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piperazine, in diphenyl ether are shown by the upper curves in Fig.
134.** Consider a mixture having a polymer concentration less than
that at the critical intersection of the liquidus and solidus curves.*
Let the mixture initially be at a temperature high enough to allow
complete homogeneity. Then when it is cooled, liquid-liquid phase
separation, observed visually and indicated by the open circles, will
precede crystallization. On further lowering of the temperature,
crystallization (also observed visually in this more dilute range)
occurs at the same (critical) temperature independent of the propor-
tion of diluent within this range. This constancy is, of course, re-
quired by the phase rule since two liquid phases are present in addition
to the erystalline phase being formed.

Recalling the previous assertion that efficient fractionation requires
liquid-liquid phase separation, we conclude that nitrobenzene and
amyl acetate should be satisfactory solvents from which to fraction-
ate polyethylene by successively lowering the temperature and that the
better solvent xylene should be avoided for this purpose. The char-
acter of the phase diagram may, in fact, be used as a criterion of the
efficacy of a given solvent for fractionation (see Chap. VIII, p. 344).
If the curve representing the precipitation temperature plotted against
concentration rises monotonically, crystalline separation is clearly
indicated; if it passes through a maximum at a low concentration,
liquid-liquid separation is virtually assured, and the solvent may be
assumed to be a satisfactory one to use for fractionation.

The curves of Figs. 133 and 134 may be regarded as plots of solu-
bilities against temperature. It must be borne in mind however,
that the dissolved phase is interspersed with the erystalline phase
when polymer is present in excess of its solubility limit. Even in the
more dilute solutions from which the erystalline polymer may settle
out, the “precipitate’” will contain some amorphous polymer and dilu-
ent. In short, these curves are useful primarily in defining the maxi-
mum amount of polymer which may be totally dissolved as a funetion
of the temperature,

3. SWELLING OF NETWORK STRUCTURES

A three-dimensional network polymer such as vulcanized rubber,
although incapable of dispersing completely, may nevertheless absorb
a large quantity of a suitable liquid with which it is placed in contact.

* The critical concentration at the maximum of the liquid-liquid curve in Fig.
134 occurs at a higher concentration than in the other systems discussed (Fig.
121, p. 547, and Fig. 133) owing, in part at least, to the comparatively low mo-
lecular weight of the polyamide.
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Swelling occurs under these conditions for the same reason that the
solvent mixes spontaneously with an analogous linear polymer to
form an ordinary polymer solution; the swollen gel is in fact a solution,
although an elastic rather than a viscous one. Thus an opportunity
for an increase in entropy is afforded by the added volume of the
polymer throughout which the solvent may spread. This mixing
tendency, expressed as the entropy of dilution, may be augmented
(x1<0) or diminished (x;>0) by the heat (or first neighbor interaction
free energy) of dilution. As the network is swollen by absorption of
solvent, the chains between network junctions are required to assume
elongated configurations, and a force akin to the elastic retractive force
in rubber consequently develops in opposition to the swelling process.
As swelling proceeds, this force increases and the diluting force de-
creases. Ultimately, a state of equilibrium swelling is reached in which
these two forces are in balance.

A close analogy exists between swelling equilibrium and osmotic
equilibrium. The elastic reaction of the network structure may be
interpreted as a pressure acting on the solution, or swollen gel. In
the equilibrium state this pressure is sufficient to increase the ehemical
potential of the solvent in the solution so that it equals that of the
excess solvent surrounding the swollen gel. Thus the network struc-
ture performs the multiple role of solute, osmotic membrane, and
pressure-generating device.

3a. Theory of Swelling.”” **—The free energy change AF involved
in the mixing of pure solvent with the initially pure, amorphous, un-
strained (i.e., isotropic) polymeric network is conveniently considered

‘to consist of two parts: the ordinary free energy of mixing AFy, and

the elastic free energy AF,; consequential to the expansion of the net-
work structure. Thus we may write

AF = AFy + AF, (33)

A suitable expression for AFy may be obtained from Eq. (XII-22),
bearing in mind that the number n, of polymer molecules is to be
equated to zero owing to the absence of individual polymer molecules
in the network structure. Thus

AFy = kT (ny In vy + xamgws) (34)

By analogy with the deformation of rubber, the deformation process
during swelling, considered apart from the actual mixing with solvent,
must occur without an appreciable change in internal energy of the
network structure. Hence AF, may be equated to —TAS,; where
AS., representing the entropy change associated with the change in
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configuration of the network, is given by Eq. (XI-41). If we let «,
represent the linear deformation factor (see Chap. XI), then by the
condition of isotropy a:=a,=a.=a,, and according to Eq. (XI-41)

AF g = (kTv./2)(3¢5 — 3 — In af) (35)

where », is the effective number of chains in the network.
The chemical potential of the solvent in the swollen gel is given by

w — = N(3AFy/on)r p + N(OAF 4/0c)r p(da,/on)r p  (36)

where N is Avogadro’s number. In order to evaluate (de,/9n,), we
note that
= V/Vo

where V, is the volume of the relaxed network, i.e., the volume occu-
pied by the polymer when the cross-linkages were introduced into the
random system (see Chap. XI), and V is the volume of the swollen
gel. Ordinarily the cross-linkages will have been introduced in the
unswollen polymer. Assuming this to have been the case, V, will
represent the volume of the unswollen polymer, and V,/V=up, As-
suming further that mixing occurs without an appreciable change in
the total volume of the system (polymer plus solvent)

af = 1/va = (Vo + mvi/N)/V, 37)
It follows that
(aalfani)i'.? = V1/3a:VnN

Evaluating the other two derivatives occurring in Eq. (36) by differen-
tiating Eqs. (34) and (35) and expressing », in moles, we obtain®®

m— ug = RT[In(1 — ) + v + a3 + Va(ve/ Vo) (12 — 12/2)]  (38)

The first three terms occurring in the right-hand member of Eq. (38),
represent 9AFy/dn,; they correspond to u;—puf according to Eq.
(XI11-26) for a polymer of infinite molecular weight (i.e., z= «). The
last member introduces the modification of the chemical potential due
to the elastic reaction of the network structure.* The activity a;

* Until recently?® the last term in the brackets in Eq. (38) was given errone-
ously as (vir,/Vo)vy3. This error resulted from the use of incorrect elastic en-
tropy and free energy expressions in which the Ina? term of Eq. (35) was omitted.
This term takes account of the entropy of distribution of the »,/2 effective cross-
linkages over the volume Voay =V.

The treatment given here, like that of rubber elasticity in Chapter XI, is de-
veloped for a network in which the endsof the chains are united tetrafunctionally,
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of the solvent is specified also by Eq. (38) through the relationship
In ay= (u1—u)/RT.

If the chemical potential difference u;—u] calculated according to
Eq. (38) is plotted against v, it will be found that, owing to the positive
contribution of the elastic term (with »,>0), the chemical potential
w1 exceeds ! for the pure solvent for all concentrations below a certain
polymer concentration v,,. In other words, the activity a, would
exceed unity for compositions with v,<wvs,. This region therefore
represents an unstable one, which, if somehow formed, would spon-
taneously exude pure solvent until the concentration in the gel increased
£0 vam, at which the activity equals unity. The swollen gel would then
be in equilibrium with the surrounding pure solvent. Hence, vym,
defined as the concentration (>0) at which the activity of the solvent
is unity, or at which p;=4], represents the composition at swelling
equilibrium. To locate this composition we equate w;—u of Eq.
(38) to zero, obtaining thereby?®

— [In(1 — vam) + vem + X203a] = Vi(ve/ Vo) (e — v2m/2)  (39)

or, adopting the terminology used in Chapter XI (see Eqs. XI-28 and
XI-30)

= [In(1 — van) + vam + x1t5m]
= (v/M)(1 — 2M /M) — van/2)  (39Y)
where M, is the molecular weight per cross-linked unit and M is the

primary molecular weight. The factor (1—2M./M), it will be re-
‘called, expresses the correction for network imperfections resulting
from chain ends. For a perfect network (Af = ») it reduces to unity.
The left-hand member in these equations represents the lowering of
‘the chemical potential owing to mixing of polymer and solvent; that

on the right gives the increase from the elastic reaction of the network.
The latter corresponds to the increase =v; in the chemical potential
l‘emlting from an osmotic pressure = at equilibrium.

It is customary to employ the swelling ratio ¢ equal to the ratio
V/ V. of the volumes of the swollen and unswollen structures. Thus,
q=1/v,. At swelling equlhbnum, we may replace 1/vsm by gm, the
subscript m indicating maximum, or equilibrium, swelling. At low
degmes of cross-linking, i.e., at large M. values of 10,000 or more, g,,
in a good solvent will exbed ten. Then v} is considerably greater
than v,,./2, and we may as a first approximation neglect the latter com-

i.e., by conventional cross-linkages. For networks in which the junctions are

J-functional, it is necessary merely to replace vy/2 in Eq. (38) with 2vs/f.3
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pared with the former. To a similar approximation the higher terms
in the series expansion of the left-hand member of Eq. (39) may be
neglected. The swelling equilibrium equation may then be solved
for vem=1/q, with the following result:*?

@3 = (Vo/v)(1/2 — x1)/Vs (40)
or, from Eq. (39")
@ = (3M)(1 — 2M /M)~ (1/2 — x1)/Vs (40

These simplified relationships offer a clearer insight into the dependence
of the equilibrium swelling ratio g on the quality of the solvent as
expressed by xi, and on the extent of cross-linking. Because of the na-
ture of the approximations introduced to obtain Eqs. (40) and (40’),
their use as quantitative expressions must be limited to networks of
very low degrees of cross-linking in good solvents.

It has been shown in Chapter XI that the force of retraction in a
stretched network structure depends also on the degree of cross-linking.
It is possible therefore to eliminate the structure parameter (v./Vy)
by combining the elasticity and the swelling equations, and thus to
arrive at a relationship between the equilibrium swelling ratio and the
force of retraction at an extension @ (not to be confused with the swell-
ing factor ,). In this manner we obtain from Eq. (XI-44)* and Eq.
(39)

ta = — RT(a — 1/a)[In (1 = vem) + Vam + X103 |/V1 (05 — van/2) (41)

where T refers to the temperature of the stress measurement. If
the equilibrium swelling is very large (12,<<1), we may introduce
approximations corresponding to those which yielded Eq. (40). Then

a 22 RT(a — 1/a®)(1/2 — x1)/Vig3 (42)

This equation calls attention to the well-established inverse relation-
ship between the degree of equilibrium swelling of a series of rubber
vulcanizates in a given solvent and the forces of retraction, or “moduli,”
which they exhibit on stretching. The indicated approximate de-
pendence of g, on the inverse three-fifths power of the “modulus™ has
been confirmed.?? 2

In using Eq. (XI-44) to derive Eq. (41), we have, in effect, accepted
the former as a valid representation of the dependence of the force of
retraction on the extension. Experiments cited in Chapter XI showed

* The total volume V oceurring in Eq. (XI-44) is to be identified with !:he
present V, inasmuch as the volume was assumed to remain constant during

elastic deformation.
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this theoretical relationship to be disturbingly inaccurate. The result-
ing quantitative limitations of Eqs. (41) and (42) must not be over-
looked. Better agreement with experiment could be expected through
the use of the semiempirical stress-strain relation, Eq. (XI-50), instead
of Eq. (XI-44) in the derivation of Eq. (41).

3b. Experimental Results on the Swelling of Nonionic Network
Systems.—The degree of swelling observed at equilibrium in a good
solvent invariably decreases with increasing degrees of cross-link-
ing.?*@031.3 Tt also decreases with increase in the primary molecular
weight M as should be expected according to Eqs. (39) and (40%);
as a matter of fact, quantitative proportionality between ¢%* and the
network imperfection factor (1—2M,/M) has been verified.?® The
dependence of the equilibrium swelling ratio on the network structure
need not be pursued further. Instead, we shall focus the discussion on

~ the connection between ¢, and the force of retraction r. The relation-

ship of the latter quantity to the network structure, as embodied in
e/ Vo or in M, and M, was discussed in detail in Chapter XI. Hence
the relationship between ¢, and the structure is implicit in the discus-
sion of the quantitative connection between g, and r, and its separate
treatment would represent an unnecessary duplication.

- The results shown in Fig. 135 for a series of multilinked polyamides®
illustrate the relationship between the equilibrium swelling ratio and
the equilibrium force of retraction r, for the stretched unswollen
specimen. Swelling measurements were made in m-cresol at 30°C;
and the forces of retraction were measured on the unswollen polymers
at 241°C at the several extension ratios e=1.4, 2.0, and 3.0 as indicated.
The range in the degree of cross-linking (»,) covered by these data is
abouf sixfold. The log-log plot is suggested by the approximate
Eq. (42). Although the points describe straight lines within experi-
mental error in accordance with this relation, the negative slopes are
somewhat greater than the value 5/3 it prescribes. The lines drawn
actually are slightly curved, for they have been calculated from the
azo;e accurate relationship given by Eq. (41) rather than from Eq.
- Because of the previously mentioned inadequacy of the function
a—1/a® a different value for the parameter x; is required for the set
of points (Fig. 135) at each elongation a. These values are —0.90,
=0.73, and —0.56 for a=1.4, 2.0, and 3.0, respectively. If the fune-
tion a—1/a? were replaced by an empirical representation of the shape
of the stress-strain curve, a single value of x; would suffice to represent
all of the data within experimental error. This limitation of Eq.
(41) relates to an unexplained feature of the stress-strain curve and is



