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1  |   INTRODUCTION

Relaxation is one of the most important properties for design-
ing new glass products, as the thermal history of glass affects 
all of its properties.1–8 The mathematical form for glass re-
laxation (�) was originally proposed by Kohlrausch in 1854 
based on the decay of charge in a Leyden jar,1,3,9–13

where t is time, τ is the relaxation time of the system, and β is 
the dimensionless stretching exponent. Equation (1) was orig-
inally proposed empirically and is known as the stretched ex-
ponential relaxation (SER) function.1,9 The relaxation time, τ, 
depends on the composition, temperature, thermal history, pres-
sure, and pressure history of the glass, as well as the property 
being measured.14,15 For example, the stress relaxation time of 
a glass can be written as follows15:

where η is the shear viscosity and G is the shear modulus of 
the glass-forming system.9 (Variables are defined in Table 1). 
In addition to using Equation (2) to describe stress relaxation 
time, structural relaxation time has recently been hypothesized 
to follow Equation (2) with bulk viscosity and the difference 
of bulk modulus between infinite and 0 frequency replacing 
shear viscosity and shear modulus.15 Both η and G vary with 
the temperature (T) and thermal history of the glass (as quanti-
fied via the fictive temperature, Tf) as well as the pressure (P) 
and its corresponding history (fictive pressure, Pf).

16 The math-
ematical form proposed empirically by Kohlrausch was subse-
quently derived by Grassberger and Proccacia from a random 
trap model17; however, this model is unable to provide physical 
meaning to the stretching exponent at all temperatures.2,17–19

(1)� (t) = exp
(

− (t∕�)�
)

,

(2)�s =
�
(

Tf, T, Pf, P
)

G
(

Tf, T, Pf, P
)
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Abstract
Relaxation behavior is critically important for nearly all high-tech applications of 
glass. It is also known as one of the most difficult unsolved problems in condensed 
matter physics. The relaxation behavior of glass can be described using the stretched 
exponential decay function exp

(

− (t∕�)�
)

, the shape of which is governed by the 
dimensionless stretching exponent β. Here, a temperature-dependent model for β(T) 
is proposed. The model is derived based on the Adam-Gibbs relationship and insights 
from the energy landscape description of glass-forming systems. The model captures 
previously known limiting values of β(T) while also providing a continuous transi-
tion between these limits. Additionally, the model captures the effects of fragility 
and thermal history. The model is validated with experimental data for commercial 
silicate glasses and a borate glass.
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While it is well known that liquids at high (T >> Tg) 
temperatures exhibit simple exponential decay (i.e., β = 1), 
Phillips18 derived a model for the limiting value of β at tem-
peratures sufficiently below the glass transition temperature 
(Tg). According to the Phillips model, β is related to the di-
mensionality of the relaxation pathways by,

Here, d is the dimensionality of the glass network, and f* is 
the fraction of activated relaxation pathways.2,3,11,12,18 Some 
examples seen in practice include: a three-dimensional net-
work with all pathways activated (d = 3, f* = 1), yielding a 
value of β = 3/5; a three-dimensional network with half of 
the pathways activated (d = 3, f* = 1/2), yielding β = 3/7; 
and a two-dimensional network with all pathways activated 
(d = 2, f* = 1), yielding β = 1/2. In the Phillips model, the 

relaxation pathways can be classified as either long-range or 
short-range. Structural relaxation involves only long-range 
pathways (f* = 1/2), whereas stress relaxation involves both 
long- and short-range pathways (f* = 1).2 The Phillips model 
was experimentally validated by Welch et al. in their 1.5-year 
measurement of the room temperature relaxation of Corning 
Gorilla® Glass, where β was found to be 3/7 for structural 
relaxation12; an exponent of 3/5  has also been confirmed 
for stress relaxation of other industrial silicate glasses.11 
The SER equation (Equation 1) has also been derived using 
graph theory, where the SER form often appears in analytical 
solutions.20–30

The purpose of this work is to provide a physically moti-
vated equation (a model) that reproduces the high-temperature 
limit of β = 1 and the low-temperature (T << Tg) limit given 
by Phillips in Equation (3), while providing values for β at 
in-between temperatures through the glass transition regime. 
Relaxation behavior is critically important for the design and 
use of high-tech commercial glasses. Hence, any improve-
ment in the understanding of relaxation can be used to opti-
mize glass composition design and process conditions. The 
model presented herein is the first model to account for the 
temperature dependence of the stretching exponent during 
glass relaxation, and therefore provides a new degree of 
understanding and control in the design and processing of 
glassy materials.

2  |   MODEL

To connect the stretching exponent of glass-forming sys-
tems to its physical origins, we can begin with a result from 
Richert and Richert31 that relates β to an underlying struc-
tural relaxation time distribution, and then develop equations 
that determine β from known quantities. Their expression in 
the limiting case of heterogeneity (as discussed by Richert 
and Richert31) is given by,

which relates β to the variance of the logarithm 
(

�2
ln�

)

 of the 
structural relaxation time τ. For reference, all variables are de-
fined in Table 1. The physical origins of the relaxation time τ 
are related to the configurational entropy (Sc) as shown by the 
Adam-Gibbs equation,32–34

where τ∞ is the infinite temperature relaxation time, T is the 
absolute temperature, and B represents the energy barrier for 
relaxation.

(3)𝛽 = lim
T≪Tg

df∗

df∗ + 2
.

(4)�2
ln�

=
�2

6

[

1 − �2

�2

]

,

(5)ln� = ln�∞ +
B

TSc

,

T A B L E  1   Variable definitions

Variable Definition

τ; τs Structural relaxation time; stress relaxation 
time

β Kohlrausch exponent (i.e., the stretching 
exponent)

T; Tf; Tf,i Absolute temperature; fictive temp.; partial 
fictive temp.

P; Pf Pressure; fictive pressure

kB Boltzmann's constant

wi, ki, i = 1 to N Prony series parameters

B Adam-Gibbs relaxation barrier

Sc Adam-Gibbs configurational entropy

σB Distribution of activation barriers

σ2 Variance

Na Number of atoms

f Topological degrees of freedom per atom

Ω Degenerate configurations per floppy mode

H Enthalpy barrier for Relaxation

d Number of dimensions

f* Fraction of activated relaxation pathways

S∞ Adam-Gibbs entropy in the infinite-
temperature limit

m Kinetic fragility index

m0 The limit of a strong liquid

� Grouped constants 
√

6�
B

�N
a
k

B
lnΩ

A Proportionality between fragility and 
distribution of barriers

x A given composition

� �S∞

5.640A1∕2

� ′ Intercept of the linear model of Δ
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      |  4561WILKINSON et al.

Combining Equations (4) and (5), Gupta and Mauro19 
proposed that the variance of the energy barriers for relax-
ation (�2

B
) could be rewritten as follows:

Solving for the stretching exponent,

The work of Naumis et al.35,36 has shown that the con-
figurational entropy of glass-forming systems is proportional 
to the topological degrees of freedom in the network, a re-
sult that was used in the derivation of temperature-dependent 
constraint theory37 and the MYEGA (Mauro-Yue-Ellison-
Gupta-Allan) equation for the viscosity of supercooled liq-
uids.34 The MYEGA equation was derived by expressing the 
configurational entropy as follows:

In Equation (8), f is the topological degrees of freedom 
per atom, Na is the number of atoms, kB is Boltzmann's con-
stant, x is a given composition and Ω is the number of de-
generate configurations per floppy mode. The temperature 
dependence of the topological degrees of freedom was ap-
proximated using a simple two-state model,

Here, H(x) is the enthalpy barrier for relaxation, d is the 
dimensionality of the system, and f* is the fraction of acti-
vated relaxation pathways. Combining Equations (7) and (9) 
as well as condensing the unknowns into the term defined by

we get

This can be compared to the prediction made by Phillips18 
for the stretching exponent at temperatures below the glass 
transition,

Comparing the two expressions of Equations (11) and 
(12), they would agree if

We will show later (Figure 4) an example where extrapo-
lating our model prediction for β to room temperature (with 
T in Equation (13) replaced by fictive temperature Tf) gives a 
result close to the Phillips value of Equation (12). When the 
temperature T in Equation (11) is high (much larger than γ) 
then Equation (11) gives us β→1. Thus, the model can inter-
polate between the low-temperature (Phillips) value and the 
high-temperature value of 1. In our current model, we do not 
have access to a value for γ in Equation (10) so this model 
cannot assess whether the Phillips room temperature value 
for β is universal, i.e., whether Equation (13) is always satis-
fied at room temperature.

Zheng et al.38 showed that the Mauro-Allan-Potuzak 
(MAP) model for the relaxation time of the nonequilibrium 
glassy state39 implies that the configurational entropy can 
be written as a function of thermal history (Tf), the fragility 
index (m), the fragility limit of a strong liquid (m0), the glass 
transition temperature (Tg), and the limit of infinite tempera-
ture configurational entropy (S∞) as,

The qualitative relationship between the distribution of ac-
tivation barriers and fragility was proposed by Stillinger,40,41 
who suggested that the energy landscape of a strong liquid 
(low fragility) has a small distribution of activation barriers 
and that a higher fragility is associated with a broader distri-
bution of activation barriers, that is, a higher variance of the 
activation barriers. This leads to a phenomenological rela-
tionship that is here assumed to be valid based on Stillinger's 
work on energy landscapes,40,41

where A is some constant of proportionality. This expression 
was chosen because in the limit of a strong glass there is an 
infinitely sharp distribution of activation barriers. Combining 
Equations (7), (14), and (15), we obtain the temperature depen-
dence of the stretching exponent for a liquid:

(6)�2
B
=
[

TSc(T)
]2 �2

6

(

1 − �2

�2

)

.

(7)
� =

�TSc(T)
√

[

6�2
B
+
(

�TSc(T)
)2

]

.

(8)Sc(T, x) = f(T, x)NakBlnΩ.

(9)f(x, T) = df∗ = 3exp

(

−H(x)

kBT

)

.

(10)� =

√

6�B

�NakBlnΩ

(11)
� =

df∗

√

(

�

T

)2

+
(

df∗
)2

.

(12)
� =

df∗

2 + df∗
.

(13)
�

T
= 4 + 4df∗ .

(14)Sc(Tf) =
S∞

ln10
exp

[

−
Tg

Tf

(

m

m0

− 1

)]

.

(15)�2
B
= A

(

m

m0

− 1

)

,

(16)

�(Tf) =
�TfS∞exp

[

−
Tg

Tf

(

m

m0

− 1
)]

√

6 (ln10)2 A
(

m

m0

− 1
)

+ �2T2
f
S2
∞

exp
[

−
2Tg

Tf

(

m

m0

− 1
)]

.

 15512916, 2021, 9, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.17885 by U
N

IV
E

R
SIT

Y
 O

F C
IN

C
IN

N
A

T
I M

E
D

IC
A

L
 C

E
N

T
E

R
 L

IB
R

A
R

IE
S, W

iley O
nline L

ibrary on [28/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4562  |      WILKINSON et al.

Fictive temperature appears in this new expression be-
cause we are deliberately expressing this function as an equi-
librium model. This assumption is not physically rigorous but 
does allow the model to be extended to the nonequilibrium 
glassy state. Rewriting Equation (16) in terms of one un-
known (ζ) and grouping constants,

Equation (17) is an expression for the stretching exponent 
as a function of thermal history, glass transition, and fragility 
index with only one unknown. In Equation (17),

The only unknown for the compositional dependence of 
the stretching exponent is the value of �. The composition-
dependent part of Equation (18) is S∞ since we approximate 
A to be independent of composition. The fragility depen-
dence of S∞ was proposed by Guo et al.,42

where x is composition and xref is a reference composition in 
the same glass family. Seeking the simplest possible expression 

to approximate the unknown ζ, we take the natural logarithm 
of Equation (18) and of Equation (19) and combine them to get

with the additional definition

The result is that ln ζ′ varies linearly with fragility m and 
the intercept ln ζ′ is independent of composition (depends on 
one reference composition).

In Figure 1 we plot the data of Böhmer et al.43 versus the 
predicted exponent. The work of Böhmer et al. is the summary 
of the literature data relating fragility index to the stretching 
exponent at the glass transition, which we use to fit values to 
Equation (20). The model was then evaluated using the glass 
transition temperature and fragility of each system. The data-
set included in their work covers chalcogenide, oxide, and 
organic glasses. The fitting (consisting of least-squares min-
imization of the difference between the predicted stretching 
exponent and that which was reported) was done twice, once 
for organic and once for inorganic systems. During the fit it 
was assumed that Tg = Tf. Some assumption about thermal 
history was necessary since the individual thermal histories 
or Tf values are not known for this whole collection; since we 
are trying to track overall trends in β values versus compo-
sition, this reasonable simplifying assumption is consistent 
with our program. Given the multiple measurement methods 

(17)�
(

Tf

)

=
Tf�exp

[

−
Tg

Tf

(

m

m0

− 1
)]

√

(

m

m0

− 1
)

+ T2
f
�2exp

[

−
2Tg

Tf

(

m

m0

− 1
)]

.

(18)� =
�S∞

√

6 (ln10)A1∕2
.

(19)S∞(x) = S∞(xref)exp

[

m(x) − m(xref)

m0

]

,

(20)ln � =
m

m0

+ ln� �,

(21)ln � � = ln

�

�S∞
�

xref

�

√

6 (ln10)A1∕2

�

−
m
�

xref

�

m0

.

F I G U R E  1   � predicted and from literature showing good agreement with a root-mean-square error of 0.1. The fit for organic systems is given 
by � � = e

− 6.6
K and for inorganic systems by � � = e

− 7.5
K. The data are sorted from the lowest experimental value of the stretching exponent to the 

highest. Error bars are not available for the experimental data since the original source of this data did not report them. The error bars for the model 
are based on the standard deviation of the calculated intercepts for organic and inorganic systems [Color figure can be viewed at wileyonlinelibrary.
com]
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      |  4563WILKINSON et al.

and the multiple sources of stretching exponent data, it is dif-
ficult to make an accurate estimate of the error in the fitted 
intercepts. Using Equations (17) and (20), the temperature 
and compositional dependence of the stretching exponent can 
be described with only one free parameter.

3  |   EXPERIMENTAL VALIDATION

Experimental density measurements were made using 
Corning JadeTM glass as described elsewhere.11 Changes in 
the density are normalized to obtain the relaxation functions, 
which are fit with Equation (1). The resulting values of β 
are shown in Table 2. A comparison in Figure 2 is shown 
with data obtained on a soda lime silicate, SG80, where the 
stretching exponent was obtained using the measurement of 
the released enthalpy as a function of isothermal annealing 
time during relaxation below the glass transition. The meas-
urement of the released enthalpy44 relies on the change in the 
excess heat capacity in the glass transition range as a function 
of annealing time. Normalized released enthalpy relaxation 
functions for each temperature were fit with Equation (1) 
to obtain the stretched exponent values for SG80. In Figure 
2, parts A and B are samples measured below Tg while in 
part C the samples measured are at Tg and above. The values 
were then fit with Equation (17) where the only free param-
eter was �, with an equilibrium assumption (Tf = T). Figure 
2 also includes a comparison of the model fit to the literature 
values of the stretching exponent reported for glassy B2O3, 
chosen because of the large collection of β values over a 
wide temperature range. Tg and m values were determined 
by equilibrium viscosity measurements45 in the vicinity of 
the glass transition range. The deviation seen in Figure 2A,B 
of the experimental points away from the model calculation 
are most likely due to the calculation being equilibrium while 
the datapoints were measured near the glass transition.

4  |   DISCUSSION

A combination of the MAP model for non-equilibrium shear 
viscosity,39 the model presented here primarily in Equation 
(17), and the model presented by Wilkinson et al.49 for the 

temperature dependence of elastic modulus, allows for fully 
quantitative modeling of stress relaxation behavior. The 
missing model required to understand structural relaxation 
is the bulk viscosity curve.15 All previous relaxation (struc-
tural or stress) models9,42 have relied on approximations that 
use a constant exponent β and on a constant (temperature-
independent) modulus value, whereas here, every parameter 
of Equation (1) may be modeled as a function of tempera-
ture. Furthermore, in combination with the relaxation models 
described by Guo et al.,42 in which multiple fictive temper-
atures are described using a Prony series and a temperature-
dependent modulus, one can construct a relaxation curve 

T A B L E  2   Measured temperatures and their corresponding relaxation values for Corning JadeTM glass and Sylvania Incorporated's SG80

Glass
Temperature 
(K) Tg (K) Tg/T m � (K−1) β β Uncertainty τ (s)

Corning JadeTM 1031 1074 1.042 32 0.002 0.504 0.052 7249

Corning JadeTM 1008 1074 1.065 32 0.002 0.447 0.04 32458

Corning JadeTM 973 1074 1.103 32 0.002 0.395 0.029 419214

SG80 800 800 1 36 0.0057 0.632 0.0294 9.2

SG80 783 800 1.021 36 0.0057 0.593 0.0231 18.2

F I G U R E  2   Equilibrium model proposed with the experimental 
points showing good agreement between the experimentally measured 
data points and the equilibrium derived model. The experimental 
RMSE was 0.02 for Corning JadeTM (A) and less than 0.01 for SG80 
(B). (C) The model fit for B2O3 experimental data.46,47 The fragility 
and glass transition temperature of the B2O3 are taken from the work of 
Mauro et al48 [Color figure can be viewed at wileyonlinelibrary.com]
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4564  |      WILKINSON et al.

accounting for the temperature dependence and thermal his-
tory dependence of all relevant parameters:

Here, wi and ki are fitting parameters that are completely 
determined by the value of β, and each term in the Prony se-
ries is denoted with the subscript i. Usually, 8 or 12 terms are 
included in the Prony series.1 Each term in the Prony series is 
assigned a partial fictive temperature (Tfi) whose relaxation 
is described by the simple exponential in the Prony series. 
Equilibrium conditions are assumed at the start of the simu-
lation, which allows for a known set of starting probabilities 
within the energy landscape interpretation of relaxation. The 
same model also includes the fragility index and glass transi-
tion dependence of the non-equilibrium shear viscosity. This 
method is implemented in RelaxPy,9 as discussed in the next 
section. This serves as an approximation for the evolution of 
the non-equilibrium state; however the temperature depen-
dence of the bulk viscosity and a replacement for fictive tem-
perature need to be quantified to improve the understanding 
of the underlying physics.15,16,50

Separately, we can explore the relationship between this 
model given by Equation (17) and the underlying energy 
landscape. In order to better understand the stretching ex-
ponent β, consider that there exists a full set of parallel re-
laxation modes within an energy landscape. The relaxation 
modes are then weighted by the occupational probability 
corresponding to a particular mode. This gives a series of 
transition rates with some probability prefactor and an as-
sociated relaxation time (scaled from the mean relaxation 
time), which gives rise to a Prony series form of Equation 
(22). Thus, the distribution of relaxation times (or barriers) 
determines the evolution of the stretching exponent while 
the average barrier determines the mean relaxation time. If 
this Prony series description, in turn, describes the stretch-
ing exponent, we arrive at a physical description and origin 
of the stretching exponent. As the temperature approaches 
infinity, even though there is a distribution of activation bar-
riers, the distribution of relaxation times approaches a Dirac 
delta function, and the stretching exponent approaches one 
(a simple exponential decay). As the temperature decreases, 
the distribution of relaxation times broadens due to the wide 
distribution of barriers; however, due to the broken ergo-
dic nature of glass, the value of the stretching exponent will 
be controlled by the instantaneous occupational probability. 
The activation barriers may be modeled, for example, using 
a numerically random set of Gaussian distribution of barri-
ers.51 The probability of selecting an individual transition is 
then calculated using a Boltzmann weighting function; the 
transition also has an associated relaxation time. The Prony 

series is then recreated with the probability multiplied by 
the simple exponential relaxation form. The sum of all of 
these terms is then fit with the stretched exponential form. 
Figure 3 shows the stretching exponent calculated for the 
mean activation energy of 1.0 eV and three choices of stan-
dard deviation, � = e−2.5, e−2 and e−1.5 eV as shown in the 
legend, where Equation (1) has been fit to the Prony series 
calculated from an equilibrium Boltzmann sampling of a 
Gaussian distribution of barriers. The temperature depen-
dence for the stretching exponent matches the form derived 
earlier in this work. This stretching exponent shape has been 
shown previously though not in a closed-form solution.51 
This secondary method not only validates the generalized 
form of Equation (17) but also highlights the validity of 
using the configurational entropy and barrier distributions 
as the underlying metric controlling the temperature depen-
dence of the stretching exponent.

5  |   SOFTWARE IMPLEMENTATION

To create software to model this complex behavior, the au-
thors’ existing software RelaxPy9 has been modified into a 
new version, RelaxPy v2.0. Instead of fixed values for the 

(22)

exp

(

−

(

G(T)t

�(T, Tf)

)�(Tf)
)

≈

N
∑

i= 1

wi

(

Tf

)

exp

(

−
G(T)ki

(

Tf

)

t

�(T, Tf)

)

.

F I G U R E  3   Stretching exponent calculated as described in the 
text for a Gaussian distribution of barriers. This plot shows that the 
distribution of barriers has a large effect on the stretching exponent. A 
Tg cannot be described since there is no vibrational frequency included 
in the model, though the glass transition temperature should be the 
same for all distributions since the mean relaxation time is the same 
for all distributions at all temperatures. The deviation is given in ln eV 
units [Color figure can be viewed at wileyonlinelibrary.com]
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Prony series, the values are chosen dynamically to match the 
stretching exponent as predicted by Equation (17). The data-
base of values wi(β) and ki(β) was created with a fixed number 
of terms N in Equation (22) (we chose N = 12). This database 
is available in the same Github repository as the software. 
The parameters were fit by starting with the values obtained 

for β = 3/7 reported by Mauro and Mauro,1 to make the new 
version of the model smoothly reproduce a prior optimal fit, 
then β was stepped by 0.01 (when less than 0.95) or by 0.001 
(when greater than 0.95). Using the previously optimized val-
ues of wi and ki for starting values for each new β, the wi and 
ki values were then varied to minimize the root-mean-square 

F I G U R E  4   (Top) The Prony series 
parameters as a function of the stretching 
exponent. Each color designates one term 
in the series. (Bottom) The output from 
RelaxPy v.2.0 showing the stretching 
exponent effects on the relaxation prediction 
of Corning JadeTM glass. Each quadrant 
shows one property that is of interest for 
relaxation experiments. In particular, 
it is interesting to see the dynamics of 
the stretching exponent during a typical 
quench [Color figure can be viewed at 
wileyonlinelibrary.com]
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error between the stretching exponent form and the Prony 
series form, that is, to satisfy Equation (22) with least error. 
This list of compiled values makes up the contents of a data-
base that the software accesses. The values of wi and ki used 
for a given β are calculated by finding the closest value in the 
database to the given value of β. This allows for an efficient 
implementation of relaxation modeling. Figure 4 shows the 
fitted parameters to the Prony series and an example RelaxPy 
output for Corning JadeTM glass undergoing quenching at a 
rate of 10 K/min. Note that the room temperature stretching 
exponent value is 0.46, a close match the Phillips's “magic” 
value of 3/7 (0.43).6 This prediction for Corning JadeTM is 
a non-equilibrium prediction, in contrast to the equilibrium 
high-temperature prediction shown in Figure 2.

6  |   CONCLUSION

A model was derived through an understanding of the distri-
bution of barriers for relaxation and the temperature depend-
ence of the Adam-Gibbs entropy. The model outlined herein 
describes the temperature dependence of the stretching expo-
nent, β, in glass relaxation. It not only considers the extremes 
at high and low temperature (when compared to the glass 
transition) as in the Phillips model, but also for any inter-
mediate temperature as a function of the fictive temperature. 
This model does not have any explicit temperature depend-
ence since it was assumed that an equilibrium model works 
well to describe the distribution of relaxation times. Given 
the physical argument and the success of this model when 
tested by experiments and by another model, it is at least 
reasonable to formulate the temperature dependence of β in 
terms of its fictive temperature dependence as we have done 
here. Including both T and Tf is possible to consider but lies 
outside our current scope. Using previously derived compo-
sitional dependence for the MAP model, a fragility index de-
pendence of the stretching exponent was derived and tested. 
The model was confirmed using multiple experimental data-
sets. In addition, a theoretical comparison to a distribution 
of landscape activation barriers was found to reproduce the 
same trends as the model.
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