Gaussian Probability Function for End-to-End Distance of a Random Walk.

Consider a collection of 1-d random walks that go along the x-axis. We would like to determine
the probability of a walk of length R. The walk is composed of n steps of length ¢. The

maximum distance that can be traveled is n ¢.

1) A random walk has a maximum probability of having traversed a distance of R = 0 since it is
equally probable that the walk goes forward as backward. We can arbitrarily set the probability
of a walk of distance R = 0 at P(R) = 1.
2) P(R) must decay from the value of 1 at R=0 in both positive and negative x and the decay
must be monotonic (no peaks or valleys) and symmetric about 0 (there is no preference to
positive or negative walks). P(R) can only be a function of even orders (powers) of R due to
symmetry.
3) We can propose the lowest order approximation from a power-series expansion of P(R),
2

P(R)=1—%+... (1)
This function follows rule “1” since P(R = 0) = 1 and follows the symmetry rule “2” since
positive and negative R have the same probability. Equation (1) suggests a plot of P(R) versus
R?, top axis and blue curve in plot below for k = 100. This curve intercepts the x-axis at R = 100
=k.
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4) A random distribution of end to end distances, R, will follow the Gaussian distribution which
is approximately equal to equation (1) at low values of R/k,
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5) Using Pg(R) we can calculate <R2>.
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These integrals require a trick to solve. First the integral is squared in x and y:
= fexp(—axz)dx

(G(oc))2 = fexp(—ax2)dxfexp(—ay2)dy = fdxfa’yexp(—oz(y2 + x2))dy

Then Cartesian coordinate_s are replaced wiih cir_cular coordinates, r and 0,
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The integral in the numerator can be solved by another trick,
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and since G(a) = (J‘l?/OL)l/ 2 then H ( — _ so, with o= 1/k* and x =R,
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6) So,
R2 R2
P,(R)=exp|-——|=1-—F—+ ... 5).
c( ) P{ 2<R2>) 2<R2> &)
7) We can calculate <R2> from a consideration of the random walk in 1d which is composed of
n steps,
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P;(R)= exp(— 21:112 ) (6)

8) Equation (6) is not normalized meaning that the integral does not equal 1. To normalize this
function we consider a prefactor such that the integral is equal to 1 and solve for this prefactor,

1= }Kexp(— 2];:2) = K(zmlz)l/z

so the normalized 1d Gaussian probability function is
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9) A real Gaussian chain is in 3d space rather than in 2d space. But each of the 3 dimensions is
independent of the others so the three probabilities just multiply as independent 1d probabilities.
This cubes the exponential and adds a factor of 3 to the prefactor as well as changing the power
to -3/2,
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10) Using equation (8) we can calculate any moment of the distribution such as the second
moment, <R2>,
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Where the integral can be solved in a similar way,
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All even order moments of the Gaussian can be solved using this approach.



