
  1 

Gaussian Probability Function for End-to-End Distance of a Random Walk. 
 
Consider a collection of 1-d random walks that go along the x-axis.  We would like to determine 
the probability of a walk of length R.  The walk is composed of n steps of length l.  The 
maximum distance that can be traveled is n l. 
 
1) A random walk has a maximum probability of having traversed a distance of R = 0 since it is 
equally probable that the walk goes forward as backward.  We can arbitrarily set the probability 
of a walk of distance R = 0 at P(R) = 1.   
2) P(R) must decay from the value of 1 at R=0 in both positive and negative x and the decay 
must be monotonic (no peaks or valleys) and symmetric about 0 (there is no preference to 
positive or negative walks).  P(R) can only be a function of even orders (powers) of R due to 
symmetry. 
3)  We can propose the lowest order approximation from a power-series expansion of P(R), 
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This function follows rule “1” since P(R = 0) = 1 and follows the symmetry rule “2” since 
positive and negative R have the same probability.  Equation (1) suggests a plot of P(R) versus 
R2, top axis and blue curve in plot below for k = 100.  This curve intercepts the x-axis at R = 100 
= k. 

 
4)  A random distribution of end to end distances, R, will follow the Gaussian distribution which 
is approximately equal to equation (1) at low values of R/k, 
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5)  Using PG(R) we can calculate 

€ 

R2 .   



  2 

€ 

R2 =
R2

−∞

∞

∫ PG R( )dR

PG R( )dR
−∞

∞

∫
=

R2
−∞

∞

∫ exp R2

k 2
 

 
 

 

 
 dR

exp R2

k 2
 

 
 

 

 
 dR

−∞

∞

∫
   (3) 

These integrals require a trick to solve.  First the integral is squared in x and y: 
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Then Cartesian coordinates are replaced with circular coordinates, r and θ, 
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The integral in the numerator can be solved by another trick, 
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and since G(α) = (π/α)1/2, then 
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6)  So, 
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7)  We can calculate 
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R2  from a consideration of the random walk in 1d which is composed of 
n steps, 
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so, 
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8)  Equation (6) is not normalized meaning that the integral does not equal 1.  To normalize this 
function we consider a prefactor such that the integral is equal to 1 and solve for this prefactor, 
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so the normalized 1d Gaussian probability function is 
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9)  A real Gaussian chain is in 3d space rather than in 2d space.  But each of the 3 dimensions is 
independent of the others so the three probabilities just multiply as independent 1d probabilities.  
This cubes the exponential and adds a factor of 3 to the prefactor as well as changing the power 
to -3/2, 
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10)  Using equation (8) we can calculate any moment of the distribution such as the second 
moment, 
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Where the integral can be solved in a similar way, 
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All even order moments of the Gaussian can be solved using this approach. 


