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Abstract: Emulsions of incompressible viscoelastic materials are considered, in 
which the addition of an interfacial agent causes the interfacial tension to de- 
pend on shear deformation and variation of area. The average complex shear 
modulus of the medium accounts for the mechanical interactions between inclu- 
sions by a self consistent treatment similar to the Lorentz sphere method in elec- 
tricity. The resulting expression of the average modulus includes as special cases 
the Kerner formula for incompressible elastic materials and the Oldroyd expres- 
sion of the complex viscosity of emulsions of Newtonian liquids in time-depen- 
dent flow. 
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Introduction 

Einstein's work on the viscosity of  dilute suspen- 
sions of  rigid spheres in a Newtonian liquid opened an 
active field of  research on macroscopic mechanical 
properties of  heterogeneous media. His result was ex- 
tended to the case of  elastic spheres by FrOhlich and 
Sack [2] and to dilute emulsions of  one Newtonian 
liquid into another by Taylor [3], who assumed that 
the interfacial tension is strong enough to keep the 
drops spherical. Oldroyd [4, 5] derived the complex 
viscosity of  emulsions of  Newtonian liquids in time- 
dependent flow for any value of the interfacial ten- 
sion, and Kerner [6] gave the elastic modulus of  com- 
posites made of Hookean  spheres embedded at ar- 
bitrary concentration in a Hookean  matrix. These two 
authors treated the effect of  interactions between in- 
clusions in the same manner  as [2]: each inclusion is 
considered alone, surrounded by the matrix up to a 
given distance, beyond which the medium has the 
properties of  the average medium. A refined treat- 
ment of  the interactions was given by Batchelor and 
Green [7] for rigid inclusions in a Newtonian matrix, 
and nonlinear effects in emulsions of  Newtonian li- 
quids have been described by Schowalter et al. [8, 91. 

The scope of this paper is to derive the linear 
viscoelastic modulus  at arbitrary concentration and 
polydispersity of  spherical inclusions. Matrix and in- 

clusions are supposed to  be viscoelastic, and we con- 
sider the most general behavior of  the interface: 
dependence of  the interfacial tension on variation of  
area and resistance to shear, both effects being time- 
dependent. Such complications arise when an inter- 
face agent is introduced in the system in order to 
lower the interfacial tension. We shall not (yet) try to 
treat non-linear phenomena [8, 9], nor consider the 
modifications of  the inclusion distribution by the flow 
[7]. Going f rom local to averaged quantities parallels 
the treatment of  the macroscopic polarizability of  
dense media in electricity. We believe this allows a 
more transparent formalism than the usual stress 
averages [I0, 11]. 

1. Single inclusion problem 

An infinite matrix containing an inclusion of radius 
R, centered at the origin of  the coordinate frame, is 
subjected to a harmonic strain, uniform at infinity. 
The strain y at point r and time t 

eij(r, t)  = Oiuj + 0ju;  (1.1) 

derives f rom the deformation field u@,t), and ap- 
proaches a uniform value y h (t) = y h (0) exp (i co t) far 
away from the inclusion. Throughout  this paper, all 



Palierne, Linear rheology of viscoelastic emulsions with interfacial tension 205 

quantities proportional to the deformation have a 
complex amplitude; and their time-dependence 
through a factor exp (ia~t) will be left implicit. 

For the sake of  simplicity we shall restrict our atten- 
tion to incompressible media and to linear viscoelastic 
regime, in which case the stress-strain relationship is 
written 

a ( r )  = - p ( r ) a + r ( r )  , r ( r )  = G * ( o J ) ? ( r )  , (1.2) 

where the frequency dependent complex shear 
modulus G* relates the stress deviator T to the strain 
y. The value of  this modulus is G~t in the matrix and 
G~' in the inclusion. G* constant and real cor- 
responds to elastic solids, and G * =  ioJr/ describes 
Newtonian fluids of  viscosity 1/. 

The length scale under consideration (the radius R)  
is assumed to be small enough for bulk forces 
(gravitation and inertia) to be negligible. The dynam- 
ics equation simplifies then to 

Ojaq = 0 . (1.3) 

As the inertial forces play no role, uniform transla- 
tion and rotation about the origin can be subtracted 
from the displacement field. It can thus be written 
without loss of generality: 

u ( r )  = _~ y h . r  + v ( r )  , (1.4) 

where tensor yh is the uniform strain which would 
exist if the matrix was homogeneous, and v(r )  is the 
perturbation due to the inclusion, vanishing at in- 
finity. 

As a consequence of incompressibility, y (r) and y h 
are symmetric traceless tensors, and v and u are 
divergenceless vectors. 

The polar vector v can be expressed as the curl of  
an axial vector. Owing to the rotational symmetry of  
the medium, the most general axial vector linear in 
yh is f ( r ) r X  ( yh . r ) ,  and writing r f ( r )  = Vg( r )  gives 

v = c u r l c u r l ( g ( r ) y h . r )  , r =  Irl • (1.5) 

Inserting Eq. (1.2) into Eq. (1.3) yields 

G * A  u = Vp  , (1.6) 

and taking the curl of  this equation results in an equa- 
tion for g alone 

curl A A  (g (r) yh. r )  = 0 , (1.7) 

which has the solution 

g = a r  4 + b r  2 + cr  - 1 _}_ d r -  3 (1.8) 

to within an irrelevant additive constant. Constants c 
and d must vanish inside the inclusion, as do a and b 
in the matrix. The inner and outer displacement fields 
write thus, respectively, 

r < R :  u = ( - ~ - - 2 O a r 2 - 6 b ) y h . r + 8 a y h : r r r  (1.9) 
and 

r > R :  u = ( ~ - 6 d r - 5 ) y h ' r  

+ ( 3 c r - 5  + 1 5 d r - 7 ) y h : r r r  . (1.10) 

Inserting these expressions for u into Eq. (1.6) gives 
the pressure to within a constant 

r < R :  p =  - 8 4 G ] a y h : r r  (1.11) 

r > R :  p = 6 G ~ c r - S y h : r r  . (1.12) 

By symmetry, a uniform pressure term linear in defor- 
mation should be proportional to the scalar s p ( y h ) ,  
which is zero. Static Laplace pressure will be con- 
sidered later. 

In the inclusion, the components of  the stress 
deviator read, calling r i the / -component  of  vector r, 

"cij/G ~ = ( 1 - 4 O a r  2 -  12b)y h 

h h yh: 
- 2 4 a ( Y i k Q r k + Y j k r i r k ) + l B a  rr~i j  , 

(1.13) 

and in the matrix 

+ ( 6 c r - 5  +6Odr -7 ) (?hkr j r~+ h Yjkrirk) 

+ ( 6 c r - 5  + 3 0 d r - 7 ) ? h : r r g i j  

- - ( 3 0 c r - 7  + 2 1 O d r - 9 ) y h : r r r i r j  . (1.14) 

Interfacial tension plays a major role in the mechanics 
of  emulsions. The tension of many systems of  prac- 
tical interest is lowered by addition of an interfacial 
agent, such as soap in oil-water systems, or an A -  B 
copolymer in an emulsion of polymer A into polymer 
B. An important feature of  such interfaces is that, as 
the concentration of  interfacial agent varies in a 
change of  surface area, the mechanical tension is 
area-dependent [12]. The corresponding relaxation 
time is of  the order 2a = R 2 / D ,  where D is a mean 
diffusion coefficient of  the interfacial agent into 
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matrix and inclusion. A further mechanism may act in 
systems comprising a polymeric interface agent. If  
this compound reticulates, or if its molecular mass is 
high enough for its chains to entangle, the interface 
can resist a shear deformation by opposing a shear 
stress. The response time, infinite in the first case, is 
in the second case the disentanglement time. 

The interface tension is a two-dimensional tensor 
aab defined in the plane tangent to the interface; in- 
dices a and b refer to an orthonormal basis (el, e2) of  
this plane, relating the force d f  necessary to hold a 
segment dl  of the boundary of  a piece of  interface to 
the orientation of  this segment: 

d f  = a . m  dl  = aabea(eb" m ) d l  , 0.15) 

where m is a unit vector tangent to the interface, nor- 
mal to dl  and directed outwards. Summation of  
repeated indices a and b over the values 1 and 2 is im- 
plied. Since el and e2 are orthonormal,  the two- 
dimensional divergence of  a vector field G = Gbe b 
tangent to the interface reads diV2D G = ec 'OeG = 

ObGb+Gb(ec 'Oceb) ,  where 0e = ee'V is the gradient 
along the direction of e c. The last term compensates 
for the variation of  the local basis (el, e2) along the 
interface. Replacing G b by aabe a gives the force the 
interface tension exerts per unit area as the divergence 
of  the tensor a 

d f  Oc(aabeaeb).ec 
d S  

= eaObaab + aab{Ohea + ea(ec" 0ceb)} • (1.16) 

As no bulk torque is transmitted to the interface, 
either by the remainder of  the interface or by the sur- 
rounding fluids, aab must be symmetric. At first 
order in deformation included, it is the sum 

Otab = aO6ab + flab (1.17) 

of a static part, the equilibrium tension a OOab, and of 
a part ,gab which is, in harmonic regime, proportional 
to the interface strain Yah, and consequently oscillates 
at frequency o9. The isotropic part of  flab, propor- 
tional to )laa, is conjugate to the relative area varia- 
tion; the traceless part, proportional to the strain 

1 deviator ) lab-  T6ab)lcc, is conjugate to shear without 
change of  area. One has then 

1 t t !  I 
flab ~- y f l  )lccaab ÷ fl  ()lab -- ~-CSab)lcc) , (1.18) 

where fl'(o9) is the complex, frequency-dependent 
surface dilatation modulus, and fl"(o9) is the surface 

shear modulus. The interface strain is obtained from 
the three-dimensional strain )l i j(r) at a point r of the 
interface by projection on the plane tangent at this 
point. Its components, referred to the local basis 
el(r) ,  e2(r ) of the tangent plane, read 

)lab (r  ) = eai eaj Y ij = eai Ob lli + ebi Oa U i , (1.19) 

where eaj is the j -component  of vector e a in the fixed 
three-dimensional frame. In such a mixed expression 
the summation convention applies either in the 
tangent plane, indices a and b taking the values 1 and 
2, or in the three-dimensional space, indices i and j 
running over the values x, y and z. 

As Yah is first order in u, it can be evaluated with 
the same precision at the unperturbed position Q of 
the interface element We consider instead of  its actual 
position # + u ( # ) ,  and in the plane tangent to the 
undeformed sphere rather than in the plane tangent to 
the actual, deformed, interface. The plane tangent to 
the sphere l# I = R is normal to #, and is referred to 
two orthonormal basis vectors el(~) and c2(Q). 
Hereafter,  # designates a vector of  modulus R, point- 
ing to the undeformed interface. 

By symmetry, the displacement u(~) of any point 
of  the interface is, at first order in 7 h, a linear com- 
bination 

u (~)  = A u r +  B u  t (1.20) 

of  the radial and tangential vector fields 

u r = R -2(~)h : ~0~o)~ (1.21) 

U t =  7 h ' 9 - - u r  , (1.22) 

both proportional to )lb. The gradient of  deforma- 
tion in the plane tangent to the sphere reads then 

eaiCbjOjU i = eaiEbj{(Z- B )  

×(2 h h - 2 + B y h  } Y jk~k~i  + )l kl~k~lt~q) R 

(1.23) 

and, noting that ga'9 = eaiOi= 0 and eaiCbi = ga'gb 
= ~ab, one finds the surface strain at first order in 
the deformation 

Yah = 2(A - B )  y~ lOk~tR  - 2t~ab -'}- 2B)l~jeaiebj. (1.24) 

The triad o / R ,  el(O), ~2(~) forms an orthonormal 
basis of the three-dimensionalspace, and the trace of  
tensor yh reads in this b a s i s  ~h~oi~ojR-2+)lh~ai~aj 
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= 0. Using this identity yields the following expres- 
sion of  the linear part of  the interface tension: 

flab = fl'  aab (2A  -- 3B) yh Qi@R -2  

+ f l , ,Byh (2ea ieb j_OabOi~o jR  -2) . (1.25) 

The difference between the gradient of  any space- 
dependent quantity Z at point r =  9 + u ( o )  in the 
direction of  e a, denoted 0aZ = ea 'VZ ,  and the gra- 
dient at point O along ga, denoted 0aZ = ga 'Vz,  is 
first order in deformation. As fl is itself a first-order 
quantity, one can replace 0~ by 0 a and g a by e a in the 
terms proportional to fl in Eq. (1.16). Insertion of 
(1.25) into Eq. (1.16) can be made easy by chosing the 
field of tangent vectors ga(0) locally geodetic, i.e., 
such that the gradient of  ga(0) along the gb direction 
is O'ag a = --t~abO/R 2 (this condition is fulfilled, for 
instance, at the equator of  the sphere if g~ and g2 are 
tangent to the meridians and the parallels respective: 
ly). One has then Oa ebj = -- t~ab @ / R  2 and 

• ! t gc Ocgb = 0, and, o f  course ,  OaO i = eai. This  enables 
one to find 

O'bflab = 2[fl '(2A - 3B) - 2Bfl"}Y~eaiQjR -2 (1.26) 

• t flab{O'bga + g~(gc 0~gb)] = -- 2fl' (2A - 3B) 

X y~OiRjoR -4 (1.27) 

Noting that the expression Y}eaiQi appearing in (1.26) 
is the a-component uta = ut.g,, of  the tangential vec- 
tor u t = U t e a  defined in (1.22), one can write the con- 
tribution of flab to Eq. (1.16) as 

Ob (flabea) + flabea(ec'Oceb ) 

= O'b~abg~) +flabg~(ec'O'~Eb) 

= 2 R - l [ f l ' ( 2 A - 3 B ) ( u t - u r ) - 2 B f l " u t } .  

(1.28) 

alter (at first order) the  shape of  the interface, and 
cannot contribute to the a ° term of Eq. (1.16). We 
shall thus consider a purely radial deformation 
u(~ )  = A u r ( o ) ,  which brings a point O of  the un- 
deformed sphere to the position 

r (~)  = o + A u r ( o )  = 9(1 + A R  - 2 y h : 0 0  ) . (1.29) 

An infinitesimal change do = d&lea of # results in a 
variation of  r 

d r =  gadoa(1 + A R  - 2 y h :  ~ )  

+ 2 A R  - 2od~oayh : Oga . (1.30) 

This can be written at first order 

d r = d r ~ e a ,  (1.30 

where 

dr a = dQa(1 + A R -2~h:  0 ~ )  , (1.32) 

and 

e a = ga+ 2 o A R  -2yh  :Og ~ . (1.33) 

As the relations ea 'eb= aab and dy2=dradra  are 
satisfied at first order included, the local basis el, e2 
is orthonormal,  and dr a is the a-component of  dr in 
this basis. The normal to the deformed interface 
reads, at the same precision, 

n = e I x e  2 = o / R - 2 E a A R  - 2 y h : o g  a , 

n 2 = l  . (1.34) 

An infinitesimal change d 0 of  0 makes r change by 
dr = (1 + A R  - 2 y h : 0 0 ) d 0 ,  the vector ga changes by 
d e a = - o R - 2 d o a  = - o R - 2 d r a + O ( y h ) ,  and conse- 
quently, e a changes by 

The contribution a°{O~ea+ea(ec.Ocea)} of the equi- 
librium interfacial tension to Eq. (1.16) must be eval- 
uated by using a field of  basis vectors el, e 2 that are 
tangent to the deformed interface at first order in- 
cluded (several quantities to appear in the remainder 
of this section, namely the vectors r (0) ,  its differen- 
tial dr, the tangent basis vectors e 1 and 82, and the 
unit normal n, are, as is a, made of  static term and an 
oscillatory term proportional to the deformation yh. 
As we are interested in linear behavior, calculations 
involving any of  these quantities have to be carried 
out at first order included in the deformation). It is 
first obvious that the tangential deformation does not 

de a = - Q R - 2 d r a ( 1  + A R - 2 y h : Q Q )  

+ 2 d r c A R  -2(ecyh : Oe a + ~ yh : eagc) . (1.35) 

Dividing by drc gives the gradient Ocea = (ec'V)ea at 
point r, along the e~(r) direction, 

Ocea = - ~acOR -2(  1 + A R  - 2 ~ h :  ~o0) 

+ 2 A R  -2(gcyh : Oga + ~Oy h : gagc) . (1.36) 

The contribution of  the constant part of  the interface 
tension eventually reads, at the required precision, 
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a 0 O~a {Ob e~ ~- e, (ec. 8~ eb)} = -- 2 n a 0 R - 1 

- 4 o t ° A R - 2 u  r. (1.37) 

The first term of  the right member is a static force- 
per-unit area of  constant magnitude, normal to the 
deformed interface. It is the source of  the equilibrium 
Laplace pressure inside the inclusion. The second 
term of  the right member of  (1.37) is a first-order 
oscillatory term, coming from the increase of  cur- 
vature due to the deformation. 

Adding Eq. (1.28) and Eq. (1.37) gives the force- 
per-unit area of interface: 

ay 
- eaOoaab + aab{Obe~ + e~(ec" O~eb)} 

dS 

= 2(2A ~ 3B) f l ' /RZ(y  h "~ - 2(yh: ~ )  ~ /R 2) 

- 4A a0(yh : Q~)~ /R  4 

_ 4Bfl,,/RZ(},h .~ _ (yh: ~ o ) ~ / R  2) 

_ 2 a O n R  -1 (1.38) 

T h e  balance of  forces acting on the interface is even- 
tually written 

aM" # / R  - az" ~ / R  + PL n + d f  = 0 , (1.39) 
dS 

where o" I and aM are the stress on the inclusion and 
on the matrix side of  the interface, and pLn is the 
Laplace pressure term. It is directed along the normal 
n, which is the sum of  a constant part ~ / R  and a first 
order part n - o / R  due to the tilt of  the interface with 
respect to its equilibrium orientation. The constant 
terms p L p / R  and - 2 a °gR - 2 of  Eq. (1.39) cancel if 
the Laplace pressure has the value 

PL = 2 a ° /R  . (1.40) 

One has then p ° n  = 2 a ° n / R ,  and these terms cancel 
in Eq. (1.39) at first order included. All constants a, 
b, c, d, A, B appearing in Eqs. (1.8), (1.11), and 
(1.18) can now be determined. Continuity of  the 
displacement at the interface requires that the inner 
and outer coefficients of  yh'r  and (yh:rr )r  in Eqs. 
(1.9) and (1.10) match that [r[ = R :  

1 6cIR-5 (1.41) 1 2  - -  2 0 a R 2 -  6b = 2--  

8a = 3cR - 5+  15dR -7 . (1.42) 

This corresponds to B - 1 - 6 d R  -s and A -  
+ 3 c R - 3 + 9 d R  -5. The force balance (1.39) gives 

two more equations, t h e  first one for the y h . # / R  
term; 

G~(1 + 6c R -3 + 48dR  -5) 

+ G ~ ( -  1 + 6 4 a R 2 +  12b) 

+ f l ' / R ( -  1 + 12oR -3 + 7 2 d R  -5) 

+ 4 f l " / R ( - ½ + 6 d R - 5 )  = 0 , (1.43) 

and the second for the (yh: QQ)~/R 3 term: 

- 24 G ~ ( c R  - 3 + 5 d R  - 5)  _ 7 6  G ~  aR 2 

- f l ' / R  ( -  2 + 24cR -3 + i44dR -5) 

- a ° / R  (2 + 12oR -3 + 36dR -5) 

- 4 f l " / R  ( -  ~ + 6 d R  - 5 )  = 0 . ( 1 . 4 4 )  

The solution to Eqs. (1.41) to (1.44) reads 

5R -3 
a = - - G ~ ( 4 / ~ ' -  4a  ° + 4]~") , (1.45) 

8D 

1 , 
b = ~--~ {(GI - G~) (19G~ + 16 G~t) +24,8 'a° /R  2 

¢ =  - - - -  

d =  

where 

D =  

+ 16 f l " (a°+~ ' ) /R2+ lOa° /R(2G~ + 5 G~t) 

+,8' /R (23 G~' - 58 G~t) 

+ 2613"/R (G~ ~ G~t)} , (1.46) 

5R 3 
{(G z - GM)(19Gr + 16 G~t) + 241~'a°/R 

6D 

+ 1 6 p " ( a ° + f l ' ) / R 2 + 4 a ° / R ( 5 G ~ + 2 G ~ )  

+ f l ' /R  (23 G f - 16 G ~ )  

+2,6" /R(13G~f+8G~t)} ,  and (1.47) 

R5 ~t~* 16G~t) + 24]3, aO/R 2 6-~ ~,-' r - G ~t) (19 G~' + 

+ 16p"(a  ° +13,)/R z + 2 0 a ° / R  G~ 

+,8' /R (23 G~ - 8 G~t) 

+ 2/3"/R (13 G~ + 12G~t)} , (1.48) 

the common denominator reads 

(2G~- + 3 G~t)(19 G~' + 16G~)  + 48,6 'a°/R 2 

+ 32 t3" (a o + 13,)/R 2 + 40 a ° /R  (G ~ + G ~ )  

+ 2 f l ' /R  (23 G~" + 32 G~t) 

+ 413"/R (13 G~' + 12 G ~ )  . (1.49) 
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The amplitudes of the radial and tangential displace- the interfacial tension is of order of the smallest of 71 
ment of the interface are, respectively, and yico2. 

5 
A = G ~ ( 1 9 G f  + 16Gfvl+24fl'/R+Sfl"/R) 

2D (1.50) 

B = ~ G~t(19G~ ~-16G~+ 8a°/R + 16fl"/R) . 
2D (1.51) 

2. Mechanics of  dilute emulsions 

The outer perturbation of the deformation field 
(1.10) 

An infinite value of a ° causes the coefficient A to 
vanish, the only possible motion of the interface being 
tangential. The total area is then conserved, but it 
varies locally. Conversely, an interface with infinite 
shear modulus fl" can stand only radial deformations, 
in which case B vanishes. The effect of an infinite 
value of fl' is to allow a motion proportional to the 
vector 3ur+2ut=R-Z(yh:~)~+27"~,  in which 
case the local area variation lyaa = (2A - 3 B ) y h :  ~0 
is second order in u. If at  least two  among the coeffi- 
cients a 0, fl,, and fl" are infinite, no motion of the 
interface is possible and both A and B vanish. The 
same thing arises, of course, when the inner modulus 
G~' is infinite. 

The condition of linearity stated at the beginning of 
this section can now be made more quantitative. It is 
first necessary, for theboundary  conditions at the in- 
terface to hold, that the departure from the spherical 
shape of the inclusions, i .e. ,  the radial deformation, 
be small. The relative radial deformation is of order 
A yh/R, where A is given by Eq. (1.50). If  G~' is 
greater than G~,  the relative deformation is of order 

, h , GMY /GI,  whereas if a°/R has a greater modulus 
than G ~ ,  the deformation amounts to yhG~R/a°. 
In other cases the inclusions undergo a shape varia- 
tion of order yh. A further condition is that the 
rheological behavior of the matrix and inclusion ma- 
terials be linear viscoelastic, i.e., that the deformation 
taking place during the relaxation time of the con- 
sidered material be small. The strain y to be con- 
sidered is yh for the matrix and for "soft"  inclusions. 
For a "hard" one, such that G~' is greater than G~4, 

h * * this strain is of order YI = Y G~/GI.  The rigidity of 
the interface can also reduce the inner strain 
magnitude to YI = G~R/a if at least two among the 
coefficients a °, fl', and fl" are of order a greater 
than G~R. The linearity of the relation between in- 
terface tension and surface deformation must even- 
tually be secured. The surface motion must, 
therefore, be small (with respect to the radius) during 
the relaxation time 2 of the tension coefficients fl' and 
fl". As the ratio of surface motion over the radius is 
of order YI, the relative departure from linearity in 

1 h 
V = U - - T y  "r 

= 3cr-5(yh:rr)r 

+ 3 d{5 r -7  (yh : r r ) r -  2r-5 yh. r} (2.1) 

splits into two contributions. The first one, varying 
like r -2 identifies outside the inclusion wi th  the 
displacement, due to a point dipole 7r acting on an 
homogeneous matrix (A.9): 

rt = 8nG~¢c? h , (2.2) 

(n without subscript or double bar is the number 
3.14 . . . .  otherwise it denotes the dipole moment). 
The polarizability of the inclusion is thus 8 n G~c, 
where the constant c is given in (1.47). The second 
contribution, enclosed in {}, varies like r -4. This 
characterizes the deformation field of an octupole, 
which gives no contribution to the induction O defin- 
ed in the appendix. Calfing NI the number concentra- 
tion of inclusions of k ind / ,  and Cl the corresponding 
value of coefficient c (1.47), we have for the 
macroscopic polarization density 

17= 8n E NIcxG~Y h • (2.3) 
I 

The viscoelastic induction defined in (A.21) reads 

O = ( 1 - 8 n  ~ NIcI) G~yh-P¢j (2.4) 

where P is the average pressure. At lowest order in 
concentration, the unperturbed strain ?h at the loca- 
tion of an inclusion (if this inclusion was not present) 
is the macroscopic strain F. The macroscopic modulus 
(A.22) of the emulsion is then, at linear order in con- 
centration, 

2 ~  ~z (2.5) 
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where q)i 4 3 = ~-TrNIR I is the volume fraction of kind 
L and 

E r = 2(G~' - G~t) (19G]  + 16 G~)  + 48 f l ' a ° /R  2 

+ 32fl" (a ° +fl ' ) /R  2 + 8a° /R (5  G] + 2G~4) 

+ 2/~'/R (23 c ~  - 16 c ~ )  

+ 4f l" /R(13 G~ + 8 G~t) , (2.6) 

and 

D z = (2G 7 - 3 G~4)(19G 7 + 16 G~t) + 4 8 f l ' a ° / R :  

+ 3 2 f l " ( a ° + f l ' ) / R 2 + 4 0 a ° / R ( G ~  + G~)  

+ 2/3'/R (23 G~ + 32 G~4) 

+4 f l " /R (13G~ + 12 G~4) (2.7) 

are such that EI /D ~ = - 12ci /5R 3, which takes into 
account the radius, the viscoelastic modulus, and in- 
terfacial tension coefficients of each kind I of inclu- 
sion (subscript I on all these quantities has been omit- 
ted for brevity). The ratio EI /D I is normalized to uni- 
ty for rigid inclusions. 

3. Nondilute emulsions 

The effect of finite concentrations is that the local 
strain "seen" by an inclusion is no longer the 
macroscopic strain F, but is modified by the deforma- 
tion field of  neighboring inclusions (the local strain is 
the strain which would exist at the location of  an in- 
clusion if this inclusion was replaced by the matrix). 
In order to account for this effect we shall borrow 
from electricity the Lorentz sphere method, where the 
effect of other inclusions is taken into account within 
a sphere of radius RL, large enough to contain many 
inclusions and concentric with the inclusion under 
consideration, whereas the medium outside is treated 
as an average continuum. If R L is chosen to be of 
sufficient magnitude with respect to the interpar- 
ticular distance, the effect of  averaging the interac- 
tions with inclusions outside the sphere can be made 
negligible (as the strain (1.14) varies as r -3 ,  the error 
is, at most, of order (l/RL) 4, where l is the separation 
between neighboring inclusions). The local strain yl°c 
at the center of  the Lorentz sphere is thus obtained by 
substituting the continuum polarization H inside the 
sphere for the discrete dipoles created by the inclu- 
sions effectively present, the polarization outside the 
sphere being held constant in this process. More 
precisely, in a reference frame which: originates at the 
center of  the Lorentz sphere, 

• l ° c : • / j - - r d ( 0 )  -[- 2 (OiUj ( - - rA)q-OjUi ( - - rA) )  , ij 
rA<RL (3.1) 

where F =  ( O + P O ) / G *  is the regularized strain of  
the continuous medium of  macroscopic modulus G*, 
according to Eq. (A.22), Fd(O) is the depolarization 
strain, i.e., the strain created at the origin by a 
polarization H uniform into the sphere and zero out- 
side, and the terms under the summation sign repre- 
sent the strain at r = 0 due to the inclusion present at 
r = r A. Self-consistency will be achieved by requiring 
that the force dipole 

~r x = 8 zrciG~y l°c (3.2) 

of the particular inclusion at the center of  the Lorentz 
sphere has the right magnitude to create a macro- 
scopic polarization density 

n= ~ N~-I (3.3) 
I 

identical with the continuum polarization H = Z -  O 
we started from. This statement leads to exact results 
if all inclusions have the same environment, i.e., are 
regularly stacked. If  the inclusions are randomly dis- 
tributed, this leads to the mean field approximation. 
The depolarization field Fd(r) results from a polar- 
ization prescribed to be uniform and equal to H inside 
the Lorentz sphere, and to vanish outside. The induc- 
tion is then 

O = S - H = G ~ F - P ~ - H  for [ r [ < R  z (3.4) 

O = Z =  G ~ c F - P 6  for Ir[ > R  z . (3.5) 

As no external macroscopic forces are applied, O 
satisfies the relation 

OjOij = 0 . (3.6) 

The discontinuity of the polarization at the surface of 
the Lorentz sphere induces an equal discontinuity of 
the macroscopic stress: calling Z "°ut (r) and Z "in(r) the 
stress on the outer and inner side of this sphere, rela- 
tion (3.6) is written at a point R such that [R] = RL, 

(v~out _ ~ i n  _1_ H ) . R / R  z = 0 . (3.7) 

Everywhere else, relation (3.6) results in 

G~IA ~ = V P  , (3.8) 
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where the macroscopic displacement ~(r) is every- 
where continuous. 

Equations (3.6) and (3.8) are in formal analogy 
with Eqs. (1.3) and (1.6). The treatment of Sect. 1 
may then be used, through the substitution of  the 
spherical inclusion by the Lorentz sphere. The micro- 
scopic displacement v and pressure p must be replaced 
by the corresponding macroscopic quantities ~ and P, 
and there is no homogeneous deformation at infinity. 
yh as the cause of  the deformation is replaced here by 
the inner macroscopic polarization H, and the solu- 
tion can be expected to be of the form 

= curl curl (h ( r ) H . r )  , (3.9) 

where function h reads 

h ( r )  = a ' r  4 + b ' r  2 + c ' r - l  + d ' r - 3  (3.10) 

As for the function g defined in (1.8), the constants 
c'  and d '  are zero inside the sphere, and a'  and b' 
vanish outside (the primed constants of  Eq. (3.10) 
have the dimension of the corresponding unprimed 
constants of Eq. (1.8) divided by a stress). The condi- 
tions of  continuity for ~ take the same form as Eqs. 
(1.41) and (1.42): 

2 0 a ' R 2  + 6 b  , = 6 d ' R [  5 (3 .11)  

8 a '  = 3 c ' R ~ 5  + 15d 'RL 7 (3.12) 

Eq. (3.7) has the same form as the force balance 
(1.39) with the interfacial tension term replaced by the 
polarization force H i i R / R L ,  and where both the in- 
ner and the outer modulus is G~t, because of  Eqs. 
(3.4) and (3.5). Equations (1.43) and (1.44) 
transform, therefore, into 

G ~ ( 6 C ' R L  3 + 4 8 d ' R [  5 + 6 4 a ' R ~  + 12 b') + 1 = 0 
(3.13) 

- 2 4 ( c ' R [ 3 + 5 d ' R i S ) - 7 6 a ' R Z L  = 0  . (3.14) 

The solution to Eqs. (3 .11-  14) reads 

a '  = 0 ; b' = - 1/(30G~4) ; 
(3 .15 )  

c '  = R 3 / ( 6 G ~ )  ; d '  = - R S L / ( 3 0 G ~ 4 )  , 

and from Eq. (1.9) we get the deformation field and 
the depolarization strain inside the Lorentz sphere: 

1 
~(r )  - H . r  for I r l  < R L  (3.16) 

5 G ~  

F d ( r  ) = 2 H for It[ < R  L . (3.17) 
5G~4 

_F d is homogeneous inside the sphere. The corre- 
sponding depolarization factor is 2 / 5 ,  to be con- 
trasted with its value 1/3 for electric field, of vectorial 
character. 

The short scale properties of the distribution of  in- 
clusions are accounted for by the last term of  Eq. 
(3.1). The dipole zA of  the inclusion at point rA is 
proportional to the local strain at this point (Eq. 
(3.2)), it is thus symmetric and traceless. Equation 
(A.9) gives the local strain at the origin 

{Oivj(-rA)+Oiv~(-rA)l 
r A <R L 

3 
FkTI ik)FA 

- -  , 2 A A A A A - 5  
8 7 ~ G M r A < R L  {(ri r k T r j k k r ¢  

A A A A  A -7  - 5 r  i r j  r k r  t u k l r A  } . (3.18) 

Evaluation of  this sum requires some knowledge 
about the distribution of inclusions, or some hypothe- 
ses to compensate for the lack of  knowledge. We 
assume first that all inclusions have the same environ- 
ment, which is rigorously true when they are regularly 
stacked, and otherwise constitutes the mean field 
approximation. They have then the same dipole, 
which can be factored out of expression (3.18). The 
task is now to compute the average of A A -5 r i r j  r A and 

A A A A  - 7  r i r j  r k r  I r A over all positions r A in the Lorentz 
sphere. Our second assumption will be that the distri- 
bution is isotropic, in which case averaging over all 
positions r A at the same distance r A of  the origin 
results in 

1 2 
( r A r  A ) = 3rAdii  (3.19) 

t 
(r A r A rkrtA A ) =  ~ r4(fiijfikl + fiikdjl + fiilfijk) . (3.20) 

1D 

These relations simplify Eq. (3.18) to 

(Oivj(-ra)+Ojvi(-rA)) = 0 . (3 .21)  
rA<R L 

The effect of  the short-range distribution averages 
then to zero. It must be noted that, although Eq. 
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(3.18) is still valid in cubic lattices, relations (3.20) 
and (3.21) fail. 

Insertion of Eqs. (3.17) and (3.21) into Eq. (3.1) 
gives the local strain, inside the Lorentz sphere, 

y l o c = r _  2 H . (3.22) 

The dipole of the inclusion at the center of the 
Lorentz sphere is taken from Eq. (2.2), where the 
local strain yloc replaces ?h, and thus the macroscopic 
polarization density (3.3) can be written 

H=z*r=8nEc~Nz(r-z 5G~211 I " (3.23) 

The average polarizability is then 

8~E c~ux 
I 

Z* = G~t , (3.24) 

1+16~ E clN~ 
5 i 

and we eventually get the average modulus (A.22) 

G*  = G ~ - X *  

~1 +3 E q~IEI~ 
1._2_ , 

 ze'| , 
~_ , D,  _J 

where Ey and D I are given by (2.6) and (2.7). 

(3.25) 

(3.26) 

4. Discuss ion  

Special cases of expression (3.26) of the average 
modulus have been given in the literature. Setting 
a ° = fl' = fl" = 0 yields 

G* = G ~  I + ~ M  where M =  ~ ~12(G~-G~4)  
1 - M  I 2 G ~ + 3 G ~ , '  

(4.1) 

which is the Kerner result in the case of incompressi- 
ble media [6] (although Kerner considered elastic 
media, it generalizes readily to linear viscoelasticity). 
In the monodisperse case, and at first order in ~, put- 
ting G~' constant and real and G~¢= icoti in (4.1) 
gives the formula Fr0hlich and Sack [2] derived for 
emulsion of Hookean spheres in a Newtonian liquid. 
If  both the matrix and the inclusions are Newtonian 

liquids (such that G ~ =  icoti M and G~' = icotii), Eq. 
(3.26) reads 

3 1+- ~ ~z E~ 
2 D I 

G * = ico tim (4.2) 
l-- ~ ~1 El 

Ez = 2ico(tiz- r/M) (19til+ 16tiM) + 48ffa°/icoR z 

+ 32fl"(a°+ff)/icoR 2 + 8a°/R(5tiz+ 2r/M) 

+ 2fl'/R (23 ti:- 16 tiM) + 4D"/R (l 3 ti: + 8 tiM) 

/91 = ico(2ti1+ 3tiM)(19ti:+ 16tiM) + 48fl'a°/icoR 2 

+ 32fl"(a°+fl')/i°jR2+ 40a°/R(ti: + tiM) 

+ 2fl'/R (23 tiz+ 32 tiM) 

+ 4ff'/R (13 tit+ 12tiM) . 

This gives the result of Oldroyd [4, 5] in the 
monodisperse case if the factor im is identified with 
his operator A and G*/ia~ with his viscosity operator 
ti*, and legitimates his formulas beyond the first 
order in concentration. The identity of the Kerner [6] 
and Olroyd [4, 5] equations with formulas (4.1) and 
(4.2) at arbitrary concentration comes from the fact 
that the effect of interactions between neighbors 
(3.19) and (3.20), which is ignored by these authors, 
averages to zero under the mean field hypothesis. 

Different results would be obtained if the inclusion 
distribution showed a particular structure, to be in- 
troduced into Eq. (3.20). This equation fails also for 
inclusions so close to each other that their interaction 
is not just dipole-dipole. 

If Coefficients fl' and fl" have a finite relaxation 
time (whereas a ° remains constant), the zero fre- 
quency limit of Eq. (4.2) takes the same form, with 

E z = 48 ( ' / R  + 32 ( " / R  + 8 (5 til + 2 tiM) 

D z = 48 ( ' / R  + 32(" /R  + 40(ti:+ tiM) , 
(4.3) 

where ( '  and ("  are the limits of f l ' / im and f l" / im,  
respectively, as co~0 (only the terms varying like co, 
involving a °, have survived; all other terms vary like 
co 2 in the limit ¢o~0). The Taylor formula is 
recovered in the low concentration limit if ( '  and ( "  
are set to zero. 

Appendix: Theory o f  viscoelastic polarization 

Let a linear viscoelastic incompressible medium be sub- 
mitted to a harmonic point force F(t)=F(O)exp(ieot), 
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concentrated at the origin. The corresponding force density 
f writes 

f ( r )  = FO(r)  (A.1) 

with an implied time factor exp (icot).  The displacement 
field is related to F by the Green tensor U 

u(r )  = U ( r ) . F  . (A.2) 

At a frequency co low enough for inertia to play no role at 
the length scale of interest, and in the case of  an infinite, in- 
compressible, and isotropic medium, U takes the form 

1 
Uij(r) (di2 r -  1 + rirj r -3) , (A.3) 

8nG*(og) 

where the viscoelastic modulus G* is complex and function 
of the frequency co. The Green tensor of elasticity cor- 
responds to G* constant and real [13], and the Oseen tensor 
[14] for incompressible Newtonian fluid of viscosity ~/is 
recovered by setting G* = icot/. 

In accordance with Maxwell's theory of multipoles, we 
define a force dipole as a system of two opposite point 
forces of equal strength, applied to two different points 
with separation d. If, for simplicity, one of these points is 
chosen as the origin, the force density of the dipole reads 

f ( r )  = F S ( r -  d ) - F ~ 5 ( r )  . (A.4) 

Let the dipole moment of this force distribution be the sec- 
ond rank tensor 

~jk = 6 d ,  . (A.5) 

The torque of the dipole is the vector eijklZjk associated with 
the antisymmetric part. In the limit of vanishing separation 
d, keeping constant the dipole moment ~t, this system of 
forces becomes a point dipole generating a displacement 

ui(r ) = lim ( U i j ( r - d ) -  Ui j (r))F 2 
d~O 

(A.6) 

= - njkO k Uij(r ) . (A.7) 

The Green tensor of a dipole is thus the third rank tensor 

u~jk (r ) = - ok u i j ( r  ) , (A.8) 

leading to 

u i ( r  ) = 7gjk U i j k ( r )  

1 
_ {(n i j_nj i )r j  r 3+(3n jk_n l ld j k ) r i r j r k r  s)}. 

8 n G *  (A.9) 

Because of incompressibility, the isotropic part of rt does 
not contribute to u. 

A point quadrupole can be built in the same way with two 
point dipoles, njk at point d '  and - n j k  at the origin; and 
by making d '  to vanish, keeping constant the quadrupole 
moment qjkl = n,kd~. The same process, applied L times, 
generates the 2 (po l e .  The associated Green tensor is of 

order L + 1, and is a homogeneous function of r, of degree 
- L - 1 .  

The continuum mechanics used here is valid at a 
macroscopic scale, and the limiting processes must stop 
before reaching the atomic scale. On the other hand, some 
problems involve a "microscopic, but large compared to 
atomic" scale at which the force distribution f is defined 
(and continuum mechanics is valid), and a coarse, 
"macroscopic" scale at which the deformation is observed. 
In what follows, this intermediate length scale will be called 
microscopic. The concept of viscoelastic multipole allows to 
describe the macroscopic mechanical behavior by averaging 
the effect of  the microscopic force distribution f ( r ) ,  in 
analogy with the Lorentz procedure in electricity. The 
mechanical analogues of the polarized atoms in vacuum are 
here the inclusions into the matrix. If  the force density f can 
be resolved into an equivalent distribution of point dipoles, 
the macroscopic dipole density I I ( r )  is obtained by averag- 
ing the microscopic distribution of dipoles over a distance 
s around the point r. We use, therefore, a regularizing func- 
tion T(r)  which has appreciable value within a distance s 
around the origin, and such that 

I ~ ( r ) d v  = 1 . (A.IO) 

In addition, ~ will be required to be differentiable at least 
once, and to vanish beyond a given finite radius (of order 
s). It permits to introduce the macroscopic dipole density 

H ( r ) =  ~ ~ A t p ( r - - r A )  , (A.11) 
A 

where r a is the location of dipole n a, and the summation 
extends over the whole distribution. The macroscopic 
pressure and stress deviator read, respectively, 

P ( r )  = j p ( r ' )  T ( r -  r ' ) d v '  , 
(A.12) 

T(r)  = ~ z(r ' )  T ( r - r ' ) a v '  , 

and regularization of the total stress a = z - p 6  yields the 
macroscopic stress X = T - P 6 .  

The macroscopic displacement is accordingly, 

~(r)  = ~ u(r ' )  T ( r -  r ' )av '  (A.13) 

and the macroscopic deformation tensor Fi2 = O~2/Ori+ 
O~i/Orj results, after integration by parts, in 

F(r)  = I y(r ')  ~ ( r - r ' ) d v '  , (A.14) 

where yij(r') = 8 u / S r ~  + O u i /Sr  j is the microscopic defor- 
mation tensor. If y is traceless, so is F. Consequently, the 
stress-strain relation holds unmodified by the averaging: 

X =  G * F - P f i  . (A.15) 

Inserting the displacement field created by the distribution 
of dipoles: 

ui(r) = - ~ n ~ O k U i j ( r - r A )  (A.16) 
A 

into Eq. (A. 13) yields 
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~i(r ) : - ~ H j x  (r ' )  0 h Uij (r - r ' )  d r '  . (A. 17) 

Assuming, for simplicity, that the dipole distribution 
vanishes at infinity, one gets after integration by parts 

( i (  r ) = --  i U i j ( r  - r ' )  O '~ I I j k ( r ' )dv '  , (A. 18) 

where O k = O/Or k and 8~ = 8 / 0 r '  k. This identifies with the 
displacement created by a polarization force distribution 
~0 pol 

q~y(r) = - 0kHjx(r) . (A. 19) 

The isotropic part of H is irrelevant, since the pressure is 
undetermined in an incompressible medium. The 
macroscopic viscoelastic force density acting on the medium 
is thus the divergence of a stress induction O (named in 
analogy with the electric induction) 

~oj = Ok Ojk . (A.20) 

O accounts for both the stress Z generated by the 
macroscopic distortion in the unpolarized medium and the 
average effect of the force dipoles: 

O = X -  H .  (A.21) 

If the dipole density is proportional to the s t r a i n / / =  Z * F, 
the medium behaves at the macroscopic scale as a con- 
tinuum of viscoelastic modulus G* 

O =  G * F - P O  , where G* = G * - Z *  (A.22) 

For the regularized quantities to be smooth, the length s 
must be large enough to cover an appreciable number of 
dipoles ha, but small with respect to the macroscopic 
length scale. All developments of this appendix hold how- 
ever for any value of  s, and setting ~u(r) = 0(r) makes the 
regularized equations identical with the microscopic ones. A 
meaningful macroscopic length scale comes out only from 

the constitutive equation, which determines the macro- 
scopic polarizability Z*. 

The results presented here are independent of the par- 
ticular form (A.3) of the Green tensor, which is known to 
be wrong at long distance [11, § 24]. When form (A.3) is 
assumed, the force dipole (A.5) is consistent with the defini- 
tion given by Batchelor [10]. 
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