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II. Charged Polymer Systems – Electrostatic and Conformational Descriptions 
 

Polyelectrolytes 
Electrostatic Description – 

 
 

 
The simplest description of a polyelectrolyte imagines, as sketched above, discrete fixed charges 
positioned at an average axial spacing b along a backbone of infinitesimal thickness. 
Electrostatic interactions among the fixed charges are modulated by the solvent dielectric 
constant ε, and a dimensionless parameter ξ captures the strength of interaction with a 
neighboring charge relative to the ambient thermal energy kT, 

ξ =  lb
b

 =   e2

4πεεokTb  
Within the chosen physical description – a curvilinear collection of ionizable units that 
dissociate free ions to infinity - the dependences of all polyelectrolyte properties on ε, T, and 
b are collapsed into a single dependence on ξ.   

The parameter ξ, often called the Manning parameter, fundamentally distinguishes a charged 
polymer system from a neutral one or one charged polymer system from another. 
 
When ξ<1, electrostatic forces acting on the chain at the length scale of the charge spacing are 
always weak compared to thermal fluctuations, defining a “weakly charged” polyelectrolyte as one 
that behaves much as a neutral polymer.  Nonetheless, such a polymer will show polyelectrolyte 
properties, especially in its interactions with other charged molecules.  When ξ≥1, electrostatic 
forces locally dominate over thermal fluctuations, and the term “strongly charged” polyelectrolyte 
is employed.  For the latter, behaviors distinct from a neutral polymer are expected if the level of 
added electrolyte is not so high as to screen fully all electrostatic interactions among the backbone 
charges. 
 
Water is the most important dielectric medium, and lb for water is 7.1Å at room temperature, a 
dimension larger than the repeat unit length (or diameter) of most synthetic polymers as well as the 
hydrated sizes of many dissolved ions.  For the charged polymers illustrated in the last handout 
range, 0<ξ<5.  Even larger values of ξ are obtained for “bottlebrush” polyelectrolytes, i.e., those 
with multiple ionizable units on side chains attached to the polymer backbone.  The most highly 
charged biopolymer is herparin. 
 
In the simplest electrostatic description of a polyelectrolyte system, the medium contributes one 
length scale (lb), the polymer contributes a second (b), and the electrolyte (dissociated small ions 
and any added salt) contributes a third (κ–1).  Missing from this description are diameters of 
polyelectrolyte and dissociated ions, correlations in position among dissociated ions, the discrete 
molecular nature of the solvent, and the local geometry and dielectric constant of the chain itself. 
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Electrostatic forces in an electrolyte reach over a longest length scale of several κ-1 and are 
significant over the dimensions typical of polymer segments and lb, not those of polymer 
coils.  Thus, characteristic polyelectrolyte behaviors - those distinct to this class of polymers 
- are all local in origin and independent of parameters such as chain length or coil size.  
Characteristic behaviors propagate to larger polymer lengths scales, affecting polymer coil 
properties, but they don’t create any new effects in doing so.  We thus can understand 
fundamental polyelectrolyte principles by analyzing electrostatics at the segmental size scale. 
Counterion Condensation – 
In a variety of contexts, highly charged polyelectrolytes behave as if their net charge, or more 
precisely, their effective linear charge density, is less than the one calculated from the linear 
density of ionizable units in the chain’s chemical structure.  For example, at physiological 
pH, ds-DNA has often been reported to display an “effective” charge ~75% less than 
expected by the dissociation of two phosphates per base pair.  Given the large dissociation 
constants of phosphate, these groups are expected to ionize essentially fully at neutral pH.   
 
To understand the apparent charge reduction, consider the dissociation of the “last” ionizable 
unit of an infinitely long, strong polyelectrolyte, perhaps extended, as shown below, at the 
segmental level due to strong repulsions between previously ionized units. 
 
 
 
 
 
 
 
The energy for this dissociation in a dielectric medium, described in the last handout, can 
written as a sum of all pairwise electrostatic interactions between chain and dissociated ion. 

U
kT

= 2 e2

4πεεokT
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⎜ 
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The index j corresponds to interactions of the targeted unit (j=0) with already ionized units 
extending in both directions along the backbone, explaining the multiplicative factor and 2, 
and j can be considered to reach ∞ since pairwise electrostatic interactions lose their strength 
long before j reaches it largest value at the chain ends.  The apparent singularity in U/kt 
highlights the overwhelming impact of collective electrostatic on polyelectrolyte 
dissociation.  The entropy gained by the counterion’s release, of order kT, cannot overcome 
the enthalpy associated with electrostatic attraction to the chain.  According to this 
calculation, the dissociated counterion must remain “clustered” or “condensed” near the 
polymer backbone, effectively neutralizing some backbone charge.  It is important to note 
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that these condensed counterions are truly dissociated, the concern is their locations relative 
to the backbone after dissociation. 
 
The hypothesized “condensation” of oppositely charged small ions reduce the 
polyelectrolyte’s “apparent” or “effective” charge even when the chain’s ionizable units are 
known to dissociate at the bulk solution condition.  This binding of condensed counterions 
arises from electrostatic forces within the solution phase, not from specific interactions of 
ions with the polyelectrolyte; in other words, the dissociation constant of the ionizable units 
is unimportant. 
 
The preceding calculation can be repeated using the electrostatic energy appropriate to an 
electrolyte medium of Debye length κ-1, 

U
KT

 =  2 e2

4πεεokT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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e−κrj

rjj=1

∞
∑  =  2ξ e−κbj

jj=1

∞
∑ = −2ξ ln 1 − e−κb( ) ≈  - 2ξ ln κb

 
a result also reached by evaluating the electrostatic energy of a counterion in the potential 
field of a line charge (this potential was given in the last handout). 
While the dissociation energy is no longer singular, it still diverges in the limit of small κb, 
i.e., at low or no added electrolyte, a nonsensical result. 
 
The traditional resolution to this paradox is “counterion condensation”, the formal splitting of 
the dissociated counterion population into two states, those “condensed” against the chain 
backbone and those “free” to sample the surrounding solvent. 
 
Oosawa (1968) and Manning (1969) independently formalized the counterion condensation 
concept at about the same time.  Manning subsequently clarified and extended the 
proposition to such a degree that the phenomenon is now frequently referenced simply as 
“Manning condensation.”  Actually, Imai and Onishi coined the term “counterion 
condensation” in 1959, and reference to the strong clustering of a portion of counterions at 
low salt solutions goes back to Fuoss in the 1949. 
 
In its simplest form, counterion condensation minimizes the free energy of small counterions 
located near a polyelectrolyte chain, incorporating both entropic and electrostatic energy 
contributions in the minimization.  In most models, as sketched on the next page, the chain is 
represented as an infinite line or a thin, infinite cylinder.   Unfortunately, these geometric 
descriptions obscure the extrapolation of theoretical predictions to flexible polyelectrolytes.  
The fixed charges may be treated as either “smeared” along the backbone or “fixed” at 
discrete axial positions; these treatments of charge location produce nearly identical results. 
 
Counterions released into solvent from a single, isolated polyelectrolyte sample an enlarged 
region of space, and therefore their contributions to system entropy rise upon their release.  
However, the entropy enhancement comes at a cost, as the further into outlying space the 
counterions explore, the greater is their electrostatic energy.  Condensed ions possess 
freedom only to move along and near the chain backbone while free ions move in a more or 
less unconstrained fashion throughout the solvent domain away from the backbone.  The 
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following figure provides a schematic of the postulated counterion populations near a line 
charge.   
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Issues key to counterion condensation are the fraction of free ions and the extent to which the 
condensed ions are localized. [Exchange of counterions between condensed and free 
populations is an interesting but not central question.  Condensed ions should not be viewed 
in the same way that separated gas molecules combined to form a liquid; the terminology 
“condensed” is unfortunate.] 
 
Some authors define two subpopulations of condensed ions: “site bound” condensed ions are 
those in direct contact with the polyelectrolyte (no intervening water molecules) and 
“territorially bound” condensed ions are those nonspecifically attached to the polyelectrolyte 
backbone, probably with their primary solvation layer intact.  Only territorially bound 
condensed ions are able to wander readily along the chain’s contour. 
 
Oosawa Argument for Counterion Condensation 

Oosawa argued that the concentrations of condensed and free counterions are related by an 
appropriate Boltzmann factor, 

nc =  nfexp -eΔψ
kT

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (1) 

where Δψ is the potential difference between the outer edge of the annular region containing 
free ions (see Figure 1) and the outer edge of cylindrical core region containing condensed 
ions; electrostatic potentials across both regions are assumed constant, as are their respective 
counterion volume densities nc and nf.  If β is the fraction of dissociated counterions that are 
free, the polyelectrolyte’s effective charge density ξeff (summing the charge of the core 
region, including both ionized polyelectrolyte AND condensed counterions) is given βξ.  
 
As quickly derived from a result in the previous handout, in a dielectric medium the 
electrostatic potential near an infinitely long, isolated line charge decays logarithmically with 
radial distance r, 

ψ =  - 2ξ kT
e

⎛ 
⎝ 

⎞ 
⎠ lnr
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Letting the outer radius of the condensed ion region be denoted rc and the outer radius of the 
free ion region be denoted rf, Δψ can be estimated, 

Δψ =  - 2ξeff
kT
e

⎛ 
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⎞ 
⎠ ln
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⎜ 

⎞ 
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 (2) 

where Vc and Vf  are volumes of the condensed and free ion regions, respectively. 
 
Equations 1 and 2 can be combined to eliminate Δψ, 

ln nc
nf

 =  - eΔψ
kT

 =  ξeff ln Vf + Vc
Vc

⎛ 

⎝ 
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 (3) 
Counting the condensed and free ions by taking the respective products ncVc and nfVf, 

ln 1− β
β

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
 =  ln ncVc

nfVf

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  =  ln nc

nf
+ ln Vc

Vf  (4) 
Designating φ as the fraction of space containing condensed ions [i.e., φ = Vc/(Vc+ Vf)], the 
two previous equations can be combined in a final expression relating ϕ and β, 

ln 1 −β
β

 =  ln ϕ

1-ϕ
- βξ lnϕ

 (5) 

In the limit ϕ→0, Vc becomes exceedingly small, and Oosawa demonstrated for the 
preceding expression the existence of two solution types.  When ξ≤1, a solution exists for 
β→1, and when ξ>1, a solution exists for β=1/ξ.  The second solution reveals condensed 
counterions when a polyelectrolyte is highly charged.  Further, it shows that ξeff=1 for ξ>1, 
i.e., sufficiently many counterions condense so as to maintain a fixed effective charge 
density, i.e., one that does not depend on the actual density of dissociated ionizable units. 
 
The condition ξc=1 is viewed as the critical condition for the onset of counterion 
condensation for monovalent counterions. 
 
With these results in hand, the statement about DNA that opened this section is readily 
interpreted.  For this polymer, ξ≈4.2.  If ξeff=1 for ξ>1, then ~75% (3.2/4.2) of the charge 
from dissociated phosphates is compensated by condensed counterions. 
 
The same trends apply to higher valence counterions except that the onset of counterion 
condensation is lowered to ξc = |zi|-1, and for ξ>ξc, β=1/|zi|ξ.  The next figure sketches these 
predictions. 
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Manning Argument for Counterion Condensation 

Manning’s proposed arguments for counterion condensation superior to the one presented 
above.  His arguments allow ψ in the region occupied by free ions to be electrostatically 
screened at the level of the Debye-Hückel approximation.  
 
 The Debye-Hückel electrostatic potential near a line charge was given in the last handout, 
and after being rewritten in terms of ξ, it reads, 

ψ(r) =  2ξ kT
e

⎛ 
⎝ 

⎞ 
⎠ Ko(rκ)

 (6) 

Manning calculated the radial charge distribution by asserting Boltzmann distributions for 
the co- and counter-ions residing in this screened potential.  For 1:1 electrolyte, 

ρ(r) = nbe[exp(−eψ / kT) − exp(eψ / kT)]  (7) 
            co-ions                 counterions 
where nb is the bulk volume density of coion and counterion. 
 
From the charge distribution, the excess of charge residing inside a surface of radius r is 
given by the integral, 

Q(r) =  ρ(r)(2πr)dr
0

r
∫

 (8) 
Near the hypothesized line charge (small rκ), the following approximation holds (see any 
math handbook),  

Ko(rκ) = 0.1159-ln(rκ) +….     (9) 

Applying this approximation to the preceding integral and then rearranging,  

Q(r) =  2πnbe[exp(−0.23ξ) (κr)2ξ

0

r
∫  rdr − exp(0.23ξ) (κr)−2ξ

0

r
∫  rdr]

 
(10) 

       co-ions                                       counterions 
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The first integral is well behaved.  However, neglecting its multiplicative prefactor, the 
second integral yields  

r2(1-ξ)

2(1 − ξ)κ2ξ 0

r

 (11) 
which diverges unless ξ<1.  Seeing this behavior, Manning wrote the following (with minor 
changes to bring his vocabulary in line with this handout), “The physical interpretation of the 
divergence of the integral for values of ξ greater than unity is that systems characterized by 
such values are unstable: sufficiently many counterions will ‘condense’ on the line charge to 
reduce ξ to a value just less than one.”(J. Chem. Phys. 51, 924 (1969).  
 
Continuing, Manning argued that counterion condensation satisfactorily describes 
polyelectrolyte solutions up to relatively high electrolyte concentrations.  This conclusion 
seems original to Manning, as earlier workers apparently viewed counterion condensation as 
a feature of salt-free solutions. 
 
Debate 
Counterion condensation has many detractors, who stress flaws in any of the concept’s 
derivations, such as artificial subdivision of the counterions into two populations, 
inappropriate extrapolation of the Debye-Hückel approximation to regions of high 
electrostatic potential, and inconsistent treatment of counterions.  In the derivation recounted 
in the preceding section, for example, the electrostatic potential is calculated via the Debye–
Hückel approximation, which rigorously requires linearization of all exponential Boltzmann 
factors, but ion distributions are subsequently evaluated using the full exponential forms of 
these factors.  If the ion distributions are instead evaluated in their linearized forms, to 
maintain consistency with the Debye-Hückel approximation, the crucial divergence 
disappears.   
 
The full nonlinear Poisson-Boltzmann equation offers a more rigorous way to interpret 
electrostatic phenomena in electrolyte solutions, but the physical picture obtained through 
this equation is different in many ways than the one suggested by counterion condensation.  
In particular, a Poisson-Boltzmann analysis does not readily identify distinct populations of 
condensed and free counterions but rather a Gouy-Chapman layer of smoothly varying 
counterion density.  Nevertheless, Poisson-Boltzmann-based analyses do find that in salt-free 
solutions there is a fraction of counterions equal to 1-β that cannot be fully diluted away from 
the chain at infinite chain dilution; the volume occupied by this trapped fraction is predicted 
by the Poisson-Boltzmann equation to be rather large, a feature inconsistent with the physical 
picture on which condensation is based.   
 
Zimm pointed out that, by applying the dilution criterion in salt-free solution to define 
condensed ions, all counterions are condensed on plane, none on a sphere, and some on a 
cylinder.  Many experimental and theoretical studies support the general picture, if not the 
details, of the original counterion condensation concept. 
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Subdivision of counterions into condensed and uncondensed populations according to the 
Manning/Oosawa depiction is not unique. The inflection point in the radial ion distribution or 
the radial distance over which the electrostatic interaction energy decays to kT have both 
been proposed as alternative criteria for defining the condensed fraction.    
 
According to a nonlinear Poisson-Boltzmann analysis, the initial radial decay of ψ from a 
cylindrical chain segment is much steeper than predicted by a Debye-Hückel analysis; see 
figure. The steep decay lessens at large distance, and ψ eventually adopts an asymptotic  
 
 
 
 
 
 
 
 
 
 
 
 
 
functional form compatible with a Debye-Hückel approximation.  However, to superimpose 
the predictions of the Poisson-Boltzmann analysis onto those formulated within the Debye-
Hückel approximation, the linear charge density in the Debye-Hückel calculation must be 
lowered from the linear charge density asserted in the Poisson-Boltzmann analysis.  The 
reduced, Debye-Hückel linear charge density can be interpreted, from the perspective of a 
distant observer, as defining the polyelectrolyte’s “effective” or renormalized linear charge 
density, a calculation first made for linear polyelectrolytes by Fixman.  The following figure 
compares this effective linear charge density, as determined for a charged cylinder of radius 
a, to the effective linear charge density predicted by the Manning line charge model with 
counterion condensation.  The two approaches agree in only the most qualitative manner,  
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notably for ξ<<1.  In this limit, where ξeff=ξ according to both approaches, the Debye-
Hückel approximation is valid throughout the entire solvent domain surrounding the 
polyelectrolyte; there are no condensed counterions.  For ξ≥1, the effective linear charge and 
associated Debye-Hückel predictions apply only to phenomena associated with distant 
portions of the potential field. 
 
Despite the unsettled theoretical status of counterion condensation, many of its predictions 
find direct support in experiment.  Properties such as osmotic pressure, activity coefficient, 
and counterion diffusion coefficient can readily be understood if condensation is assumed.  
However, as mostly unrecognized, the same properties usually can be equally interpreted 
without assuming counterion condensation, albeit with the greater analytical difficulty of a 
Poisson-Boltzmann analysis. 
 
The status of counterion condensation in nondilute solutions remains an active area of 
research; some expect the condensed fraction to rise and other for it to fall polymer 
concentration. 
 
From one perspective, counterion condensation is merely a convenience.  The concept 
enables the properties of a highly charged polyelectrolyte to be explained by a Debye-Hückel 
analysis when such a simplified analysis is not justified.  In essence, appropriately adjusting a 
single parameter – the linear charge density – extends a linear theory beyond its expected 
linear range.  The only way to verify the correctness of the overall approach is to solve the 
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full nonlinear problem, i.e., to develop a theory accounting quantitatively for all forces acting 
on counterions.  Of course, with such a complete solution in hand, the need for the simplified 
approach disappears.   
 
Manning expounds a slightly different view, believing that condensed counterions are not 
just a mathematical convenience but also a physical reality.  He argues that condensed 
counterions form a distinct population with properties different from those of free 
counterions.  From his perspective, counterion condensation is not – as described above – 
simply a way to avoid nonlinear modeling of counterions.    
 
In support of Manning’s view, simulations by Jayaram and Beveridge (1996) strongly 
suggest the presence of well-defined condensed counterions around DNA, albeit the physics 
associated with their condensation somewhat different than those modeled by Manning.  For 
flexible polyelectrolytes, similar simulations have been done more recently by Muthukumar 
and Rubenstein, and again, condensed counterions were identified. 
 
Conformational Description – 
Theories for polymer conformation often proceed at two levels, one focused at chain 
stiffness, expressed through the persistence length lp, and another focused at interactions 
between segments widely separated along the chain contour, interactions manifested in the 
segmental excluded volume v.  So-called “two-parameter” theories, based on the premise that 
the physics underlying chain conformation occur at two widely separated length scales, were 
originally crafted to explain the conformations of neutral polymers, a subject reviewed before 
turning to polyelectrolytes.   
 
Theory of Neutral Polymer Chain Conformation: 

Persistence Length – 
Representing a polymer chain as a continuous but fluctuating space curve, departures from 
straightness can be assessed through the mean cosine of the angle θ between two backbone 
tangent vectors separated by curvilinear displacement Δs.  In the presence of random thermal 
fluctuations, <cosθ(Δs)> decays exponentially with Δs, with the characteristic length of 
decay identified as lp, i.e.,  

<cosθ(Δs)> = exp(-Δs/lp) 

The persistence length can be interpreted as the longest chain section remaining 
approximately straight while the chain as a whole suffers thermal motions; upon traversing a 
chain section longer than lp, bending fluctuations destroy memory of original chain direction.   
 
The persistence length can be related to a chain’s bending modulus E by the formula, 

lp=E/kT 

For an elastic chain that curves only slightly along its length L, the total bending energy 
Ubend can be obtained by integrating along the backbone, 
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Ubend  =  1
2

E ds ∂u
∂s
⎛ 
⎝ 

⎞ 
⎠ 0

L
∫

2

 
where u is the unit tangent vector to the backbone at s, and s is a curvilinear distance variable 
running from one chain end to the other, 0<s<L. 
 
Chains with L< 10 lp are not sufficiently flexible to behave as classical flexible coils while 
chains with L< lp behave much as rigid rods.  Chains with lp< L< 10 lp are often described as 
“wormlike” chains.  A formula for the mean square end-to-end distance in terms of L and lp 
is written, 

<R2>o=2lpL – 2lp2(1-exp[-L/lp]) 

This formula, termed the Kraky-Porod formula for a persistent or wormlike chain, is general; 
it describes coiled (L/lp>>1) and rod-like extremes (L/lp<<1) as well as intermediate cases.  
The formula does not account for excluded volume, which typically becomes important when 
L/lp is larger than about 10-20. 
 
Excluded Volume- 
Because of chain flexibility, segments positioned far apart along the chain contour interact 
with one another.  In this context, “far apart” implies curvilinear separations much greater 
than lp.  The strength of these interactions, captured in v, can dramatically affect chain 
conformation for a long polymer.  If the interactions are attractive, the coil shrinks from its 
Gaussian state, and if repulsive, the coil swells from this state. 
 
The physical interactions manifested in excluded volume are general, and the list includes 
van der Waals, steric, and electrostatic interactions.  In most cases, the strength-distance 
interplay of the interactions remains poorly understood.  Fortunately, detailed information is 
unimportant to understanding of how excluded volume impacts global chain conformation.  
We can simply assess the overall magnitude of the interaction through a delta function 
potential, 

U(ri,rj) = vkTδ(ri-rj) 

where v is the segmental excluded volume (units of volume).  If the full interaction potential 
u(r) between arbitrary segment i and j is known, v can be calculated via the integral 

v =  dr 1- exp u(r)
kT

⎛ 
⎝ 

⎞ 
⎠ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∫

 
a formula  analogous to that for the second virial coefficient of a nonideal gas.  The integral’s 
form admits possibility for attractive forces over some r range to compensate exactly for 
repulsive forces over another r range, the compensation making v identically zero.  Such a 
condition defines the theta temperature. When attractions among segments are sufficiently 
dominant, the polymer coil collapses into a globule, a transition analogous to the 
condensation of a gas into a liquid when molecular attractions dominate. 
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The subscripted “o” quantities of the previous section, obtained without concern for excluded 
volume, should be evaluated only at the theta temperature.  When v is positive, there is an 
effective repulsion between distant segments, and when v is negative, there is an effective 
attraction.  The electrostatic repulsions between like charged chain segments can increase v 
substantially. 
 
The collective magnitude of excluded volume interactions depends on the instantaneous 
average number of segmental “collisions” within the polymer coil; this number is molecular 
weight-dependent.  At the mean field level, the number of binary segmental interactions is of 
the order Nφ, where N is the number of polymer segments and φ is the volume fraction of the 
coil domain occupied by segments.  Using a Gaussian chain description for coil volume V, 
the product Nφ follows the scaling 

N Nv
V

⎛ 
⎝ 

⎞ 
⎠ ∝

N2v
< R2 >3/2

∝
N2v
N3/2a3

∝
N1/2v
a3  

After attaching a numerical prefactor, the final form is traditionally termed the excluded 
volume strength z (a dimensionless quantity), 

z = 2 3
2π
⎛ 
⎝ 

⎞ 
⎠ 

3 /2 N1/ 2v
a3

 

Predicting the expansion/contraction of a chain in response to excluded volume requires a 
formula linking z to chain conformation.  Flory, for example, proposed that  

α5 −α3 = 4
3
z  

where the chain expansion factor α is the ratio of the actual mean-squared end-to-end 
distance <R2>  to the mean-squared end-to-end distance in the absence of excluded volume 
<R2>o, 

α2 = < R2 >
< R2 >0  

When z=0, we find α=1, defining the theta state.  When z is large, α5≈z, implying 

< R2 >1/2∝N3/5  
More generally, a scaling law can be written for large N, 

< R2 >1/2∝Nµ  
where the excluded volume exponent µ adopts values: 

    µ chain conformation 
    1/3 collapsed sphere 
    ½ Gaussian 
    3/5 self-avoiding walk 

1 rod 
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Note that µ characterizes the molecular weight-size relationship only for asymptotically large 
chain lengths.  When chains are not long enough to reach this limit, power law behavior is 
not expected, and the parameter µ should not be used.  At high enough molecular weight in a 
good solvent, µ always equals 3/5. (I use µ instead of the traditional Greek character ν so that 
there is no confusion with the Roman character v chosen for segmental excluded volume.) 
 
Issues for the Conformation of Charged Polymers in Solution 

As reflected in size measures such as the mean radius of gyration Rg or mean-squared end-to-
end distance <R2>1/2, an isolated polyelectrolyte chain in dilute solution expands relative to 
an analogous neutral chain because of the electrostatic repulsions among the similarly 
charged chain segments.  Low molar mass electrolyte and counterions screen these 
repulsions, and consequently, a flexible polyelectrolyte contracts as electrolyte is added 
(assuming the electrolyte does not contain ions that specifically bind to the chain, affecting 
its charge in an unexpected way).  In two-parameter chain descriptions, the repulsions are 
considered to modify lp and v separately. 
 
At high enough electrolyte concentrations, suppression of segment-segment repulsions 
suffices, at least for some polyelectrolytes, to transform a good solvent into one of marginal 
or poor quality; electrostatic contributions to excluded volume are so much diminished that 
hydrophobic interactions between backbone segments dominate.  In this case, precipitation or 
coacervation of the polymer ensues, a process referred to as “salting out.”  Higher valence 
ions more effectively screen electrostatic repulsions and induce phase separation at lower salt 
concentrations. 
 
Across the ionic strength range where flexible polyelectrolytes are readily studied, 0.001 M 
to 1.0 M, changes in chain conformation can be significant, leading to variations of Rg of up 
to an order-of-magnitude.   
 
Polyelectrolyte expansion has immediate significance to numerous solution properties such 
as viscosity and diffusion coefficient.  
 
In a solution containing little added electrolyte, many early investigators expected a 
conformational crossover, from electrostatically stiffened rod to electrostatically swollen 
Flory-like coil, when chain length exceeds κ-1.  Later investigations showed that 
polyelectrolyte size and conformation in solution present subtle complexities.  Although 
there have been important recent theoretical contributions by authors such as Odijk, 
Skolnick, and Fixman; Joanny and Barrat; and Muthukumar et al., the quantitative matching 
of experimental data to theoretical predictions remains inconclusive except in a few limiting 
cases. 
 
Odijk-Skolnick-Fixman (OSF) Model 

The OSF model, developed in the late 1970s by Odijk and coworkers, and independently 
Skolnick and Fixman, incorporates electrostatic interactions within the classical two-
parameter approach. 
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Chain Stiffness - 

The value of lp is calculated under the approximation that a short charged chain segment 
undergoes only small amplitude bending deformations from its lowest energy, rod-like state.  
The free energy of bending ΔF is divided into two contributions, one intrinsic to the 
uncharged chain and the other associated with the enhancement of electrostatic interactions 
incurred by bending, 

ΔF
kT

 =  
lp,o
2

ds ∂u
∂s

⎛ 
⎝ 

⎞ 
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2
 +  ΔFel

kT0

L
∫

 
The parameter lp,o, termed the “bare” persistence length, arises from the same local, 
nonelectrostatic interactions as in neutral polymers.   
 
The term ΔFel captures the electrostatic energy of bending; fixed backbone charges are 
brought closer together in the process of bending a previously straight chain section.  For 
simplicity, the model assumes that fixed charges are smeared uniformly along the chain 
contour, and the interactions between these charges are treated at the level of the Debye-
Hückel approximation.  In addition, at length scales relevant to ΔFel, i.e., at length scales 
comparable or smaller than κ-1, the chain contour is assigned a mean curvature.  This 
approximation disallows contributions to ΔFel from bending fluctuations.  Mathematical, 
neglect of fluctuations requires that the bending radius of curvature must be much larger than 
κ-1. 
 
Retaining only the lowest, quadratic term in chain curvature, the electrostatic energy of 
bending can be expressed 

ΔFel
kT

 =  
l p,e
2

ds ∂u
∂s
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where the electrostatic persistence length lp,e is given 

lp,e =
lb
4

1
κb
⎛ 
⎝ 

⎞ 
⎠ 

2

 
The total persistence length lp simply sums the two contributions lp,o and lp,e: 

lp = lp,o+lp,e 

Inherent to the OSF derivation is assumption that lp,e<< lp,o, a condition that significantly 
reduces the useful range of the final formula.  Also, the formula does not rigorously apply to 
highly charged polymers, which are not properly modeled at the level of the Debye-Hückel 
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approximation.  Nevertheless, most investigators applying the OSF result assume that the 
separation of lp into intrinsic and electrostatic parts remains valid outside the theoretically 
justified range.  Further, the phenomenon of counterion condensation is usually argued to 
justify the Debye-Hückel approximation, allowing OSF predictions to be applied to highly 
charged polyelectrolytes. 
 
The OSF formula most importantly predicts how the electrostatic stiffness of a charged 
polymer depends on ionic strength I, 

lp,e ∝  I-1
 

As expected, as the concentration of an added electrolyte falls, thereby lowering I, a charged 
chain section becomes stiffer and thus more resistant to the thermal forces that induce 
bending.  However, experiments for inherently flexible polyelectrolytes show that the 
increase of lp,e with decreasing I more closely tracks with 

lp,e ∝  I-1/2
 

LeBret and Fixman polished the OSF model by adding nonlinear electrostatic effects at the 
level of the nonlinear Poisson-Boltzmann equation; their calculations are numerical.  The 
figure below shows a comparison of experimental measurements with predictions of the 
original (Debye-Hückel) OSF model and the nonlinear OSF model (Dautzenberg et al., 
Polyelectrolytes, Hanser, 1994).  The experimental data seem to fall between the two theories 
for the intrinsically flexible polymer examined, as shown below. (Caveat: the original OSF 
model curve displayed in Figure II arbitrarily assumes “counterion condensation.”) 

 
Analogous evaluations of the OSF model for much stiffer polymers, such as double-stranded 
DNA, show much better agreement between theory and experiment.  
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Barrat and Joanny examined the OSF model’s assumptions and came to the conclusion that 
the model should only be applied when 

b << lblp,o( )1/2  
because of its neglect of bending fluctuations.  This conclusion explains why the model 
performs better for stiffer polymers.   
 
Excluded Volume - 
In the OSF calculation of excluded volume, chain segments are treated as randomly oriented, 
charged cylinders, thereby capitalizing on Onsager’s previous Debye-Hückel-level 
calculation of electrostatic interactions in this geometry.  After averaging appropriately over 
segmental orientations and separations, Odijk and Houwaart found, 

ve = 8πlp2κ
−1

 
as the electrostatic contribution to segmental excluded volume.  Just as for persistence length, 
this electrostatic contribution was considered as additive to a nonelectrostatic contribution, 
the sum yielding the net excluded volume.  Then, using the net excluded volume, chain 
swelling could be calculated by applying standard relationships between α and z.  After these 
steps, one finds that at low salt, where ve dominates, a flexible polyelectrolyte chain swells 
substantially beyond the ranges reached by a neutral polymer. 
 
The following figure displays the cs dependence of coil size (inferred by the virial coefficient 
measured by light scattering) for a flexible polyelectrolyte.  Agreement with the OSF model 
is excellent, with one fitting parameter, the coil size at high cs (Popov , Reed, and Hoagland, 
unpublished). 
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Variational Models - 
Many within the polyelectrolyte community believe that variational models address the 
conformations of inherently flexible polyelectrolytes better than does the OSF model.  In 
fact, the earliest models (early 1950s) were of this type, these models subsequently 
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overshadowed by the OSF model in the 1980s and early 1990s.  Variational models have 
now regained their earlier stature. 
 
In a variational approach, a flexible polyelectrolyte chain is postulated to conform to a simple 
physical model that constrains how the chain’s conformation rearranges.  Then, at each 
polyelectrolyte-solution condition, the model’s free energy is minimized with respect to a set 
of model parameters (such as apparent persistence length and/or chain size), thereby 
obtaining a mean-field conformational description.  Unlike the OSF model, changes in chain 
configuration are attributed to swelling in response to changes in electrostatic interactions 
among all segments.  Local interactions, such as those corresponding to changes in 
persistence length within the OSF model, are not given special attention.  However, the 
impact of electrostatic interactions on swelling may be captured in an “apparent” persistence 
length. 
 
For a variational calculation, the accuracy of the final result hinges on choice of an 
appropriate chain model.  Early studies assumed that a polyelectrolyte’s segment distribution 
was Gaussian or that the coil remains spherical as the molecule expands or contracts from a 
hypothetical uncharged theta state.  Modern variational models are often motivated by “blob” 
models that simplify analysis of electrostatic interactions. 
 
In a variational model, the free energy is expressed as a sum of terms arising from entropic 
elasticity and electrostatic interaction energy, the latter most often handled at the level of the 
Debye-Hückel approximation.    
 
In 1993, Barrat and Joanny motivated a variation description by depicting a weakly charged, 
flexible polyelectrolyte as a semiflexible string of electrostatic subunits or “blobs,” each of 
size ξ (this symbol IS NOT the dimensionless charge density described earlier).  In their 
model, each blob was associated with a contour section of sufficient length Lʹ′ to balance 
electrostatic and thermal energies.  Within a blob, the local chain statistics are unperturbed by 
electrostatic repulsions, but at larger length scales, blobs interact electrostatically and the 
chain becomes extended if these interactions are strong.  At values of κ-1 appropriate to salt-
free solutions, these statements lead to the following scaling forms: 
 

Gaussian statics within a blob- 
ξ2 ~  ʹ′ L lo  

Number of charges g per blob – 
g =  ʹ′ L / b  

Electrostatic interactions within blob is of order kT- 

Ue ~  kT ~  g2e2

εξ  
Combining these relationships, the blob size is found 

ξ ~  (blo)2/3lb
−1/3
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Under unscreened solution conditions, the blobs arrange linearly in space to reduce their 
overall electrostatic energy, as sketched below: 

 
At finite κ-1, a condition adding electrostatic screening between blobs, the depiction changes.  
Now, the linearity of a blob sequences is finite; this finiteness defines an apparent persistence 
length proportional to κ-1: 

 
When the chain of blobs is long enough, the chain obeys the usual neutral polymer scaling of 
R with N.  From their blob depiction, Barrat and Joanny developed a variational calculation 
that leads to the following relationship for R at large N, 

R ~ N3/5κ−2/5  
In this instance, lp can be termed only an “apparent” electrostatic persistence length since the 
variational procedure self-consistently calculates both lp and R; obviously a close tracing of 
the backbone produces a persistence length much smaller than sketched. 
 
The electrostatic blob approach fails when κ-1 falls below ξ. 
 
Muthukumar et al. approached the conformation of a flexible polyelectrolyte slightly 
differently, employing a variational procedure that combines the Debye-Hückel 
approximation with the Edward’s path integral formalism.  A similar formula was found for 
R in the limits of large and small κ-1 along with a crossover formula appropriate for 
intermediate κ–1.  At small values of κ-1, the Muthukumar et al. formalism can be rearranged 
to show an apparent persistence length 

lp ~ κ-4/5 

slightly different than predicted by Barrat and Joanny. 
 
The large κ -1 result of both groups corresponds to the intuitive picture that a polyelectrolyte 
chain unravels into an extended linear conformation when electrostatic repulsions between 
segments are strong.  Although unraveled, the chain retains local conformational freedom 
and remains less than fully stretched (R<<L).  The large κ–1 formula given above for the salt-
free case was actually first suggested in 1948 by Katchalsky et al. and Hermans and 
Overbeek and then later clarified by de Gennes et al. and Pfeuty.  Similarly, the finite κ–1 
result displayed above shows that strongly screened electrostatic repulsions between 

lp ~ κ−1
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segments can be viewed as simply increasing the chain’s excluded volume.  Indeed, using 
variational procedures, Hermans and Overbeek and Flory half a century ago derived the same 
small κ-1 formula for R; Richmond and Pfeuty more recently reported derivations. 
 
Dobrynin et al. recently developed a variational blob theory for the dilute solution 
conformations of hydrophobic polyelectrolytes, those that dissolve solely only because of 
their charges; these polyelectrolytes were predicted to decompose into a necklace-like shape 
of compact beads separated by narrow strings.  No experimental evidence for such shapes 
has surfaced. 
 
Ionomers 
(A. Eisenberg and J.-S. Kim, Introduction to Ionomers, Wiley & Sons, 1998) 

Electrostatic and Morphological Description – 
Electrostatics 

The electrostatic and conformational descriptions of an ionomer chain are basically the same 
as for a polyelectrolyte.  A flexible linear chain is decorated with ionizable units to extent 
captured in ξ (once again, this symbol represents the Manning charge parameter), defined in 
the same way as for a polyelectrolyte.  However, the chain resides in an environment of 
modest or low ε, comprised of either similar chains (neat ionomer) or low polarity solvent 
molecules (ionomer solution).  As a quantitative value of ε is usually unavailable, and since 
the electrostatic interactions in a dense ionomer system are not centered on a single chain or 
chain segment, ionizable content is more typically specified in bulk terms, for example, in 
mole percent of ionizable unit relative to the totally number of repeat units  (x100).  This 
content is often considered limited for ionomers to less than 15%.  When the repeat units 
bearing ionizable units are chemically dissimilar from the unionizable or neutral repeat units, 
a better assessment of ionizable content is via moles per liter or milliequivalents per unit 
mass. 
 
At the relevant values of ε and T, thermal energy is not sufficient to dissociate ionomer 
counterions, and so in vast preponderance, the ionizable units of an ionomer are not 
dissociated, instead forming “contact” ion pairs (the two ions solvated if a polar solvent is 
present).  A very small population of dissociated ions remains present, endowing the system 
with a low but measurable ion conductivity.  This conductivity, and strategies for raising its 
value, have sparked much recent research activity, motivated by applications such a fuel cell 
and battery membranes.  Large, delocalized counterions are dissociated to somewhat greater 
extent than standard (small, inorganic) counterions, a principle in analogy to the strategy for 
creating ionic liquids.  
 
Ion pairs attract each other due to strong dipole-dipole interactions, forming ionic aggregates.  
The strength of the interaction of two dipoles at contact reflects their minimal spatial 
separation d, a parameter altered by the sizes of both ionizable units and counterions.  
Making this separation dimensionless with respect to lb defines the Coulomb coupling 
parameter Γ, 
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Γ =  lb
d  

Since ε is low in all ionomer environments, of the order 2-10, lb is large, of the order 5-50 
nm at room temperature.  From these facts, one infers that Γ itself must be substantial, of the 
order 20-200. 
 
In terms of Γ, the thermally averaged dipole-dipole interaction energy of the previous 
handout can be rewritten, 

w(r)
kT

 =  - 2
3
Γ2 d2l4

r6
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 
illustrating that Γ characterizes dipole-dipole interaction energy relative to kT.  Although just 
a rough approximation (since the point dipole approximation has been employed and dipole-
dipole energy evaluated by an orientational averaging procedure valid only for w(r) small 
compared to kT), the strength of a contact ion pair can estimated by setting r to d.  Then, 

w(r)
kT

 =  - 2
3
Γ2 l

d
⎛ 
⎝ 
⎞ 
⎠ 

4

 
For the most reasonable physical situation, with d comparable to l, and with Γ>>1, the 
interaction energy is quite strong compared to kT, explaining why isolated dipoles in 
ionomers are rare. 
 
Because the two positive and two negative charges adopt a preferential spatial arrangement – 
a square planar quartet - as two dipoles come together, a two-dipole aggregate can itself 
electrostatically attract other dipoles and/or dipole aggregates, thereby growing to larger size 
through higher order quadrupole-quadrupole and multipole-multipole interactions.  The 
accompanying electrostatic energies, however, grow progressively weaker with size, 
disfavoring large aggregates. The small dipole clusters of an ionomer are called “multiplets”; 
they are chief morphological feature of ionomers and they will be discussed later in this 
handout.  Multiplets are believed to be almost exclusively comprised of ion pairs, with 
unionizable sequences of ionomer excluded.  One proposed depiction of a multiplet in 
sulfonated polystyrene is shown below; note the depletion of ion pairs in a shell around the 
multiplet (Eisenberg and Kim, Introduction to Ionomers, Wiley, 1998).  
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While efforts have been made to ascertain ordered arrangements among ion pairs collected in 
a multiplet, not much about this issue has been resolved.  Some have suggested crystalline 
order in particular ionomer systems. 
 
There is conflicting evidence as to the sizes of individual polymer chains in an ionomer; 
scattering data suggest that interacting dipoles don’t much change this size in comparison to 
the corresponding neutral polymer. 
 
The “neutralization” of an anionic ionomer gives the fraction of the ionizable groups that are 
in the salt rather than the acid form.  The characteristic properties of an ionomer aren’t 
always present in the unneutralized or acid form, presumably because the ion pairs are 
weakened by the small separation of charges (protons are smaller than other cations).  In 
particular, for ionomers with carboxylate groups, multiplets are only observed in at least 
partially neutralized samples.  In ionomers with sulfonate groups, multiplets may be observed 
in the completely unneutralized form, suggesting that the protonated sample shows the full 
range of ionomer behaviors. 
 
The chemistry, size, and geometry of both ionizable units and counterions are clearly more 
important to ionomers than to polyelectrolytes, since these features govern the interaction 
strength and packing of ion pairs into multiplets.  Consequently, ionomers of different 
chemistry display distinct properties.  The following tables show (i) common examples 
anionic and cationic ionomers and (ii) accompanying counterions (Eisenberg and Kim, 
Introduction to Ionomers, Wiley, 1998).  
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Morphology 
Making analogy to block copolymer morphology is perhaps the simplest way to approach the 
nano- and micro-scale morphology of ionomers.  Ionomers share many features with strongly 
microphase-segregated segmented block copolymers such as polyurethane elastomers, which 
are considered to organize into hard and soft segment domains in much the manner that 
ionomers organize in ionic and hydrophobic domains.  The energetics governing domain 
separation are also much the same, and in both cases, nanoscale aggregates form highly 
effective physical crosslinks.  Unfortunately, a successful theoretical model for multiplet 
formation has not been formulated, and so we proceed in our understanding of ionomer 
morphology by examining experimental evidence.  There are strong indications that, just as 
in block copolymers, there are many morphological possibilities, and the one selected for a 
given system may depend on small details. 
 
A distinct feature of all ionomer systems is a diffuse single “ionomer” peak in x-ray 
diffraction.  Until recently, interpreting this peak was the chief obstacle in understanding 
ionomer morphology.  A sample ionomer peak is given below (Yarusso and Cooper, 
Macromolecules, 16 (1983) 1871).   
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The Bragg spacing corresponding to the peak maximum is ~2-4 nm.  Note also the upturn in 
intensity at still lower scattering vector, suggesting some sort of larger scale organization. 
 
While many explanations for the ionomer peak have been offered, it is now clear that peak is 
explained by inter-multiplet scattering, reflecting a liquid-like spatial ordering of compact 
multiplets.  The scattering is in all respects similar to that of hard spheres with paracrystalline 
or liquid-like ordering.  The cited paper by Yarusso and Cooper offers a specific scattering 
model, depicted schematically below, which quantitatively matches the intensity profile of 
the scattering peak.   

 
The key parameters are the multiplet radius (~1 nm), intermultiplet distance (3-4 nm), and 
number of ionizable units per multiplet (~15-20); the values given in parentheses are fitted 
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values for zinc-neutralized sulfonated polystrenes of various sulfonation levels and partial 
neutralizations with zinc.  Quality of the fitted curve is shown in the next figure. 

 
 
Recent support for this model comes from scanning tranmission electron microscopy 
(STEM), which reveals multiplet structure and organization comparable to that inferred by x-
ray diffraction (Winey et al., Macromolecules 40 (2007) 1081).  The only difference is a 
somewhat less compact multiplet structure, containing fewer ion pairs and a compensating 
level of neutral chain segments.  A representative STEM image is shown below (Winey et 
al., op. cit.). 

 
 
Origins of the diffraction pattern’s upturn in intensity at low q remain contentious.  One 
possibility is a higher length scale organization of multiplets into clusters. 
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Nafion – 
Nafion is an ionomer of unusual properties and intense technological interest.  Its sulfonated 
ionizable units are sited at the end of short side groups attached to a perfluorinated, Teflon-
like backbone.  The polymer shows a typical ionomer peak and low q scattering upturn 
highly sensitive to uptake with water, which in technological applications as a proton-
exchange membrane of a hydrogen fuel cell, is present at high levels (10-30 vol. %).  For the 
hydrated material, a recent contribution [Schmidt-Rohr and Chen, Nature Materials 7 (2008) 
75] makes a convincing case for a more complex morphology than conventionally ascribed 
to ionomers.  That Nafion morphology has this added complexity is not unexpected – a 
percolating arrays of water transport pathways has been argued as the only explanation for its 
fast transport of water and protons; indeed, at 20% water, the diffusion coefficient of water in 
Nafion is only one order of magnitude lower than its value in bulk, and at the same time, over 
one order of magnitude higher than in conventional ionomers of similar water content.  The 
proposed morphology consists of parallel, cylindrical water channels lined with the 
hydrophilic ionizable units, as sketched below.  This model explains both the ionomer peak 
and the scattering upturn at low q. 

 
 
The complexity of the suggested Nafion structure hints that, as more ionomers are explored, 
new and increasingly complex morphologies are likely to be discovered, a suggestion 
buttressed by recent simulations. 


