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1. Introduction

One of the problems frequently occurring
in the investigation of the relaxation be-
haviour of linear viscoelastic materials is
that of converting results of dynamie
measurements into the result of a creep
experiment, or vice versa. Formally, these
problems were solved through the theory
of linear viscoelastic behaviour. According
to this theory, the interconversion of various
characteristic functions may be performed
by application of linear integral trans-
formations. For instance, the calculation
of loss and storage compliance from the
creep compliance may be performed by the
Fourier sine and cosine transformation.
However, as has been shown elsewhere (1),
the actual application of those integral
transformations to experimental data gives
rise to basic difficulties, and to tedious
calculations besides. It would therefore be
highly desirable to have simple numerical
formulae for those interconversions which
do not involve any integration of the
function measured. As far as calculation of
transient response from dynamic response
is concerned, numerical formulae of this
type have already been given and discussed
(1). It is the purpose of the present paper to
discuss the inverse problem, viz. that of
numerical calculation of dynamic response
from creep response.

We will base our discussions on a material
which obeys Boltzmann’s superposition prin-
ciple and has a positive retardation spectrum.
Under these conditions, the result of a creep
experiment may be described by the creep
compliance, J (t), as a function of time ¢; it
is defined as the strain as a function of time
produced by a unit step in stress at time
zero. The creep compliance may then be
written as an integral (1):

Jt) =Jo+ [ @) [1 —eti]de+ iy [1]
0

where J, is the instantaneous compliance,
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n the viscosity and f(r) a non-negative
function of 7, the retardation spectrum.
The result of forced vibration experiments
may be described by the storage compliance,
J'(w), and the loss compliance, J''(w), as
functions of the angular frequency, w. The
definition of these quantities is based on the
steady state response to a harmonic stress
with unit stress amplitude and with fre-
quency v = w/2n. Then the strain will
consist of two harmonic components, one in
phase with the stress and one lagging behind
90 degrees with it. The amplitudes of these
components are, respectively, J'(w) and

J'"(w). The integral representations for
J'(w) and J"' (w) are (1):
F@) =+ [ (Ot 2]
0 + wit
V@)= [ fr) g g dr + Yoy [3]
0

For later use we mention the following
formula for the finite difference of the creep
compliance, which is easily found from

eq. [1]:
T @at) —J(at) = [f(z) e-otl? [1 — e~atl7] da
0

+ aitly. [4]

All four expressions [1] to [4] are similar;
they contain an integral over the retardation
spectrum times a function of either wr or
t/r which will be called the intensity function
of the corresponding expression. If we intro-
duce abbreviations z = #/r and z = ljw T,
the intensity functions of expressions [1], [2],
[3] and [4] become simply:

z@) =1 — exp (— 2) [5]
2/ () = «®(1 + 2?) [6]
@) =2/ + 2*) =y (2))z 7]

p(@;0) =[1 —exp(—az)]exp(—oax). [8]

*) Dedicated to Prof. Dr. J. Meixner, Aachen, on
the occasion of his 60th birthday.
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In order to find an approximation for
J"(w) in terms of the finite difference
J(2at) - J(xt), we will approximate the
intensity function 3" (x) of J''(w) in terms
of the intensity function w(x; &) of J(2x1)
— J (v t). Similarly, to find an approximation
for J’ (®) in terms of J () and finite differences
of the type J(2«t) — J(xt), we will ap-
proximate the intensity function y'(x) in
terms of the intensity functions y(x) and
y(x;«). Once these problems have been
solved appropriately, 1t will be found that
also the terms outside the integrals in ex-
pressions [1], [2], [3] and [4] are automatical-
ly accounted for. In the resulting expressions
for the approximation formulae, neither the
instantaneous compliance, J,, nor the vis-
cosity, #, will oceur explicitly.

2. Numerical Formulae for Calculation of
Storage Compliance from Creep Compliance

Various numerical formulae for the cal-
culation of J'(w) from J(I) are listed in
table 1. All these formulae have one
feature in common. The calculation is based
on values of the creep compliance at times
that are equally spaced on a logarithmic
time scale. The ratio between these succeed-
ing times corresponds to a factor of two.
This type of sampling of the creep compliance
had been chosen with regard to the technique
of creep measurement employed at our in-
stitute (2). Using a logarithmic clock (3),
the digital registration unit of the creep
apparatus is activated at the above men-
tioned logarithmic sequence of times, viz.
2 seconds, 4 sec, 8 sec, 16 sec, etc. after the
start of the creep experiment. Therefore, the
item of information needed before those

Table 1. Numerical formulae for calculation of storage compliance from creep compliance: J'(w
J(16¢)] — b [J(16 1) — J(8 )] — c[J(8t) — J(@8)] —d[J(@dt) — J(2¢)]
N — g [J@#2) — J 4] — ~[J(E4) — J(@#/8)]

Aty = J(t) — a[J(321) —
—e[J(21) — J ()] — T (t) — J(t2

formulae can be applied, is just the one
obtained by the digital creep technique.
For a discussion we select two formulae,
viz. the simplest and the most involved
formula of table 1. The simple formula is:

/(@) ~ J(t) — 0.86 [ (28) — J (t)] = 1.86 J (¢)

— 0.86 J (21) [9]

where
o=2mnv=1Jt.

Notwithstanding its simplicity, this for-
mula may be quite useful in a number of
cases; if the damping

tan & (w) = J (@)} (w) [16]

at the point of consideration is small against
unity, formula [9] will be rather accurate.
For, by the methods to be introduced in
Section 4, it will be shown that the relative
error of formulae [9] will always be bounded
between — 0.15 (tan §) and + 0.15 (tan §).
Therefore, formula [9] will have a relative
error smaller than 1.59, in all cases where
tan 4 is smaller than 0.10.

The finite difference, J(2t) — J(t), oc-
curring in formula [9] will be approximately
proportional to the derivative of the creep
compliance with respect to the logarithm of
time, taken at time Y2 t. Therefore we have
the alternative formulation:

J(w) ~ J(t) — 0.257 [dJ(€)/d lég Ele =1t
= J{t) — 0.592 [dJ(E)/d In E)¢ — .01 -

(9]

Eq. [9'] may be more familar; eq. [9] will

be more useful for practical applications.
For large values of (tan 4) more involved

formulae should be used. The most com-

)~ A'(t); t = Lo

a b o d B f g h bounds for formula
relative error; 9, number
| 0855 | vy by i o)
I ; 0.445 _ 0376 - 323 ton g o 1ol
o —0.0990 0608 | — | 0.358 e a1
o “odl9| 0680 | — | 02 | - | oo | sitmd 580 02
0.0108 ;‘6T6; ﬁigﬂ - 0235 | . ?SQM _[li*
’’’’’’ o009 —0169 | 0.739 ~ | o214 | — [o0451 jﬁg_g,:_ig_ -
~0.000715 | 0.0185| —0.197 | 0.778 ~ 0181 | — | 0.0494 (ﬂ o1 tan ‘g 0% | Ul
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plicated formula of table 1 is:

J (@) ~ J(t)-+ 0.0007 [J (32¢) — J (16 £)]

— 0.0185 [J (16 ¢) — J (8 1)]

+ 0.197[J (8¢) — J (48)] — 0.TT8 [J (42) — J (218)]

— 0181 [J (£) — J (#2)] — 0.049 [J (t/4) — J (8)] [15]
where

w=1/t.

We note that the difference between J(¢)
and J' (1/t) is always positive. From eq. [15],
this difference is approximated by a sum
of six terms of the finite difference type. The
principal term in this sum is the one pro-
portional to:

J@&t) — J@2t).

At the left of the principal term are the
terms which constitute the long time con-
tribution to J () — J'(1/t). These terms have
alternating signs. The magnitude of their
coefficients decreases very fast with their
order. At the right of the principal term are
the terms which constitute the short time
contribution to J(f) — J'(1/t). These terms
are all positive. Their coefficients decrease
also very fast with their order. Every term
following the last term in eq. [15] would be
shifted a factor of 4 to shorter times and
would have a coefficient which is 16 times
smaller than the coefficient of its predecessor.

The pyramidal structure of eq. [15] shows
that the value of J’'(w) depends on the value
of J(t,) at point ¢, = 1/w, and on the deriv-
ative of the creep compliance with respect
to the logarithm of time, in a time interval
around point ¢, The behaviour of J(¢) for
t > f, stronger influences the calculation than
does the behaviour of J(t) for ¢ < ¢, To
apply eq. [15], the behaviour of J (f) should
be known in a finite time interval around £,
viz. from £,/8 to 32 ¢,.

Eq. [15] is very accurate, whatever the
value of (tan 6) might be. It will be shown
that the relative error in this formula will
always be bounded between — 0.89, and
+ 0.89%,; moreover the relative error will
also be bounded between — 3.1 (tan 6)9,
and + 3.1 (tan §) %, These error bounds
have been indicated in the last column but
one of table 1.

The way in which formula [15] was obtain-
ed is now illustrated with reference to fig. 1.
We start with the intensity function of
J(t) — J'(1/t), which is equal to:

x(®) — y/(@) = 1)1 + 2°) —exp (—=). [17]

This intensity function is represented by the
heavily drawn line in fig. 1. It is positive for
all positive z-values with a maximum in the
vicinity of # = 1/2. It increases linearly with
x for small z-values and it decreases as x~2
for large z-values. This function is approxi-
mated by a sum of six intensity functions of
the finite difference type in the following
manner:

2(x) — 1 () ~ @'(2) = ayp(x; 16) + by(x; 8)
+ cylx; 4) + dy(x; 2) + fy(x; 1/2)

+ hplx; 1/8) [18]
011
oo!
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1
. ’/»\‘l-av(x;165
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Fig. 1. Intensity function, y(zx) — x'(x), of difference
J(8) — J’(1)t), and intensity function, ¢’(x), of approxi-
mation J(}) — A’(f) to this difference according to
formula [15], plotted vs. z. Also shown are the intensity
functions of the six finite difference terms in formula[15]
which are used to construct approximation ¢’(z)

(cf. eq. [18])

where a, b, ¢ ... are constant coefficients
which have been chosen appropriately. These
six terms are shown in fig. 1 together with the
resulting approximation ¢’ (x) [dashed line].
Approximation [18] yields an approxi-
mation for the intensity function y'(x) by:

¥ (@) ~ x(x) — ¢'(2) [19]

and, therefore, an approximation for J'(w)

by formula [15]. The relative error of
approximation [19] is given by the function:

A'(z) = [x(z) — ¢'(@) — 2" (@) (=) [20]

which is called the relative error function
related to the approximation [15]. The
reason is that the course of A’ (x) vs. x deter-
mines the accuracy of the related approxi-
mation formula.

The course of function A’ (x) vs. x is shown
in fig. 2. A'(x) tends to zero for x — 0 and
for  — co. It shows a number of deviations
from zero in the intermediate z-region. The
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Fig. 2. Relative error function, A’(x), for approximation

[15], vs. z; also shown is the function x-4’(x) for the

same approximation (broken line). Maximum deviations
of both functions from zero have been indicated

maximum values of these deviations have
been indicated. All deviations in A’(x) are
smaller than 0.8%,.

The same figure shows function x - 4’ (x),
which will also be of importance for the
accuracy of formula [15]. This function also
tends to zero for x — 0 and for & — co. Its
deviations from zero remain smaller than
3.1%,.

The way in which the six coefficients
a, b, c...informula [15] have been determin-
ed can now be explained: We imposed two
sets of three conditions each on function
A’ (x) as follows:

(1) x A'(x), A'(x) and A’(z)/x should vanish
at x = 0;

(2) A’ (x) should vanish at the three selected
z-values: x = @, * = @y, ¥ = .

By the first set of conditions it is attained
that A’(x) becomes a good approximation

for y(x) — x'(x) on the left flank of the
maximum of the intensity function [i. e.
between x = 0 and « = 1/2]. By the second
set of conditions it is attained that ¢'{(x)
becomes a good approximation for y(x)
— y'(x) near the maximum and on the
upper part of the right flank of the maximum
of the intensity function.

Points x;, x,, x; are indicated in fig. 2.
They were chosen by trial and error in such
a way that the deviations of A'(x) and of
xz - A" (z) from zero were minimized and that
the various maxima and minima in these
functions are distributed as regularly as
possible. We found as a good choice: x;
= 0.673, x, = 1.99, 2, = 8.26.

For cases on which not enough knowledge
is available to apply formula [15], simpler
formulae have been listed in table 1. For-
mulae [13] and [14] are still applicable for
very large values of tan 6. Formulae [9] to
[12] should be used for small and inter-
mediate (tan §)-values. A more detailed
comparison of the accuracies of the system
of table 1 will be given in Section 4.

The way in which these formulae were
derived is similar to that described above for
formula [15]. However, for formulae [13]
and [14] only the two conditions x A" (x) = 0
and A’(x) = 0 were imposed at x = 0; for
[11] and [12] only one condition was 1mposed
at x = 0, viz. x A(z) = 0 and for [9] and
[10] A'(x) was assumed to remain finite for
x = 0.

3. Numerical Formulae for Calculation of Loss

Compliance from Creep Compliance

Various numerical formulae for the cal-
culation of J"(w) from .J(t) are listed in

Table 2. Numerical formulae for calculation of loss compliance from creep compliance: J”(w) ~ A”(t); t = ljw
A7) = d[J(4) — J(20)] + e [J2¢) —J@] + [[J@#) — J#2)] + g [J(#2) — J(t/4)] + b [J(t/4) — J (#8)]
+ I (E8) — JE16)]+ k [J(/16)— J(¢/32)] + | [J(£/32) — J(t/64)] + m [J(t/64) — J(¢/128)] + n[J(t/128) — J (£/256)]
a e f g h i |k l n bounds for relative error; %, formula
number
o1 8 [1+ 1/(tan 8)]; 26 [21]
, 12 _ _ — 8 [1+1/(tan 8)];— 26/(tan 9) _
—0.470{ 1.715| — | 0.902 v A [22]
—0.505| 1.807| — | 0745 — |0.158 U e O35 (23]
— ) ST
— 0.470| 1.674| 0.196| 0.627| — | 0.194 43;313;‘73&2@3 " o (tan ) 24]
S . ).] : [(tan 0) 5ET
— 0.470| 1.674] 0.197) 0.621 | 0.011 | 0.172 | — 0.0475 oA s o e e
~ 0.470| 1.674| 0.198 | 0.620 | 0.012 | 0.172| — D.0430] — [0.0122) 97 Hié’égﬁ‘tﬁ] (;)2] T (tan(0) (26]
— 0.470| 1.674] 0.198| 0.620 | 0.012 | 0.172 | — |0.0433{ — |0.0108 33“5”7(733,?1}) 2 271
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table 2. The simplest of these formulae
is:

J"(w) ~ 212 [J(t) — J(#/2)] with & = 27y = 1Jt.
{21]

In this formula, o is the angular frequency
and v is the frequency at which loss com-
pliance is calculated. The loss compliance is
approximated by the finite difference be-
tween the creep compliance at times 1/w and
1/2 . This finite difference is approximately
proportional to the derivative of the creep
compliance with respect to the logarithm of

time, taken at the time /}/2. Therefore, we
have the alternative formulation:

J(w) ~ 0.638 [dJ(&)/d log &g = 0.71¢

= 147 [dJ(&)/d Ip E}é = 0.11¢ = 0113/
[211]

Formula [21] is a very rough approxi-
mation. For instance, for (tan 6) = 1 the
error bounds of this formula are + 169, and
— 169%,. For smaller values of tan §, the
error may be even higher. Therefore, for-
mula [21] should be used only for cases
where tan 6 (w) is high.

A formula which is very similar to [21']
has been proposed by Hamon (4) for the
analogous problem of calculating the imagin-
ary part of the complex dielectric constant,
¢”’, from the transient dielectric response
after a step in voltage. Hamons formula
reads:

SO~ o ko [217]
where ¢ (f) is the time-dependent current, C,
the capacity of the measuring electrodes
without sample and ¥V the applied voltage.
In order to translate the dielectric equation
into the one for mechanical creep, we have
to replace ¢’ by J' and the reduced current
i(t)/Cy V by dJ ()/dt. Then Hamons formula
changes to the form [21'] with slightly
different constants, viz. 1.59 instead of 1.47
and 0.10 instead of 0.1131).

A much better approximation for J"' (w)
can be constructed, if .more than one finite
difference term is used. The second best of
the formulae of table 2 involves eight terms:

T ) ~ — 0470 [T (41) — J (28)] + 1.8T4[T(2¢)
— J(#)] + 0.198 [J(t) — J(#/2)]
+ 0.620 [J(t/2) — J(t/4)] + 0.012 [J(¢/4)
— J(/8)] + 0.172 [J(#/8) — J (¢/16)]
+ 0.043 [J(£/32) — J(¢/64)]

+ 0.012 [J(4/128) — J(t/256)] [26]

where
w=1/t.

The principal term in this sum is the one
proportional to

J(2t) — J(t).

To the left of the principal term is the term
which constitutes the long time contribution
to J''(1f¢). This is the only term with
negative sign. To the right of the principal
term are the terms which constitute the
short time contribution to J"(1/¢). These
terms are all positive. Their coefficients
decrease very slowly with their order. For
ingtance, the term proportional to [J (¢/128)
— J(¢/256)] has a coefficient which is still
7% of the principal term. The pyramidal
structure of formula [26] shows that the
value of J''(w) depends on the derivative of
the creep compliance with respect to the
logarithm of time in a broad time interval
around point ¢, = l/w. The behaviour of
J(t) for ¢ < t, affects the calculation much
stronger than does the behaviour of J () for
t > t,. To actually apply formula [26], the
behaviour of J(#) should be known from
/256 to 4 ¢, i.e. from 2!/, decades to the
left, to !/, decade to the right of the point of
interest. A similar conclusion had elsewhere -
(1, 5) already been drawn from another point
of view.

It will not always be necessary to know all
terms in formula [26] with high accuracy in
order to be able to apply this formulae. Tt
will often be sufficient to know upper bounds
for the magnitude of the terms far away
from the point of interest to justify their
omission. For instance, if we know that
[J(4/32) — J (t/64)] and [J (t/128) — J (£/256)]
are not larger than [J(2¢) — J(¢)], and if a
2.5%, error in the calculation of J' is
admitted, the last two terms in formula [26]
may be omitted.

The way in which formula [26] was derived
is illustrated with reference to fig. 3. We
consider the intensity function of J” (1)
which is yx/(x). This intensity function is
represented- by the heavily drawn line -in
fig. 3. It is positive for all positive z-values
with a maximum at x = 1. It increases
linearly with = for small @ and decreases as
z1 for large x. This function is approximated
by a sum of eight intensity functions of the
finite difference type as follows:

). Bounds for the relative error of Hamons formula
are, in %: 51; 14[1 + 1/(tan 8)]j 21/(tand) and
— 7.5[1 + 1/(tan 6)]; — 63/(tan §) .
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(@) ~ g (x) = dp(x, 2) + ew(x; 1) + fyle; 1/2)
+ ... [28]

These eight terms are shown in fig. 3,
together with the resulting approximation

011

001

00014

ever, for small values of tan ¢, it could yield
results which are considerably too small.

It is possible to give a formula for J" (w)
that is applicable for all values of (tan §),
however small they might be. This is

Fig. 3. Intensity function, y”(z), of
loss compliance J”’(1/t), and intensity
function, ¢”’(x), of approximation A”’(¢)
of J”(1/t) according to formula [26],
vs. x. Also shown are the intensity
functions of the eight finite difference
terms in formula [26] which are used
to construct approximation ¢”’(x) (cf.
eq. [28]). Indicated are position and
values of the maximum relative
deviations of approximation ¢”’(x)
from x"(x)

o1 1 10 100

@'’ (z), the dashed line. The relative error of
the approximation [28] is given by the
function:

A7(@) = [¢” (@) — 1" (@) (@) [29]

which is called the relative error function
related to the approximation [26]. The func-
tion A" (z) is zero for x = 0. It shows a num-
ber of deviations from zero in positive or nega-
tive direction. The maximum values of these
deviations have been indicated in fig. 3. Up
to an z-value of x = 190, all deviations
remain smaller than 2.79%. At z ~ 190,
however, the approximation falls short and
A" (z) tends sharply to — 1009%,. At x = 500,
A" is — 259, at = 1000, 4" is — 759%,.
Formula [26] will be a very good approxi-
mation in most cases. We shall show that
the relative error in this formula will always
be smaller than 2.79%,. The lower bound for
the relative error, however, depends in a
rather complicated way on the value of
tan ¢ (w) (see fig. 4). The relative error will
remain above — 4% in all cases where
(tan 4) is in the 0.05 < tan é < oo region.
For (tan d)-values smaller than 0.05, the
lower bound for the relative error rapidly
drops. It is, e. g. — 109, for tan 6 = 0.01
and — 759, for tan 6 = 0.001. The conclusion
is that formula {26] will never yield values
for J'' (w) that are essentially too high; how-

o

1000

+20°%b (—upper bound
{

E—————
- 20°%
L lower bound
-40°%

_60010

= tan8

I

001 X}

oele}]

Fig. 4. Tllustration of the range for the relative error
in formula [26] as function of value of tan d(w)

formula [27]; it is assumed to consist of an
infinite number of terms. Each term follow-
ing the one with coefficient n will be shifted
a factor of 4 in time scale into the direction
of shorter times relative to its predecessor,
and will have a coefficient which is exactly
1, of the coefficient of its predecessor.
Instead of truncating the formula at the
short time end (as was done for the other
formulae of table 2), formula [27] is as-
sumed to be an infinite series. Formula [27]
will then have a relative error that is certain-
ly bound between — 2.79% and + 2.7%, for
all values of tan §.
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In many cases not enough knowledge will
be available to apply the complete for-
mula [26] or [27]. For those cases, a number
of simpler formulae has been listed in table 2
Of course, the accuracy of those formulae
will be the less, the fewer terms are involved.
A more detailed comparison of the accuracies
of the formulae of table 2 will be given in
the next section.

4. Error Bounds for Approximations

Finally, we will discuss the accuracy of
the numerical formulae given in tables 1
and 2. To this end we will derive bounds for
the errors of those formulae. The only
assumptions made for this purpose are the
ones that were already stated in the intro-
duction: validity of the principle of super-
position and the existence of a retardation
spectrum which is non-negative?).

Let A’ (t) be one of the approximations for
J' (w), and A" (t) one of the approximations
for J"(w). We define the errors of those
approximations as the difference between the
approximation and the real value of the
quantity. As all approximations are linear
expressions in J(«t) with constant coeffi-
cients, the errors may be written as integral
transformations over the retardation spec-
trum. Using eqgs. [2], [3], [4], [20] and [29],
we find for the errors?):

¢(0) = A'(t) — (o) = [ () /@ A'(@) dv [30]

0

&(w) = A"(t) — J"(w) = [ f(1) y"'(x) 4"(x) dz [31]
0

where A'(x) and A’ (x) are the relative error
functions defined earlier; they may be
obtained by inserting eqgs. [1] to [8] into the
corresponding definition of either table 1 or
table 2. For a number of approximations,
A'(x), x A'(x) and A" (z) have been plotted
vs. z in figs. 5, 6 and 7.

Fig. 5 shows A’(x) vs. z for approximations
[13], [14] and [15]. In all cases 4’(x) vanishes
for very small x and for very large , with
a number of maxima and minima in the
region of intermediate z-values. Therefore,
A'(z) is bounded for all positive z-values by

1) A similar manner of deriving error bounds for
approximations has been introduced in (1).

2) The terms in ¢’ and ¢/, which would arise from
Jo or 1/w 7, cancel out in most approximations. In the
few cases where such a term remains, it is without
consequences for the argument.

1°hF

Bix) [

I
—1o% | \\\\ 7 v

Fig. 5. The course of relative error functions, 4'(z), for
approximations [13], [14] and [15], vs. x

a positive upper bound and a negative lower
bound. The absolute values of both bounds
are small compared with unity.

Comparing expression [30] with the de-
finition of J'(w) in the following form:

T(w) = Jy+ [ 1) /@) dv [2]
0
we can immediately bound error & (w) in
terms of a small positive or negative fraction
of J'(w):

S (@) {4 (@}min = &'{w) < J(0) {4 (@)}max . [32]
This leads to a small positive upper bound
and a small negative lower bound for the
relative error & (w)/J’ (w) [cf. column § of
table 1].

Fig. 6 shows the course of x A'(x) vs. x for
approximations [9], [10], {11] and [12]. It is
seen from this figure that also function
x A’(x) is bounded for all positive x-values
between a positive upper bound and a
negative lower bound.

10°%f

10°%}

01 1 10

Fig. 6. The course of functions - A’(zx) for approxi-
mations [9], [10], [11] and [12], vs. &
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Comparing expression [30] with the de-
finition of J''(w) in the following form:

JN((,U) —

INTD

on b x)/x] dr [3]

we can bound error ¢ (w) in terms of a small
fraction of J'' (w) = J'(w) tan §:

J(w) (tan ) {x A'(2)}min < &(w) < J'(w) (tan §)
X {& A'(x) [33]

}max .

This leads to a positive and a negative bound
expressed in (tan d), ag given in column 9
of table 1.

Fig. 7 shows the course of A"'(x) vs. « for
approximations [22], [24], [25], [26] and [27].
A’’{x) vanishes for very small values of x; it
shows a number of maxima and minima in
the region of intermediate x-values. However,
for each formulal), A’ (x) finally tends to — 1
for large xz-values. The xz-value where this
transition takes place, depends on the length
of the short time-tail of the formula. Con-
sequently, A”’(x) is bounded by a small
positive upper bound. However, it does not
have a useful lower bound?!). It is therefore
not possible to apply the reasoning used
above to bound relative error ¢ (w)/J"" (w).

(27)

(oX} 1 10 100

1000

Fig. 7. The course of relative error functions, A"(x),
for approximations [22], [24], [25], [26] and [27], vs. 2

To find effective bounds for both, &' (w)
and ¢ (w), the integral representations of
the errors are rewritten in a slightly different
way:

=<3

, A(w) ) ‘
)= [ [0 [y @) + p @] | = dr  [34]
J # {x+pi
I MO 1@ + or @) | e (3]

where p and ¢ are assumed to be two arbitra-
ry, but non-negative numbers. Formulae [34]

1) Except for formula {27].

and [35] are identities with expressions [30]
and [31]. We compare the errors with the
integral representation of the following linear
combinations of J'(w) and J'' (w):

Tw) + p (@) = J(@)[1 + p(tan 0)] =

[ 10l @ + 92 @) de+ Ty + L [36]
0 ]

J(®) + ¢J () =J" ()1 + ¢ (tan O)] =

I fx

The terms outside the integrals in [36] and
[37] are positive and of no consequence for
what follows.

The only difference between the integral
representations of [34] and [36] on the one
hand, and of [35] and [37] on the other are
the terms within brackets in ¢ and &". For
positive values of x, these terms have an
upper and a lower bound which will depend
on the chosen fixed value of p or ¢; therefore
we may write:

— tp

u”w%+quﬂdr+qJ'+ [37]

[38]
for all z = 0
)1 + gal} =&7(g) . [39]

) = {xd@)x + pl; = &(p)

C// q) < {A//

Though we did not find a useful lower bound
of A”(x) itself, the absolute value of lower
bound — {'"{q) will be small, whenever the
value of parameter ¢ is chosen sufficiently
large.

Because of our assumption that the re-
tardation spectrum is non-negative, the
integrands in eqgs. [34], [35], [36] and [37]
are positive or zero for all positive values of
7 respectively x. Therefore, inequality [38]
together with eqs. [34] and [36] yield the
following bounds for the relative error:

— (P [1 + p (tan 9)] < &' (w)/J'(w)

< &(p)[1 + p (tan 6)] . [40]
In a similar way we find:
— (@ [1 + g/(tan 9)] < &”(w)/J”(w)
= &(g) [1 + g/(tan )] . [41]

The bounds for relative error &'/J’ depend
on the chosen fixed value for p and are in-
creasing functions of the value of (tan ) at
angular frequency . If we repeat the
argument for a different value of p, we
obtain different functions of (tan d) as
bounds. If the procedure is performed for
a whole sequence of p-values between zero
and infinite, two families of curves result.
The curves of the one family all constitute
apper bounds for g'[J’, the curves of the
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other family all constitute lower bounds.
The envelopes of both the families constitute
most restrictive upper and lower bounds.
This procedure has been performed on a
digital computer for all numerical formulae
listed in tables 1 and 2. Upper and lower
bounds for the relative errors in those
formulae are given, as functions of (tan §),
in tables 3 to 6. Tables 3 and 4 list upper and
lower bounds for formulae of the 4'(f) type;
in tables 5 and 6 upper and lower bounds are
listed for formulae of the 4’ (¢) type. Note

Table 3. Upper bounds for relative error, in 9, of
formulae for calculation of J'(w) from J(¢), as functions
of tan d(w)

formula [9]
tan

{101 [11] [12] {13] [14] [15]
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Table 4. Absolute values of lower bound for relative
error, in 9, of formulae for calculation of J'(w) from
J (£), as functions of tan §(w)

formula [9] [10] [11] [12] [13] [14] [15]
tan 0
0.1 1.5 0.77 0.75
0.15 2.2 1.2 1.1
0.2 2.9 1.5 1.5
0.3 4.4 2.3 2.3 06 06 0.7 04
0.4 5.8 3.1 3.0 0.8 08 09 05
0.5 7.3 3.9 3.8 1.0 10 12 06
0.6 8.8 4.6 4.5 13 11 13 0.6
0.7 10.2 5.4 4.9 14 1.3 15 05
0.8 11.7 6.2 5.0 1.5 15 16 0.8
1.0 14.6 7.9 5.0 1.7 15 16 038
1.5 11.6 5.1 1.9 1.5 16 08
2.0 15.4 5.1 21 15 16 08
3.0 5.1 25 1.6 16 08
4.0 5.2 29 15 1.6 08
5.0 5.2 33 156 16 08
6.0 5.3 3.7 15 16 08
7.0 5.3 41 15 16 08
8.0 5.4 45 15 16 08
10.0 5.5 52 15 1.6 0.8

Table 5. Upper bounds for relative error, in %, of
formulae for calculation of J”/(w) from J{(¢), as functions

of tan d(w)

formula [21] [22] [23] [24] [25] [26] [27)
tan &
0.01 257 23 3.5 1.3 2.3 2.7 2.7
0015 257 23 35 13 23 27 27
0.02 257 23 3.5 1.3 23 2.7 2.7
003 257 23 35 13 23 27 27
004 257 23 35 13 23 26 26
005 257 23 35 13 23 25 25
0.06 25.7 23 3.5 1.3 22 24 24
007 257 23 35 13 22 24 24
008 257 23 35 13 22 23 23
0.1 257 23 385 13 21 22 22
015 257 23 3.5 1.3 20 20 20
0.2 25.7 2.3 3.0 1.3 1.8 1.8 1.8
0.3 257 22 24 13 16 16 1.6
0.4 2577 20 21 1.3 1.5 1.5 1.5
0.5 234 1.9 1.9 1.3 14 1.4 14
0.6 205 1.8 1.8 1.3 1.3 1.3 1.3
0.7 185 17 1.7 12 12 12 12
0.8 169 16 16 1.2 12 1.2 12
1.0 148 14 16 11 11 11 11
1.5 11.9 1.1 1.5 1.0 1.0 1.0 1.0
2.0 105 1.0 14

3.0 9.0 1.3

4.0 8.3 1.3
5.0 7.9 1.3
6.0 7.6 1.2
7.0 7.4 1.2
8.0 7.2 1.2

10.0 7.0 1.1

that lower bounds, which are always nega-
tive, are listed with their absolute values
only. Illustrations are given in figs. 8, 9, 10
and 11.

In figs. 8 and 9, upper and lower bounds
for the relative error of the formulae of
table 1 are shown as functions of (tan d), in
double logarithmic diagrams. The absolute
value of all bounds increases with increasing
value of (tan d). Consequently, the calculation
of J'(w) from J(t) will be the more difficult,
the higher the value of (tan 4). From figs. 8
and 9 it will be easy to determine the appro-
priate approximation to be used in each
particular case. If, for instance, experimental
accuracy admits calculation of J’(w) within
an error of 19%,, formula [9] could be used for
values of (tan 8) between 0 and 0.07; for-
mula [10] between 0 and 0.13, formula [12]
between 0 and 0.5, and finally formula [15]
for all (tan é)-values.

In figs. 10 and 11 upper and lower bounds
for the relative error of the formulae of
table 2 are shown as functions of (tan ), in
double logarithmic diagrams. The absolute
value of all bounds decreases with increasing
value of (tan §). Consequently, the calcula-
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Table 6. Absolute values of lower bounds for relative
error, in %, of formulae for calculation of J”(w) from 'O°%f
J (t), as functions of tan d(w) -

formula [21] [22] [23] [24] [25] [26] [27]
tan &

0.001 76.0 2.7 L
0.0015 515 2.9 1%
0.002 393 2.9 b
0.003 91.7 27.0 2.7 3 . - as)
0.004 766 208 2.7
0.005 62.0 172 2.7 Y //;/ s
0.006 522 147 27 A g
0.007 45.1 129 27 Vi P o tand
0.008 308 116 27 gl L0 Sl
o1 1 10
0.01 32.5 9.8 2.7
0.015 84.1 805 226 T4 27 Fig. 9. Lower bounds for relative error of formulae of
0.02 66.8 61.2 17.7 6.1 2.7 table 1, as functions of value of tan ¢ ()
0.03 4.5 41.2 128 49 2.7
0.04 334 312 10.1 4.3 2.9
0.05 88.2 26.7 25.2 8.3 3.9 279
0.06 76.9 223 21.2 7.1 3.5 2.7
0.07 660 191 184 63 32 26
0.08 577 16.7 16.2 5.6 2.9 25
0.1 85.7 46.2 134 13.2 4.7 26 24
0.15 59.9 30.8 8.9 9.2 3.6 2.2 2.2 100%¢
0.2 463 231 67 172 30 20 20 ¥
0.3 328 154 4.5 5.2 2.4 1.7 19 I
0.4 26.0 11.6 3.4 4.2 2.1 1.6 1.6 S (21
05 220 93 27 36 19 16 16 . [
0.6 19.3 i 2.2 3.2 1.8 1.5 1.5 S~
0.7 17.4 6.6 1.9 2.8 1.7 1.5 1.5 S
0.8 15.9 5.8 1.7 2.6 1.6 1.5 15 1001k \\\
10 139 46 13 21 15 14 14 @Y e T
15 111 31 09 16 14 14 14 ’
2.0 9.7 2.3 1.3 1.3 1.3 13 i \
3.0 8.2 1.5 0.9 0.9 0.9 0.9 -
4.0 6.5 1.1 =~
50 52 09 @4 (25
6.0 44 o :
7.0 37 Volop T tand
8.0 3.3 P R S S O TR
10.0 2.6 [o)e]] 03] 1 10
Fig. 10. Upper bounds for relative error of formulae of
table 2, as functions of value of tan § (w)
-10%0
100sk ~26) N (23)
N \_\ {
— 1ok
b -10%
ﬁ (27)
-1
-0t e mtand
0 0001 001 o1 1 10

Fig. 8. Upper bounds for relative error of formulae of  Fig. 11. Lower bounds for relative error of formulae of
table 1, as functions of value of tan § (w) table 2, as functions of value of tan d (w)
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tion of J'' (w) from J (t) is the more difficult,
the lower the value of (tan é). Consider first
the upper bound for the relative error as
shown in fig. 10. Only formula [21] could yield
results which are considerably too high,
namely 26%, in the worst case. The other
formulae will never yield results which are
essentially higher than the real value of
J'"(w). The relative error always remains
below 3.59%, for formula [23], 1.39% for
formula [24], 2.7%, for formula [27] etc. The
difficulty originates from the lower bound
for the relative error as shown in fig. 11.
Only formula [27] may be safely used for
all values of tan d(w). The other formulae
have a (tan d)-region where they may be
safely used, and a (tan d)-region where they
might yield results which are considerably
too low. If, for instance, experimental
accuracy admits calculation of J'/(w) with
an error smaller than 39, formula [21] should
not be used ; formula [22] could be safely used
for values of (tan 6) between 1.5 and oo;
formula [23] between 0.45 and oo; formula
[24] between 0.65 and oco; formula [25] be-
tween 0.2 and oo; formula [26] between
0.075 and oo; and formula [27] for all values
of (tan d).

5. Concluding Remarks

We would like to emphasize that the
formulae given in tables 1 and 2 will be much
more accurate in most practical cases than
one might conclude from the error bounds
which have been derived. The error of a
formula will really attain its bound in the
most unfavourable situation only, viz. when
the retardation spectrum consists of one
sharp line which is situated at the most
unfavourable place. When dealing with a
smooth spectrum of retardation times, the
positive and negative contributions of the
error function under the integral will cancel
out for the largest part. In those cases, the
real error may well be one order of magnitude
smaller than the bounds. This remark should
apply especially to the lower bounds of the
errors of the truncated formulae of table 2.

Whenever possible, one should start the
considerations with the complete formula
(formula [15] for J'(w) and [27] for J"' (w)).
Then, by using experimental evidence on
the magnitude of the logarithmic derivative
of the creep compliance, one should leave
out all terms with a contribution smaller
than the experimental error. Often one will

then end up with a formula which only in-
volves a small number of significant terms.
A different procedure is to derive more
restrictive lower bounds for the relative
error of the truncated formulae of table 2,
by using experimental evidence on the
magnitude of the short time creep behaviour.
Consider, for instance, formulae [24] and
denote the error of this formula by &,q".
It is possible to express this error in terms
of the error of formula [27], denoted here
by é€l5;1"’, and the finite differences of the
creep compliance in the short time domain.
By comparing the definitions of [24] and
[27] and by using eq. [31] twice, we obtain:

&'l = €71} — 0.002 [J(¢) — J(¢/2)] + 0.007 [J(¢/2)
— J(t4)] — 0.012 [J(t/4) — J(¢/8)] + 0.022 [J(¢/8)
— J(t/16)] — 0.043 [J(¢/32) — J(t/64)]

— 0.0108 [J(#/128) — J(t/ 256)] — . . . [42]

We know bounds for the error &'’ [27], viz.:
—0.027J"(0) < £l < + 0.027 J(w) . [43]

From the existence of the upper bound for
formula [21] we derive the following in-
equality :
., 2.12
(@) 2 T [10) — T(2)] = 168 [J() — J(¢2)].
[44]

If it is possible to give bounds of the differ-
ence terms on the right hand side of eq. [42]
in terms of [J (£) — J (t/2)], we can immediate-
ly, by using [43] and [44], derive more
restrictive lower bounds for error &'’ [24].
Consider, as an example, the frequently
ocecurring case that the creep compliance is
a convex function of the logarithm of time,
i. e. that the following inequalities are true:

J(128) — J(4/256) < J(t/32) — J(1/64) < J(1/8)
— J(t16) < J(t/4) — J(t/8) < J(t/2)
—J(H) < J(t) — J(@2).
Then, by combining eqgs. [42] ,[43], [44] and
[45] we obtain the following lower bound for
&"[aa)?
&7 = — 0.027 J”(w) — 0.042 [J(t) — J(¢j2)]
> — 0.027 J"(w) — 0.025 J"(w)
= — 0.052 J"(w) .

[45]

[46]

In this manner we obtained the error bounds
listed in table 7.

A discussion on applications of the for-
mulae proposed here is postponed to a
following publication.
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Table 7. Bounds for the relative error, in 9, for
formulae of table 2 under the condition of convex creep
behaviour

formula number  upper bounds lower bounds

[22] 2.3 — 94
[24] 1.3 —~52
[25] 2.3 — 34
[26] 2.7 —~29
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Summary

Numerical formulae are given for calculation of
storage and loss compliance from the course of the
creep compliance for linear viscoelastic materials.
These formulae involve values of the creep compliance
at times which are equally spaced on a logarithmic
time scale. The ratio between succeeding times cor-
responds to a factor of two.

A method is introduced by which bounds for the
relative error of those formulae can be derived. These
bounds depend on the value of the damping, tan d.
The calculation of the storage compliance is easier with
the lower damping values. This calculation involves
the value of the creep compliance at time ¢, = 1l/w,
and that of its derivative with respect to the logarithm
of time in a rather narrow region around ¢,. In contrast
the calculation of the loss compliance is more difficult
with the lower damping values. This calculation in-
volves the value of the derivative of the creep com-
pliance with respect to the logarithm of time in a broad
interval around {,.

Zusammenfassung

Numerische Formeln werden angegeben, die die Be-
rechnung der dynamischen Nachgiebigkeit aus der
Kriechkurve ermoglichen. In diesen Formeln treten
Werte der Kriechkurve auf, die zu logarithmisch dqui-
distanten Zeitpunkten gemessen wurden. Das Verhalt-
nis zweier aufeinanderfolgender Zeitpunkte entspricht
stets einem Faktor 2.

Fur alle Formeln werden obere und untere Schran-
ken fiir den relativen Fehler abgeleitet. Diese Schranken
hingen vom Werte der Diampfung (tan ¢) ab, die bei
der Kreisfrequenz @ auftritt, fir die die Berechnung
erfolgt. Die Berechnung der Speicherkomponente der
dynamischen Nachgiebigkeit ist desto leichter, je
niedriger der Wert der Diampfung ist. Zu dieser Be-
rechnung bendtigt man den Wert der Kriechfunktion
zum Zeitpunkt ¢, = 1/w und deren logarithmische Zeit-
ableitung in einem ziemlich engen Zeitintervall um ¢,
Die Berechnung der Verlustkomponente der dynami-
schen Nachgiebigkeit ist desto leichter, je hoher der
Wert der Démpfung ist. Zu dieser Berechnung be-
notigt man den Wert der logarithmischen Zeitableitung
der Kriechfunktion in einem breiten Zeitintervall um #,.
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List of Symbols

D sec?) rate of shear

g (cm - sec™%) acceleration of gravity

h (cm) difference in heights in liquid
level

H (cm) maximum value of &

Ly (em) calibrated length of burette

Le (cm) length of capillary

AP (dyn - em™2)
@ (cm?® - sec™)

pressure drop
volumetric flow rate

R, (cm) internal radius of burette
R, (cm) internal radius of capillary tube
¢ (zec) time of flow
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V (ecm?) volume of liquid flown out of the
instrument

7 (dyn - em~?) shear stress

o (g - em™%) density of liquid

& (sec™?) kinematic consistency variable

P (dyn - em~2)  dynamic consistency variable

A (1) dimensionless dynamic consistency
variable

B (1) dimensionless kinematic consistency
variable

p (1) dimensionless rate of shear

T dimensionless time

y (1) dimensionless pressure drop

4 (1) dimensionless shear stress



