning s) 
and by Fijnaut6). In a suspension which is not dilute, however,  it is essential to 
fully take into account the many-body hydrodynamic interactions between an 
arbitrary number  of spheres. The  importance of non-additive hydrodynamic 
interactions was demonstra ted theoretically in our calculation 7) of the diffusion- 
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coefficient to second order in the density, and experimentally by Pusey and van 
Megen's measurements 4) of Ds. 

Using general expressions for many-sphere mobilities obtained by Mazur and 
van Saarloos8) *, we shall give in section 2 a formula for the diffusion coefficient 
which is a convenient starting point for the calculation of D ( k )  in a concen- 
trated suspension. In the limit k ~ ~, this formula reduces to the expression for 

Ds given in paper I. 
In sections 3, 4 and 5 we proceed to evaluate D ( k )  through an expansion in 

correlationfunctions of higher and higher order. Such a "fluctuation expan- 
sion", in which the many-sphere hydrodynamic interactions are resummed 
algebraically, was employed in paper I also. However,  here we r e s u m - i n  
addition - t o  all orders the contributions from a special class of correlations, the 
socalled "ring-selfcorrelations". Resultst  for the concentration and wavevector 
dependence of D ( k )  are given in section 6, and are compared to experimental 
data4,11,12). 

We conclude the paper in section 7 with an interpretation of our results in 

terms of an effective pair-mobility. 

2. An operator expression for D(k) 

As in paper I we study a system of N spherical particles with radius a and 
positionvectors Ri (i = 1,2 . . . . .  N),  suspended in a liquid with viscosity r/. 
While in our previous analysis we restricted ourselves to the self-diffusion 
coefficient Ds of the suspended particles, we shall consider here the wavevector 
dependent  diffusion coefficient D ( k ) ,  given by (see e.g. ref. 2) 

N 
D ( k  ) = k B T [ N G ( k  )] -1 ~'~ (l~ " l.tii " I~ e'k'R~i) . (2.1) 

i,j=l 

Here k is the wavevector with magnitude k and direction /~ - k/k,  G ( k )  is the 
static structure factor, Pii is a mobility tensor, Rij----Rj-Ri, and kB and T 
denote Boltzmann's constant and the temperature,  respectively. The angular 
brackets denote an average over the configurations of the spheres in a volume 

V. 
The quantity defined in eq. (2.1) describes diffusion of the spheres on a 

timescale over which their positions are essentially constant2). It can be 

* In this connection we ment ion that general  expressions for many-sphere  friction tensors were 
previously derived by Yoshizaki and Yamakawa9), by an analysis similar to that of ref. 8. 

t These  results have been published previously in ref. 10. 
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measured by light-scattering, and is called in this context the "effective" 
diffusion coefficient3). The (short-time) selfdiffusion coefficient D~, studied in 
paper I, is given by 

N 
Dsl  = kBTN -1 ~'~ (l~ii). (2.2) 

i=1 

It is the large wavevector limit of D(k)  

Ds = lim D(k), (2.3) 
k ---~co 

as can be understood by noting that 

lim G(k )=  1 (2.4) 

and that in the limit k -~ ~ only the terms with i = j contribute to the average in 
eq. (2.1). Note furthermore that, in an isotropic suspension, the average in eq. 
(2.2) is proportional to the unit tensor 1. 

General expressions for the many-sphere mobility tensors /to were derived 
by Mazur and van Saarloos8). It is convenient to write these results in the 
compact operator notation used in paper I. To this end we express the 
mobilities in terms of an operatorkernel #(f i r ' ) ,  by 

67rl?al~i = 16 0 + f dr  f dr '  6 ( r -  Ri)~$(r'- R j ) lz ( r l r '  ) . (2.5) 

We further define the microscopic number density n(r) of the spheres 

N 

n(r) = ~'~ 6 ( r -  Ri).  (2.6) 
i=1 

Eq. (2.1) then takes the form 

£ / .  

O(k )D(k )/Do = 1 + N- '  J dr  e -i ' '"  J d r '  eik'"(/~ • n(r) t t ( rJr ' )n(r ' ) ,  l~) , 

(2.7) 

or, defining the operators # with kernel It(r[ r ') and n with kernel n ( r ) 8 ( r ' -  r), 

G(k )D(k )/Do = 1 + N-l<l~ .{nt~n}(k l k ) " fc) . (2.8) 

In this last equation we have defined the Fourier transform of an operator- 
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kernel O(r) r’) = {npn}(r 1 r’) as 

O(k 1 k’) = j dr e-ik.r j dr’ eik”” O(r 1 r’) . (2.9) 

The Stokes-Einstein diffusion coefficient is denoted by 

Do = kaT(67nla)-’ . (2.10) 

Adopting the notation of paper I we may write (see below) for the operator p 

/.L = P&(1- nQ~-‘.!Q’P, (2.11) 

and we thus finally obtain for the diffusion coefficient the expression 

G(k)D(k)/D, = 1 + N-‘(k” - {P&(1 - nQB-‘&)-5rP}(k ( k) - i) . (2.12) 

We shall now show that expression (2.11) for the operator /.L is indeed 

equivalent to the general expressions for the mobility tensors given in ref. 8. 

We shall first briefly recall the meaning of the symbols &, LB-‘, P and Q used 

in eqs. (2.11) and (2.12) cf. section 3 in paper I. The matrices d and B-’ have 

elements 

{d}“,, = Ii(-) ) 
{%-I}“,, = S”,B(“J+’ ) (2.13) 

which are tensors of rank n + m (n, m = 1,2,3, . . .); the projection matrices P 
and Q = 1 - P have elements 

U%,* = ~“1&1, {al,m = &?I - &1&lI~ (2.14) 

The tensor A(“,“‘) is a convolution operator with kernel 

(2.15) 

Convenient expressions for the constant tensor B(“‘~“‘- and for the Fourier 

transform of A(“v”)(r), 

A(“s”)(k) = j dr &k.rA(hm)(r) , (2.16) 

are given in eqs. (I-2.15) and (I-2.22)*. 

* ‘I’he tensors Av’ = &.‘“)(&J and r$“‘+’ were introduced by Mazur and van Saarloos’). These 

so-called “connectors” correspond to the “hydrodynamic interaction tensors” used previously by 

Yoshizaki and Yamakawag), in order to discuss many-sphere friction tensors. 
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With these notations we may write e.g., 

{PagnQ~-laCp}(Ri I Rj) = dr" A°'m)(r "- R,)n(r") (3 B (re'm)-' 

® A(~,,) (Rj - r") 

= 2 ~ a~,'~"®Bc""-'®A~7 ''', (2.17 / 
m=2 k=l 

k#id 

where 11!". '~) =-Ac".~)(Rj- R~) and the dot (S) prescribes an m-fold contraction. ,j 
By expanding the inverse operator  in eq. (2.11) in powers of n, we obtain (after 
substitution into eq. (2.5)) the expression fo r / tq  derived in ref. 8 and given in 
eq. (I-2.2). 

The expression (2.12) for the diffusion coefficient D ( k )  is exact and fully 
contains the many-body hydrodynamic interactions between the N spheres. It 
is the required extension of the formula for the selfdiffusion coefficient Ds 
given in paper I, eq. (I-3.16). As we have shown t h e r e - a n d  will see again in 
the next section - s u c h  formal operator  expressions are very useful in a study of 
concentrated suspensions. 

3. Renormalization of the connectors 

Let 3,(o ",m) (m = 1, 2, 3 . . . .  ) be an arbitrary constant tensor of rank 2m. We 
denote by y0 the diagonal matrix with elements 

{yo}.,= = 6..~'~ ='') • (3.1) 

A matrix of renormalized connectors sg~o is de f ined -  for each Yo- as 

~,0 - ~t(1 - y 0 0 ~ - ' ~ t ) - ' .  0 .2)  

The n, m element of the matrix ,dy 0 is a renormalized connector A~ .'~), which in 0 
turn is a convolution operator  with kernel R~m)(r). 

We now choose ~,(0 m,") to be a function of the average numberdensity of the 
spheres no = N/V ,  

~/gl,1) = nol, 
(3.3) 

T~ re'm)- ~'(om'm)(~) B(m'm)-l Q,4(yo'm)(r = O) = nol (='m) , m >!2. 
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The tensor I t",") used in this equation is a generalized unit tensor of rank 2m, 

I (2,2) = A(2'2), 1 (''''') = A ( m - l ' i d ' m - 1 )  (m >I 3),  (3.4) 

where the zi-tensors are defined in eqs. (I-2.9) and (1-2.19). The renormalized 
"dens i ty"  3"(r), with average 3'0, is given by 

3"(r) =- 3"on~'n(r) ; (3.5) 

the corresponding diagonal operator  3' has kernel 3 " ( r ) 8 ( r ' - r ) .  The  renor- 
malized density and connectors defined above will be explicitly evaluated in 
section 4. 

In paper I we defined renormalized connectors M,0 according to eq. (3.2), 
with 3'o replaced by no, and used the identity 

M(1 - n Q ~ - ' M ) - l n  = M~0(1 - 8nQ~- 'M~o)- 'n ,  (3.6) 

where 8 n - - n - n o  denotes the density fluctuations. If one substitutes this 
identity into eq. (2.12) and expands the operator  between braces in this 
equation in powers of 8n, one obtains an expansion for D ( k )  in correlation- 
functions of higher and higher order  (a so-called fluctuation expansion). For  the 
case of selfdiffusion, this expansion was evaluated to second order in paper I. 
The  renormalized connectors ~¢~0 account for a full resummation of the 
many-body hydrodynamic interactions in the absence of correlations, and in 
this way for the fact that (in some averaged sense) spheres interact hydro- 
dynamically via a suspension with density no, rather than through the pure 
fluid. As we shall shortly see, the renormalization of the density, defined in eq. 
(3.3), will moreover account for a partial resummation of correlations. 

The following identity will prove very useful in our analysis 

~ ( 1  - nO~3-a~)-ln = ~o(1  - 83'Q~-~°vo)-X3'. (3.7) 

This formula differs from the previous one (eq. (3.6)) in that it contains the 
renormalized density 3', density fluctuations 63' ~ 3' - 3'0 and cut-out connectors 
~ 0  ") = {M°r).,,, with kernels 

°('~m)¢" A('~")fr' ~0 
A~o , ' t  r ' )  = - ~ o  , - r )  = t A ~ o ' ) ( r ' -  r )  

if r =  r '  and n = m,  
(3.8) 

i f r #  r' or n ~ m . 

A proof of eq. (3.7) is given in the appendix. Substituting this identity into 
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expression (2.12) for D(k)  one finds 

G(k)D(k)/Do = 1 + N-~(I~ • {Pn~,o(1 - 83"Q~-l~o)- 'nPI(klk  ) • lc), (3.9) 

where use has been made of the fact that 3'P -- nP, in view of definitions (3.3) 
and (3.5). 

If one expands the operator  between braces in eq. (3.9) in powers of 83' one 
obtains again an expansion for D(k )  in density correlationfunctions, since 
83, = 3"on~lSn (cf. eq. (3.5)) is linear in the density fluctuations 8n. The 83"- 
expansion differs however from the 8n-expansion considered in paper I, in that 
the contributions from a special class of correlations (which we call ring- 
selfcorrelations) are in the former expansion included in the lowest order  term. 
Indeed each term in the 83'-expansion may be obtained by partial resummation 
of the 8n-expansion. 

The difference between these two expansions of the diffusion coefficient may 
be understood as follows. An s-point correlation (Sn(rl)rn(r2). . .  8n(rs)) con- 
tains many terms which are proportional to deltafunctions 8(rk--rt) (k, l = 
1, 2 . . . . .  s; k # l). For s = 2 one has e.g. 

(Sn(rl)Sn(r2)) = noB(r2- rl) + n2[g(Ir2- r l l ) -  1], (3.10) 

where the deltafunction term represents the selfcorrelation and g(r) is the pair 
distributionfunction. As a consequence of selfcorrelations, an expression of the 
form ((Sn~t~) s) contains a class of contributions with factors A~'k)(r = 0) 
(m, k = 1, 2, 3 , . . . ) .  Referring to a diagrammatic representation, this factor is 
called a ring-selfcorrelation. We remark that a contribution from these ring- 
selfcorrelations is most important when the upper indices m and k of the factor 
A(no'k)(r = 0) are equal*. In this case we speak of diagonal ring-selfcorrelations. 

Similarly, an sth order correlation between renormalized density fluctuations 
((83'~g°~0) s) would contain terms with factors J~o'k)(r----0). However,  in view of 
definition (3.8) of the cut-out connectorfield, these terms are zero, unless 
m ~ k. For  this reason the various terms in the 83,-expansion do not contain 
diagonal ring-selfcorrelations. The contributions of these have been resummed 
algebraically by the renormalization of the density through eq. (3.3). 

To conclude this section we give the expression for the selfdiffusion 
Coefficient Ds, which follows from eq. (I-3.16), with the use of identity (3.7), 

IDdDo = I + nS~({PM~o(1 - 8yQ~-~g~o)-XnP}(rlr)).  0.11)  

* For example,  the contribution (of second order in 8n) to the selfdiffusion coefficient from the 
term with the factor A~2)(r = 0) is -0 .084D0,  at the highest density considered in paper I (cf. table 
II in paper I). At  the same density, the term with the factor A~)(r = 0) contributes only -0 .002D0.  
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Note that, due to translational invariance, the r.h.s, of this equation is in- 
dependent  of r. We recall that, as indicated in section 2, Ds is also the large 
wavevector limit of D(k), given by eq. (3.9). One must realize, however, that if 
one first expands the r.h.s, of eq. (3.9) in correlationfunctions of 6n of higher 
and higher order, this seriesexpansion is not equal term by term, in the limit 
k ~ ~, to the corresponding seriesexpansion of eq. (3.11). We shall return to 

this point in section 5. 

4. Evaluation of the renormalized connectors 

In order to solve eq. (3.3) for 70 we shall make the following "Ansatz"  

y ("" )  = y ( o " ) l  ( " ' " )  , m/> 2,  (4.1) 

where y(0 ") is a scalar function of the density no. As we shall see, this is indeed 
the form of the solution. The generalized unit tensor 1 ("'") was defined in eq. 
(3.4) and has the property that 

l~m,m)@ B~m,~)- '=  B~m,~) -' . (4.2) 

The evaluation of the renormalized connectorfield A~0")(r ), defined in sec- 
tion 3, then proceeds entirely as the evaluation of A~m)(r) in paper I, section 6, 

and gives 

A~om)(r ) = A(".")(r)- (2~') -3 f dk e-ik'rA('m)(k )dpSro(ak )[1 + chSro(ak)] -1 . 

(4.3) 

Here  ~b = (4/3)~'a3no is the volumefraction of the spheres and the function 
S~,o(ak ) is given as an infinite sum of Bessel functions 

S~o(ak )= F~=29 epyo~n~(2p -1 )Z2  (ak )-3J~-l/2(ak ) . (4.4) 

We have defined e2= 5/9, ep = 1 (p>13). The case considered in paper I 
corresponds to y0 ~)-= no for all p. The series in eq. (4.4) can then be summed 
analytically and gives the function S(ak) defined in eq. (1-6.6). 

To calculate the density dependence of 70, given by eq. (3.3), we need the 
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result  

B(~'m)-'(5) A(o'~)(r = O) = l(",")(2m - 1) f dk k-~JZ~_l;z(k)~bS~o(k) 
0 

× [1 + chSvo(k)] -1 , m >t 2 ,  (4.5) 

and  for  la ter  use also 

oo  

AOoD(r = O) = - 1 f dk k-lj21/2(k )dpSvo(k )[1 + ~bS~o(k)]-', (4.6) 
0 

(re,m+2) 3 A~o (r = O) = A(~o+2'm)(r = O) = - ~ (m + 1)!(2m - 1)!!A (''+I'm+l) 

oo 

x J dk k-lJra_l/2(k)Jm+3/2(k)dPS~o(k) [1 + q~S~0(k)]  -1 , (4.7) 
0 

Ao~,.)r,. = O) = O ,  if n ¢ m a n d  n ¢ m + 2 "Yo ~ . - -  - -  " (4.8) 

H e r e  (2m - 1)!! = 1 . 3 . 5 . . . . -  (2m - 3) .  (2m - 1); the z l - tensors  are def ined in 
eq. (I-2.9). T h e  equa t ions  (4.5)-(4.8) are the ana loga  of eqs. (I-6.11)-(I-6.14) for  
A~o'm)(r = 0), and  are ob ta ined  by pe r fo rming  the angula r  in tegra t ion in eq. 
(4.3), using the explicit express ions  for  A(~m)(k). 

Subst i tut ion of fo rmula  (4.5) into eq. (3.3) shows that  y0 is indeed of the fo rm 
(4.1) and gives for  the scalar  funct ions y~") the equat ions  

oo 

y(o ~) - y~)~b(2rn - 1) f dk k-lj2_,/2(k)S~,o(k)[1 + ~S~o(k)l-' = no, 
0 

m = 2, 3 . . . . .  (4.9) 

O n e  sees that  ygm) differs f rom no by t e rms  of o rde r  ~b 2. 

In o rde r  to solve the  infinite set of  coupled  equa t ions  (4.9) to a sufficient 
accuracy  we a p p r o x i m a t e  the funct ion Svo(k ) by 

S(, 2(k ) = S ( k  ) + 9 ) p=2 ~ ep(rY - no)n~'(2p - 1) 2 2 k-3Ji-u2(k ) ' (4.10) 

for  a given n u m b e r  L = 2, 3 . . . . .  F r o m  the definit ion of  S(k )  (eq. (1-6.6)) and 
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Syo(k ) (eq. (4.4)) it follows that 

lim S~Lo)(k )= S~o(k ) . (4.11) 
L " ~  

With the above approximation the L -  1 equations for 3,(0 m) (m = 2, 3 . . . . .  L) in 
(4.9) decouple and may be solved numerically*. We give in table I, for 
volumefractions ~b up to 0.45, the values of ~b3,(om)/no (m = 2, 3, 4, 5) obtained by 
this procedure with L = 5. 

To calculate the diffusion coefficient D(k) we shall in the next section use 
these values for 3,(0 m), also, in expression (4.3) for A~or~)(r), we shall approximate 
Svo(ak ) by S~)o(ak), as defined in eq. (4.10). An estimate of the error resulting 
from this approximation can be obtained by repeating the calculation of 3'0 
described above to a lower order. In table II we give for ~b = 0.40 the values of 
c~3,(om)/no (2 <~ m ~< L) and 1 + AOol)(r = 0), obtained from this calculation with L 
ranging from 2 to 5. One finds, in particular, that by increasing the order L 
from 4 to 5, the change in 3,(o m) (m = 2, 3, 4) is smaller than 3%, while the value 
of 1 + AOoO(r = 0) changes by even less. This last quantity is equal to the large 
wavevector limit of D(k), to lowest order in the expansion in correlation- 
functions, cf. section 5. Moreover, it has been checked that also for smaller 
wavevectors use of S~0) instead of S~0) would change the (lowest order) results 
for D(k) by not more than 2% . 

We thus conclude that the approximation made by replacing Sv0 by S(5)~0 
(defined in eq. (4.10)) is for present purposes sufficiently accurate. 

TABLE 1 
Values of the scalar functions cb~m)/no (m = 2, 3, 4 
and 5) for nine different volumefract ions ~b 

4,/~')/no 

th m = 2  m = 3  m = 4  m = 5  

0.05 0.0553 0.0542 0.0533 0.0525 
0.10 0.1228 0.1177 0.1135 0.1104 
0.15 0.2048 0.1918 0.1813 0.1738 
0.20 0.3038 0.2777 0.2574 0.2432 
0.25 0.4224 0.3766 0,3423 0.3186 
0.30 0.5627 0.4895 0.4364 0.4005 
0.35 0.7267 0.6172 0.5402 0.4888 
0.40 0.9157 0.7601 0.6538 0.5839 
0.45 1.1310 0.9183 0.7776 0.6856 

* Use  was made  of numerical  algorithms from the N A G  library (Oxford). 
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TABLE II 
Values of c~y~=)/no (2~ < m ~<L) for ~b = 0.40, obtained by 
solving eq. (4.9) with the approximation of Sv0 by ~¢tL)v0 (eq. 
(4.10)). The order L of this approximation is increased from 2 
to 5, the value L = 5 giving the results presented in the 
previous table for the whole range of volumefractions. Also 
shown, for ~b = 0.40, is the convergence of the quantity 
1 + A~l)(r = 0), as the order of the approximation increases. 

L 

~y~o')/no (4, = 0.40) 

m = 2 m = 3 m = 4 m = 5 l + AO~t)(r = O) 

2 0.783 0.397 1 
3 0.868 0.711 0.363 1 
4 0.901 0 .745  0.637 0.353 1 
5 0.916 0 .760  0 .654  0 .584  0.348 1 

5. Expansion of D ( k )  in correlations of renormalized density fluctuations 

W e  now re tu rn  to  the  fo rma l  express ion  (3.9) for  the  w a ve ve c to r  d e p e n d e n t  

diffusion coefficient .  W e  first no te  tha t  we may  r ep l ace  the  two dens i ty  

o p e r a t o r s  n in this  express ion  by  the i r  f luc tua t ions  8n = n -  no. The  t e rms  

con ta in ing  the  ave rage  no d o  not  con t r ibu te ,  in view of  the  fact tha t  

~" f dr e-il"rA~0m'(r ' -  r)= f dr ei'"A00m)(r- r'). ~ =0. (5.1) 

I n d e e d  these  in tegra ls  a re  p r o p o r t i o n a l  to  e i the r  /c. A(l'm)(k) o r  to A(m,1)(k) . 

(cf. eq.  (4.3)*), bo th  of which quant i t i es  a re  ze ro  for  all m, as fol lows f rom eq.  

(1-2.15). T h e  resul t ing  exact express ion  for  the  diffusion coefficient  D ( k )  

G ( k  ) D ( k  )/Do = 1 + N-l(Ic • {PSns~vo(1 - 85"Q~-I M°~o)-~SnP }(k I k ) " / ~ ) ,  

(5.2) 

is the  s ta r t ing  po in t  for  an expans ion  of this  quan t i t y  in co r r e l a t i on func t ions  of  

the  r e n o r m a l i z e d  dens i ty  f luc tua t ions  63 /o f  h igher  and  h igher  o rde r .  

T o  lowes t  o r d e r  in 85' one  has  

G(k)O(k)/Do = 1 + N-~(:c • {SnAO:/)Sn}(klk). I~>. (5.3) 

* Note that if the expression (4.3) for At~m>(r) is substituted into eq. (5.1), one may replace the 
connectorfield At'~=)(r) in this expression by A°U")(r), since these two connectortields differ by a 
finite amount in a single point only (cf. eq. (2.15)). 
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In r - represen ta t ion  the two-point  corre la t ion in this equat ion can be writ ten as 
the sum of a self- and a pair-correlat ion (cf. eq. (3.10)) 

({6nAgol)6n}(r [ r')) = noAgo')(r = O)6(r' - r) + -2AO,,),-, ,,0,-% t -  - r)[g( lr ' -  r l ) -  11, 

(5.4) 

where  g(r) is the pair  dis tr ibut ionfunction.  Transforming to wavevec tor  
representa t ion  according to eq. (2.9) one  there fore  finds for  D ( k )  to lowest 
o rder  

= 1 + 1~ .A°ot)(r = 0). Ic + nor dr  e ik ' r  ]~ "AOoO(r ) •/~[g(r) G(k  )D(k  )/Do 1].  

(5.5) 

T o  evaluate  this expression we used (as in paper  I, cf. appendix D)  the 
Percus-Yevick  approximat ion  for  the Four ie r  t ransform of the pair  cor- 
relat ion funct ion 

~,(k) ~ f d r  e ' k " [ g ( r ) -  1]. (5.6) 

The  s t ruc turefac tor  G(k) ,  defined as 

G(k ) = 1 + nov(k) ,  (5.7) 

was calculated in the same approximat ion*.  
The  first two terms on the r.h.s, of eq. (5.5) are wavevector  independent ;  

f rom eq. (4.6) one  finds 

1 +/~ A°o')(r = 0) ' /~  _2 f dx(sin x/x)2[1 + ~bSvo(x)]-' 
0 

(5 8) 

The  funct ion Svo(X ) was discussed in the last section. The  third term on the 
r.h.s, of eq. (5.5) is, according to eq. (4.3)5-, given by 

f 
no J d r  e ik'" k~. A9~t)(r) • k~[g(r) - 11 

x [1 + &Svo(ak')]-lu(lk- k'[),  

= no(2cr) -3 J" dk'k~ • AO'~)(k') •/~ 

(5.9) 

* For the value of G(k) at k = 0, however, we used the slightly more accurate formula of 
Carnahan and Starling13). 

t Cf. also the first footnote of this section. 
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where (cf. eq. (I-2.15)) 

9 dp(ak)_ 4 sin2(ak)(1 _ i~i~). noA('.l)( k ) = -~ (5.10) 

The results from a numerical integration of these equations will be given in the 
next section. We note that for large wavevectors k the integral (5.9) goes to 
zero and only the contribution (5.8) to the diffusion coefficient remains, which 
in this limit represents the selfdiffusion coefficient. 

From eq. (5.2) one sees that the first correction to the result (5.3) for D ( k )  is 
due to three-point correlations between renormalized density fluctuations. In 
general this correction will therefore contain the three-sphere correlation- 
function and is difficult to evaluate. Nevertheless, an indication of the accuracy 
of our lowest order result for D ( k )  can be obtained by calculating the 
self-diffusion coefficient D~ to higher order. Indeed D~ contributes to D ( k )  at 
all wavevectors, 

G(k  ) D ( k  ) = Ds + k a T N  -t ~ ,  (l~ " pi~ " I~ e~k'R'J) (5.11) 

(cf. eqs. (2.1) and (2.2)), and is in fact the largest of the two terms on the r.h.s. 
of eq. (5.11), over the whole range of wavevectors and densities. For this 
reason we shall in the remaining part of this section focus our attention on the 
selfdiffusion coefficient, given by eq. (3.11). 

Upon expansion of expression (3.11) for D~ in correlations of renormalized 
density fluctuations, one finds for the zeroth order term D] °~ 

1O~°~/Do = 1 + A~ot~(r = 0). (5.12) 

The r.h.s, of this equation is identical to eq. (5.8); the lowest order term 
therefore in the expansion of formula (3.11) for Ds is equal to the limit k ~ ~ of 
the lowest order term in the expansion of eq. (3.9) for D(k) .  This cor- 
respondence, however, does not exist term by term for higher order terms. See 
in this connection the remark after eq. (3.11). The values of D~ °~ (resulting from 
a numerical integration of the integral in eq. (5.8)*) are shown in table III, for 
various volume-fractions up to ~b = 0.45. 

The lowest order correction D] 2~ to D~ °~ results from two-point correlations: 
it is given by (cf. eq. (3.11)) 

1 O O 
1D~2)/Oo = n~ P({M~o SyO~-~  ~t~o Sn + ~t, o S r O ~ - t  g ,  o S r O ~ - t  M,  o no}(r l r))P,  

(5.13) 

* With the approximation of St0 by S~2 , cf. section 4. 
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TABLE III 

Results from the evaluation of the 
fluctuation expansion of the selfdiffusion 
coefficient D, to second order. The con- 
tributions from the zeroth order term 
D(O) and the lowest order correction Dp 

thereto are specified separately. 

4 D$“‘/D,j + D$2J/Do = DglDo 

0.05 0.887 + 0.012 0.90 
0.10 0.781 + 0.012 0.79 
0.15 0.685 + 0.007 0.69 
0.20 0.598 - 0.000 0.60 
0.25 0.521 - 0.008 0.51 
0.30 0.454 - 0.014 0.44 
0.35 0.397 - 0.020 0.38 
0.40 0.348 - 0.023 0.33 
0.45 0.307 - 0.025 0.28 

or, written out explicitly (cf. eqs. (3.5) (3.8) (3.10) (4.1) and (4.2)) 

fD$2)/D,, = 43),+AC’d3)(r = ())O /3(3.3)-’ 0 A$‘)@ = 0) 

0 B(m+2?+2)-’ Q #!!+2.t)(- r) 

+ “z2 -y$“) 1 dr Atim) O(m*m)-l 0 A$!!‘)(-r)[g(r) - l] 

+ 2 2 r&“‘# 1 dr j- dt’Al;“‘)(r)a @m.m)-l 0 A$Tk)(r’ - r) 
m=2 k=2 

0 B(k,k)-l 0 A%‘)(- r’)[g()r’ - rl) - l] . (5.14) 

To simplify this expression we have also used eqs. (4.7) and (4.8). The above 
equations (5.12)-(5.14) are the analoga of eqs. (I-5.7), (I-5.9) and (I-7.3), which 
give the first two terms of the expansion of D, in correlations of un- 
renormalized density fluctuations. Note however that the present expression 
for Dpr does not contain terms with factors A, cmsm)(r = 0), since these diagonal 

ring-selfcorrelations are here already accounted for in the zeroth order term 
Dp, cf. the discussion in section 3. This is in contrast to the expansion given in 
paper I, where corresponding factors did occur in the second order term (eq. 
(I-7.3)). 
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The above lowest order correction D[ 2) may be evaluated using the results of 
section 4 (el. the similar calculation in paper I, appendix D). As in paper I, we 
have restricted ourselves to a numerical evaluation of those terms in eq. (5.14) 
which do not contain connectors At,.m) with n or m larger than 2. This amounts "'3'o 
to a restriction to corrections from monopole--dipole and dipole--dipole hydro- 
dynamic interactions between density fluctuations. The results can be found in 
table III. 

6. Results and discussion 

In the previous sections we have calculated the concentration dependence of 
the wavevector dependent (short-time) diffusion coefficient D(k) for spherical 
particles in suspension. For this purpose we derived the exact expression (5.2), 
from which one can obtain D(k) as an expansion in correlationfunctions of 
higher and higher order. The lowest order term in this expansion (eq. (5.5)) 
fully contains the many-body hydrodynamic interactions between an arbitrary 
number of spheres. Moreover, the contributions from a special class of cor- 
relations, the so-called (diagonal) ring-selfcorrelations, are included in this 
term. 

For the particular case of the (short-time) self-diffusion coefficient Ds (which 
is the large wavevector limit of D(k) and is given by eq. (3.11)) we were able to 
calculate not only the zeroth order term D~ °) (eq. (5.12)), but also the lowest 
order correction D~ 2) thereto (eq. (5.14)), which is due to two-point correlations. 
In fig. 1 we have plotted D~°)/Do and (D~°)+ D~2))/Do as a function of the 

1 

O ' " ' " ' " ' "  "" " ' " " " ' " ' " " "  '"" " '"" . . . . . . . . . . . .  

"'" . . . . . . . . . .  O 

.. b 

l 
0 ] I I I 1 I 
0 0.1 0.2 ~p 0.3 0 .4  0.5 

Fig. 1. Results for the selfditTusion coefficient Ds from the first two terms of the expansion in 
correlationfunctions considered here (curve c corresponding to D[ °), curve d to D~)+ D ,  ¢)) and 
from the expansion of paper I (curve a corresponding to D~)(I), curve b to D~)(I) + D~)(I)). 
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volumefraction ~b (from table III). In the same figure we have also shown the 
corresponding results from the alternative expansion of Ds considered in paper 
I: there the zeroth order term D!°)(I) contained no contributions due to 
correlations. If one compares the zeroth order results D~ °) and D!°)(I) from 
these two alternative expansions (the two dotted curves in fig. 1), one sees that 
due to the inclusion of contributions from ring-selfcorrelations the values for 
Ds in the absence of correlations decrease by almost 40% at the highest 
volumefractions. Moreover, the lowest order correction DI 2~ is in the present 
expansion at most 8% of DI °~, whereas the corresponding term D~2)(I) in the 
expansion considered in paper I was 20% of D~°~(I), at the highest volumefrac- 
tions. 

We conclude therefore, that the present expansion-  resulting from an (al- 
gebraic) resummation of a special class of correlat ions-provides a more 
reliable zeroth order result for the diffusion coefficient than the expansion of 
paper I. We note that to linear order in the density these two expansions are, 
however, identical*. 

As argued in section 5, one may use an error estimate for Ds to obtain an 
indication of the accuracy of our lowest order result for D(k). Indeed DJG(k) 
(where G(k) is the structurefactor) gives at all wavevectors the largest con- 
tribution to D(k), which may also be written as (cf. eq. (5.11)) 

G(k)D(k) = Ds+ kBTN-' ~ (/~"/~i'/~ ei~'R0 • (6.1) 

To lowest order the r.h.s, of the above equation is given by eq. (5.5) and contains 
D~ °) (cf. eq. (5.12)). It is found that adding the correction D~ 2~ to D~ °) changes this 
lowest order result for D(k) by less than 10% for wavevectors ak ~ 3 (where a is 
the radius of the suspended spheres). This remains the case for all values of the 
wavevector if the volumefraction t~ does not exceed 0.3. However, at small 
wavevectors and the highest densities considered, our lowest order results for 
D(k) become increasingly less accurate due to a near cancellation of the two terms 
on the r.h.s, of eq. (6.1). 

In figs. 2 and 3 we have plotted for five values of the volumefraction t~ the 
resultst for D(k)G(k)/Do (which is the longitudinal part of the wavevector 
dependent sedimentation velocity, relative to its value at infinite dilution) and 
for Do/D(k). Note that in the absence of hydrodynamic interactions the first 
quantity is identically 1 and the second quantity equals the structurefactor 

* This results from the f ac t -obse rved  in section 4 - t h a t  the renormalized density differs from 
the real density by terms of order  ~2. 

t The values plotted contain the lowest order  values calculated from eq. (5.5) to which the 
correction D ~  ) (given in table III) has been added. In this way the values for Ds given in fig. 4 are 
obtained from figs. 2 and 3 in the limit k ~ ao. 
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Fig. 2. W a v e v e c t o r  d e p e n d e n c e  of  D ( k ) G ( k ) l D o  for  f ive va lues  of  the  v o l u m e f r a c t i o n  4~. 

G(k). A comparison with experiments is possible for the large and small 
wavevector limits of D(k), 

D, = lim D(k) ,  Dc = lim D(k), (6.2) 
k---~o k--~0 

which are the (short-time) self- and collective diffusion coefficients respectively. 
In fig. 4 we have plotted the theoretical values for these two coefficients, 
together with experimental results4'n'12). 

The diffusion coefficient at small wavevectors has been measured, by means 
of dynamic light-scattering, by Cebula, Ottewill, Ralston and Pusey 11) for 

t I I q - -  

0 .25  ! i 

. . . . . . .  2 . . . . . . . . . . . . . . .  - ~ k ~  
.-: !"--T~-~ - O. 0 5 

0 J I ~ K 
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oK 

Fig. 3. W a v e v e c t o r  d e p e n d e n c e  of  D o / D ( k )  for  f ive va lues  of  the  v o l u m e f r a c t i o n  ~b. 
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microemulsion droplets and by Kops-Werkhoven and Fijnaut t2) for silica 
particles. These experiments both indicate that the collective diffusion 
coefficient is rather insensitive to changes in the concentration over a large 
range of volumefractions. This remarkable result is confirmed by our cal- 
culations of De, shown in fig. 4 for volumefractions ~b ~< 0.3 (as we remarked 
above, at higher concentrations our small wavevector results become less and 
less reliable due to cancellations). One should keep in mind, however, that on 
the timescale* of these experiments n,12) a particle diffuses over a distance of 
several radii, whereas our results a re - s t r i c t ly  speaking-va l id  only for short 
times in which the configuration of the particles remains essentially constant. 

Pusey and van Megen 4) measured the diffusion coefficient of latex particles of 
radius a = 600 nm, at large wavevectors k -~ 18/a for which D ( k )  has attained 
its large-k limit. The timescale of these measurements is such that a particle 
diffuses over a distance of about a/lO. For the densities considered one may 
therefore assume that the configuration of the particles is essentially constant 
on this timescale and that the measured quantity is indeed, as argued by Pusey 
and van Megen, the short-time selfdiffusion coefficient. One sees from fig. 4 
that the theoretical results for Ds agree with the measurements up to the 
highest volumefractions. We recall that in paper I good agreement was 
obtained only for ~b <~ 0.3. 

0 a 

- f . . . . .  T I I - -  

1.6l~- 

0.4 " ~  Ds 

0 ~ _  I 1 I I 
0 0.1 0.2 0.3 0.4- 0.5 

Fig. 4. Density dependence of the (short-time) self- and collective diffusion coefficients, Ds/Do and 
DdDo respectively. The solid curves correspond to the values given in fig. 3, in the two limits of 
large and small wavevectors. Experimental data for Ds are taken from ref. 4 0ower dots); the data 
for Dc are taken from refs. 11 (triangles) and 12 (upper dots). 

* This timescale is the decay-time of the electric field autocorrelation function, which is of the 
order of (Dok2) -1. 
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7. Interpretation in terms of an effective pair-mobility 

Our lowest order result (5.5) for the diffusion coefficient can be written in a 
form similar to eq. (2.1) 

D(k) = k,T[NG(k)]-’ 5 (R . &*. k eikeR#) , 
+I 

(7.1) 

with /LF given by (cf. eqs. (5.8)-(5.10)) 

##i = (&rr&-‘9 4 z (3 ?ra3)(2*)-3 1 dk eeu*‘Q( I- &)(ak)e4 sin*(ak) 

x [l + &,(ak)]-’ . (7.2) 

This quantity depends only on Ri and Rj and may therefore be interpreted as 
an effective pair-mobility. The renormalization factor [l+ c&,(uk)]-’ in this 
expression accounts for the many-body hydrodynamic interactions between an 
arbitrary number of spheres, including contributions from (diagonal) ring- 
selfcorrelations. 

For small values of ak, S,,(ak) behaves as 

S,,(uk) = $y62)ln,, + S(uk)z , (7.3) 

as follows from expansion of definition (4.4). Since the largest contribution to 
the integral in eq. (7.2) arises from small values of uk, one may approximate 
S,,(uk) in the integrand by its small-k limit (the numerical consequences of this 
approximation for D(k) are discussed below). One then has for the effective 
pair-mobility the simple expression (cf. the evaluation of the connector A{?) in 
ref. 8) 

&s = (6~ *a)-I[ 76, + (1 - S&(u/Rti)( 7 + t&J + f(u/R#( 7 - 3f&J)] , 

(7.4) 

with the definition 

q * = q (1+ G#JrfVno) . (7.5) 

The vector RG E Rj - Ri has magnitude Rij and direction iii 3 Rv/Rij. The 
renormalized density 7s) is given as a function of no in table I. 

If one calculates D(k) from eq. (7.1), with the approximation (7.4) (using the 
Percus-Yevick pair correlationfunction), one finds values for D(k) which are 
smaller than the results* shown in fig. 3, especially at small wavevectors. For 

l We recall that these values result from eqs. (7.1) and (7.2), with the addition of the correction 
OF/G(k), from table III. 
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ak >~ 3, however, the difference is less than 10%, over the whole range of 
volumefractions. For selfdiffusion in particular, one finds from eq. (7.4) that (cf. 
eq. (2.2)) 

D~ ~- kaT(6~rT/*a) -1 . (7.6) 

This formula differs from our full result (fig. 4) by at most 7%. 
The expression (7.4) for the effective pair-mobility has a simple physical 

interpretation: it is the mobility t e n s o r - u p  to terms of order (a/Rij) 4 -  of two 
spheres, in a fluid with viscosity rt*. It can be shown 14) that, within the order of 
approximation of eq. (7.1), 7/* equals the effective viscosity of the suspension. 
To linear order in the density this identification is in fact exact*, since 
y(0 2) = no + [~(~2) (cf. remark after eq. (4.9)), so that 

r/* = "q (1 + ~b + tF(~bz)), (7.7) 

which is Einstein's result for the effective viscosity. 
We stress the fact (noted also in paper I) that the hydrodynamic interaction 

between two particles in a suspension is not screened by the presence of the 
other particles. By this we mean that the effective pair-mobility discussed 
above is of long range (it falls off as I /R) .  In contrast, Snook, van Megen and 
Tough 15) recently proposed an empirical screened pair-mobility to reproduce 
the experimental data for the diffusion coefficient. In view of the above, there 
does not appear to be a physical motivation for their choice. 

To avoid misunderstanding, it should be mentioned that screening of hydro- 
dynamic interactions does occur in a different system, viz. in a porous medium 
consisting of immobile particles in a viscous fluid (see e.g. ref. 16). The 
properties of such a med ium-which  are different from those of a suspension, 
in which the particles may move f r ee ly -were  studied (in particular for large 
concentrations of the particles) by Muthukumar17), including also the effect of 
many-body hydrodynamic interactions. 
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A p p e n d i x  

Proo/ o/ eq. (3.7) 

We start from the identity 

,~(1 - nO~3-1~t)-ln = ~vo[1 - (n - yo)O~-~vo]-ln,  (A.1) 

where ~t~0 has been defined in eq. (3.2). It is convenient to define an operator  I 
with kernel 

1, if r =  r ' ,  
I(r[ r') = 0, if r ~ r ' ,  (A.2) 

and a matrix ~ 0  with elements 

{~o}, .m = 6n,,A~'r")(r = 0 ) .  ( A .3 )  

With these notations we can write 

• ~¢yo = ~ 0  + N,o I ,  (A.4) 

o 

where s¢~0 is defined in eq. (3.8). In the same compact notation we have for 
y ~- yon~ln, 

~/= n ( 1 -  O ~ - l ~ 0 )  -1 , (A.5) 

cf. eqs. (3.1) and (3.3). 
We note that as a consequence of the fact that ~¢~0I = 0, one has the identity 

~¢~o = M~0(1- Y ° O ~ - : ~ 0 l )  - ' '  (A.6) 

Upon substitution into the r.h.s, of eq. (A.1) and repeated use of definition 
(A.4) one then finds 

~ t ( 1 -  n O ~ - ' M ) - ' n  = M~o(i- nO~-~g~o + yoO~-'M~o)-'n 
o 

= ~¢~0(1- ( 1 -  nQ~3-~3~oI)-l(n - y0)Q~-'~C~0)-a(1- n Q ~ - ~ o I ) - ~ n .  
(A.7) 

We now use the identity 

o 1 o 

(1 - nO~-l~J~ol)- lyoO~-' ,~t~,o = y o Q ~ -  M~ o , (A .8 )  
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o 

which follows from I~v0 = 0, and another identity 

(1  - n Q ~ - l ~ o I ) - I n  = n(1 - Q~-l~v0)-I -= 3', 

(cf. eq. (A.5)). Eq. (A.9) is a consequence of the fact that nln = n. 
Substituting eqs. (A.8) and (A.9) into eq. (A.7), one then finds 

~ ( 1 -  n Q ~ - l ~ t ) - l n  = ,d~0(1- 83 'Q~- '~0)- '3 ' ,  

where 83, - 3' - 3'0. This is the required formula (3.7). 

(A.9) 

(A.IO) 
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