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the four-noded knot has roughly tetrahedral symmetry, and it is
possible to create star-shaped arrangements where the central four-
noded knot coordinates to four other knots. M
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The behaviour of an isolated polymer floating in a solvent forms
the basis of our understanding of polymer dynamics1,2. Classical
theories describe the motion of a polymer with linear equations of
motion, which yield a set of ‘normal modes’, analogous to the
fundamental frequency and the harmonics of a vibrating violin
string. But hydrodynamic interactions make polymer dynamics
inherently nonlinear, and the linearizing approximations
required for the normal-mode picture have therefore been
questioned1. Here we test the normal-mode theory by measuring
the fluctuations of single molecules of DNA held in a partially
extended state with optical tweezers. We find that the motion of
the DNA can be described by linearly independent normal modes,
and we have experimentally determined the eigenstates of the
system. Furthermore, we show that the spectrum of relaxation
times obeys a power law.

The starting point for describing the motion of a polymer is the
Rouse model of beads interconnected with gaussian springs. If the
interactions between different segments (beads) of the polymer Rn

and Rm (n and m denote the order of the beads along the length of
the polymer) are localized to nearest neighbours, each of the
segments Rn satisfies a linear differential equation decoupled from
the other segments. This linear system allows one to describe the
dynamics in terms of a set of normal modes with mode amplitudes
Xp defined as Xp ¼ ð1=NÞeN

0 Rncosðppn=NÞdn (where p is an integer
denoting the pth mode and N is the total number of beads).
Associated with the normal modes is a set of relaxation times, tp ,
which describe the decay in the time correlations of the normal-
mode amplitudes 〈XpðtÞXqð0Þ〉,dpqe 2 t=tp (where q is the qth mode).

Hydrodynamic interactions between segments of the polymer
were first included by Zimm3 by assuming the surrounding fluid is
incompressible and obeys the Navier–Stokes equation (known as
the Kirkwood approximation4). The resulting coupling of each
polymer segment Rn to all of the other segments Rm leads to a
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nonlinear set of differential equations as the coupling depends on
the instantaneous configuration of the polymer. These equations
can be linearized by first averaging the distance Rm 2 Rmj

�
� between

segments over the distribution of accessible configurations. This so-
called ‘pre-averaging’ approximation linearizes the set of coupled
differential equations and allows one to construct a set of normal
modes similar to the Rouse modes.

It has been argued that a normal-mode description of a polymer
can be only a rough approximation of the true dynamics and may
not have any fundamental validity1. Apart from questioning the
soundness of the pre-averaging approximation, other nonlinear
effects such as excluded-volume effects, forbidden crossings, and
knots were not included in Zimm’s treatment. These and other
nonlinear effects have led de Gennes1 and others to emphasize
dynamical scaling laws rather than a normal-mode description.
Scaling laws link relaxation rates to the spatial scale of interest, but
do not require knowledge of the precise shape of the relaxation
spectrum. On the other hand, the normal-mode concept requires
that the relaxation spectrum be described by a set of discrete
frequencies.

The analysis of the relaxation of polymers perturbed from
equlibrium can yield a frequency spectrum by taking the inverse
Laplace transform of the relaxation spectrum, but these methods do
not provide an unambiguous decomposition into discrete
frequencies5,6. Dynamic light-scattering experiments7,8, viscoelastic
and oscillatory flow birefringence studies9–12 and transient electric
birefringence experiments13,14 probe relaxation rates at size scales
considerably smaller than the overall coil size, but these measure-
ments represent an average over what could be a continuous
spectrum of relaxation rates. Dielectric relaxation of dipole-inverted
cis-polyisoprene has been used to measure the first two normal-
mode eigenfunctions, and a tentative extrapolation was used to
derive the third15–17. However, this method does not measure a
relaxation mode spectrum, and does not discriminate between
linear and nonlinear effects.

Figure 1 Video images of single molecules of DNA held at an extension of 12 mm.

The column on the left shows a series of successive raw video images; the

column on the right shows the corresponding parametrizations used in the data

analysis.
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We have tested the supposition that polymer motion can be
described by a set of normal modes by recording the images of
partially extended 20-mm-long pieces of DNA driven by brownian
motion. The DNA is suspended in solution by attaching 0.3-mm
polystyrene spheres to the ends of the molecule that serve as
‘handles’ for two optical tweezers18. The DNA, fluorescently stained
with the dye YOYO-1 (Molecular Probes, Eugene, OR) and illumi-
nated by 488-nm light, was held in a partially extended state with
optical tweezers while the images were recorded by video microscopy
(Fig. 1). Analysis of the static properties of partially extended
polymers (to be presented elsewhere) shows that intercalation by
YOYO-1 increases the length of l DNA from 16.4 to 20 mm, and
increases the persistence length from 50 to 66 nm.

The optical images were converted into parametrized descrip-
tions of the DNA location as described below. If the line joining
the two beads defines the x-axis, we analyse the polymer con-
figuration in terms of displacements R(y)

n (t) along the y-axis. The
boundary conditions of fixed end points suggests that a good first
approximation to the projection of the normal modes describing
the y-motion would be the sine functions with amplitudes
U ðyÞ

p ¼ ð1=NÞeN
0 RðyÞ

n ðtÞ sinðppn=NÞdn. Normal modes have also
been calculated for boundary conditions where only one end of
the polymer is fixed19.

After computing U(y)
p (t) by taking a sine transform of

RðyÞ
n ðtÞ (ref. 20), we calculated the cross-correlation matrix

〈U ðyÞ
p ðtÞU ðyÞ

q ð0Þ〉 for the first eight sine modes. This matrix is not
diagonal and has off-diagonal relaxations (Fig. 2). For example, for
10 mm extension the amplitude of the 〈U(y)

2 (0)U(y)
6 (0)〉 matrix

element is 1.9 mm2, as compared to the 86.2 mm2 for the
〈U ðyÞ

2 ð0ÞU ðyÞ
2 ð0Þ〉 element and 16.0 mm2 for the 〈U(y)

6 (0)U(y)
6 (0)〉 ele-

ment. Random noise in the measurement can be estimated from

the r.m.s. fluctuations of the matrix elements after all correlations
have disappeared. The r.m.s. fluctuations of 〈U(y)

2 (t)U(y)
6 (0)〉,

〈U ðyÞ
2 ðtÞU ðyÞ

2 ð0Þ〉 and 〈U ðyÞ
6 ðtÞU ðyÞ

6 ð0Þ〉 were computed between 6:7,
t , 26:7 seconds, yielding 0.22 mm2, 2.05 mm2 and 0.07 mm2,
respectively. The off-diagonal relaxations are therefore statistically
significant and show that the sine functions are not the normal
modes of the system.

Zimm recognized that the sine basis is only an approximation to
the exact eigenbasis, and calculated higher-order corrections21.
Similarly, we sought an improved eigenbasis constructed for the
sine basis ukðx; tÞ ¼ U ðyÞ

k ðtÞsinðkpx=LÞ, where L is the distance
between the end points of DNA, in the form xðyÞ

i ðx; tÞ ¼
SkBikx

ðyÞ
k ðx; tÞ. The condition for the time correlations of the

normal-mode amplitudes Xi(t) becomes

XiðtÞXjð0Þ

 �

¼
k̂

BikUkðtÞ

 !

l̂

BjlUlð0Þ

 !* +

¼
k̂;l

BikBjl UkðtÞUlð0Þ

 �

¼ dijAie
2 t=ti

We solved for the matrix B by diagonalizing the cross-correlation
matrix for t ¼ 1=30 s (one video frame). Figure 2 shows that the
resulting basis, given in Table 1, satisfies the orthogonality condi-
tion. Time cross-correlations of different mode amplitudes were
indistinguishable from noise. If normal modes did not exist, the
transformation matrix would be a function of time and we would
expect to see non-zero correlation functions in a time t between
1/30 s and the mean of tp and tq. In addition to demonstrating the

Figure 2 Comparison of the sine basis and the normal-mode basis for several

matrix elements of DNA held at 10 mm extension. The correlation function Cpq(t)

represents eigenbasis correlation matrix 〈XðyÞ
p ðtÞXðyÞ

q ð0Þ〉 for solid lines and the sine

basis correlation matrix 〈UðyÞ
p ðtÞXðyÞ

q ð0Þ〉 for dashed lines. We note that in the normal-

mode basis, there are no off-diagonal elements above the level of noise

fluctuations. The increasing frequency of the characteristic fluctuations for the

cross-correlation of mode 2 with successively higher modes may be seen in this

figure.

Figure 3 Relaxation curves and exponential fits for q ¼ 2, 3, and 4 (circles,

squares and triangles, respectively) at extension 10 mm. Inset, residuals from

the fits, showing a small systematic deviation from pure exponential relaxation.

There is a measurement error in assigning the parametrization of the polymer;

this causes a systematic error in the t ¼ 0 correlation matrix. If Rn(t) denotes the

actual position of the polymer and en(t) denotes the measurement error, then

the measured quantity is RnðtÞ þ enðtÞ. 〈ðRqðtÞ þ eqðtÞÞðRqð0Þ þ eqð0Þ〉 ¼ 〈ðRqðtÞRqð0Þ〉 þ

〈eqðtÞeqð0Þ〉, where the cross terms 〈RqðtÞeqð0Þ〉 þ 〈eqðtÞRqð0Þ〉 ¼ 2〈Rq〉〈eq〉 are zero. The

measurement error should be independent of time, so 〈eq(t)eq(0)〉 vanishes for

t Þ 0. We checked this by fitting the relaxation function to two exponentials; one

relaxation time was always degenerately small, while the amplitudes were in

agreement with our other estimations of the signal and noise. Thus, the intrinsic

noise has a systematic effect on only the t ¼ 0 point of the correlation function.

That point was discarded before fitting the relaxation to an exponential function.
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orthogonality of the normal modes, we show in Fig. 3 that the
diagonal relaxation functions 〈XðyÞ

p ðtÞXðyÞ
p ð0Þ〉 are well described by a

single exponential decay as required for a linear dynamical system.
Figure 4 shows that the relaxation times tp scale as a power law

over almost two decades of time. The Zimm model for a coiled
polymer predicts an exponent of −1.5 for a Q-solvent2 and −1.8 for a
good solvent. DeGennes has predicted22 that a highly extended
polymer will have an exponent of −2.0. Caution must be used in
comparing the observed power-law scaling to dynamical models
that were derived for conditions where the end points are not
constrained. Although it is known that our buffer conditions
correspond to a good solvent for DNA23, it has been suggested that
an extended polymer will behave as in an ideal solvent on moderate
to long length scales such as we measured24,25. Also, the pre-averaged
distances for a partially extended polymer are different than for a
free polymer. For an unstretched chain, 〈 Rn 2 Rm 〉 , n 2 m 0:5

�
�

�
�

�
�

�
� for

an ideal solvent and n 2 m 0:6
�
�

�
� for a good solvent leading to

relaxation times that scale as tp < p2 1:5 or p−1.8, respectively. For
partially extended polymers, at distances n 2 m q 1jj , we expect
〈 Rn 2 Rm 〉2 1

pre¹averaged < n 2 m 2 1:0
�
�

�
�

�
�

�
� , but for n < m, n 2 m 2 ajj

where the exponent a might be some value between 0.5 and 1.0.
Clearly, a calculation of the pre-averaged hydrodynamic tensor for
our geometry will have to be done before one compares these results
to a particular dynamical model. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Samplepreparation.l-Phage DNA was attached to streptavidin-coated beads
via biotinylated oligonucleotides that hybridized to the single-stranded ends of
l DNA. The l DNA and one of the oligonucleotides were mixed in equal molar
amounts in 50 mM NaCl–TE (10 mM Tris-Cl, 1 mM EDTA, pH 8.0), heated to
70 8C for 10 min, and allowed to anneal to room temperature for 2–3 h. The

opposite oligonucleotide was mixed with streptavidin beads in about 2× excess
to streptavidin binding sites, and allowed to incubate for 8 h before being
washed three times by centrifugation. Equal molar amounts of biotinylated
DNA, oligo-coated beads, and streptavidin beads were mixed and allowed to
incubate for 12 h at room temperature in 50 mM NaCl–TE. The resulting
bead–DNA–bead complexes were diluted by a factor of 10 into a staining
solution contain TE, 2 mM NaCl, 100 nM YOYO, 1% b-mercaptoethanol, and
0.1% Tween-20. After 45–60 min of staining, the complexes were diluted by
another factor of 10 into a high-viscosity TE buffer containing a final
concentration of 71% (w/v) glycerol, 2 mM NaCl, and 0.1% Tween-20. To
retard photobleaching of the dye, 0.1 mg ml−1 glucose oxidase, 0.04 mg ml−1

catalase, and 0.4% glucose were added.
Experimental procedure. The optical tweezers were made by focusing two
independently controllable infrared (1.064-mm) Nd : YAG laser beams through
a ×63, 1.4 numerical aperture microscope in a home-made microscope with a
measured resolution of 0.25 mm. The DNA was held 10 mm below the surface of
a 30-mm-deep cell made from a microscope slide and coverslip sealed with
epoxy. The fluorescent images were recorded with an image-intensified CCD
camera with a video rate of 30 Hz. Because the fundamental relaxation time of a
polymer is proportional to viscosity, we increased the effective time resolution
of the experiment by increasing the viscosity from 0.01 to 0.2 poise with the
addition of 71% glycerol (w/v). We took data from 37 different molecules held
at six different extensions ranging between 30% and 80% of the full length of
the molecule. An average of 24 min (43,200 video frames) of data were taken at
each extension.
Data analysis. Spatial noise in the images were filtered out by convolving each
image with a gaussian of width 0.42 mm before finding the fluorescence
maxima. Using continuity of the DNA, an algorithm tracked the fluorescent
peak from one bead to the other and back again. As the DNA fluctuated in and
out of the focal plane, parts of its image broadened and occasionally
disappeared. The fitting program discarded those points; 98% of the data was
retained, and a visual and manual check ensured that the fitting program was
not giving skewed values. Although details of the DNA configuration below the
0.25 mm resolution of the microscope are not seen, we estimate that the centre
of the image is determined with an uncertainty of 61 pixel which is 60.14 mm.
We showed that the resulting ‘pixellation’ of the images does not affect the data
analysis by artificially increasing the linear pixel size by a factor of two; the
results of the subsequent data analysis did not change. The beads are free to
rotate in the traps; this allows the ends of the polymer a small amount of
motion not greater than the radius of the bead. Also, the beads absorb some of
the YOYO and fluoresce brightly; this causes blooming on the video image and
prevents us from locating the precise end points of the DNA. As we infer the
locations of those end points from the locations of the beads, there is a small
systematic overestimation of the distance of the distance of the DNA from its
equilibrium position as it fluctuates above and below the imaginary line which
connects the two beads. We put that extra degree of freedom of the end points
into a computer simulation of a bead–spring model with the exact
hydrodynamic tensor. For exponential fits, the power-law exponent of the
simulated mode structure with mobile end points was 2.5% smaller than the
value for fixed end points, with a 2.5% statistical error on the fit. Thus the
rotation of the beads has only a small systematic effect on the data. One can
correct for this effect by multiplying the measured exponents by 1.025.

Figure 4 Relaxation time versus mode (q) from fitting to single exponentials

(circle, 6 mm extension; square, 8 mm; down triangle, 10 mm; up triangle, 12 mm;

diamond, 14 mm; hexagon, 16 mm). The line has a slope of −1.7. There is a

dependence of relaxation time on extension: the greater the extension, the higher

the ‘string tension’ and the faster the relaxation. The ultimate limit of how many

modes we could resolve was determined by both the temporal and spatial

resolution of the system. The time resolution of one video frame (= 0.033 s) limited

the most extended polymers to eight modes. The spatial resolution was lowest

for the least extended polymers, as the ‘slack’ in the DNA increases the width of

the image. For the smallest extension (6 mm) the average full-width at half-

maximumof the image in the transversedirection was 0.71 mm, indicatinga cut-off

after eight modes. Inset, fitted exponents for the mode structure as a function of

extension.

Table 1 Normal-mode eigenbasis

1.000 0.000 −0.011 −0.011 −0.019 −0.004 −0.008 0.002
.............................................................................................................................................................................
0.000 0.999 0.029 −0.018 −0.006 −0.024 −0.005 −0.011
.............................................................................................................................................................................
0.010 −0.027 0.997 0.023 −0.043 0.002 −0.044 −0.007
.............................................................................................................................................................................
0.012 0.020 −0.024 0.997 0.020 −0.025 −0.021 −0.046
.............................................................................................................................................................................
0.019 0.007 0.038 −0.044 0.996 0.010 −0.073 0.000
.............................................................................................................................................................................
0.005 0.024 −0.004 0.027 −0.017 0.999 0.003 −0.041
.............................................................................................................................................................................
0.010 0.003 0.047 0.023 0.074 −0.001 0.995 −0.027
.............................................................................................................................................................................
0.000 0.012 0.009 0.045 −0.007 0.040 0.049 0.998
.............................................................................................................................................................................
Columns show the normalmodes expressed in terms of a sum of sine vectors for the 10-mm
extension. The rows are the mode numbers. For example, column 8 shows that the eighth
normal mode has an amplitude 0.998 of sin(8pn/N), −0.027 of sin(7pn/N) and −0.041 of
sin(6pn/N).
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There is generally a dearth of evidence of the nature of Quaternary
climate change within desert systems, which has limited previous
interpretations of past environmental change at low latitudes. The
Last Glacial Maximum has previously been identified as the peak
of Late Quaternary aridity, when desert systems expanded to five
times their present extent1–3, and low-latitude aridity has been
described for previous glaciations4. But little evidence has been
derived directly for large desert basins, particularly southern

Africa. Here we report new chronological (optical dating) evi-
dence of arid episodes recorded in aeolian sediments from the
Mega Kalahari sand sea. Episodic aeolian activity is recorded at
the northeastern desert margin, whereas more sustained activity
is evident from the southwestern desert core. Several significant
arid events are apparent since the last interglacial period, with
dune-building (arid) phases at ,95–115, 41–46, 20–26 and
9–16 kyr before present. Existing atmospheric general circulation
model simulations and independent palaeoclimate data indicate
that the changes in aridity are related to changes in the northeast–
southwest summer rainfall gradient, which are in turn related to
sea surface temperatures in the southeastern Atlantic Ocean.

The 2:5 3 106 km2 Mega Kalahari is the world’s most continuous
area of aeolian sand sea which is dominated by variably degraded
and pedogenically modified, currently inactive, linear dunes5 (Fig.
1). The development and evolution of the extensive Kalahari linear
dune systems has not until now been directly dated. Phases of
aridity and dune development have previously been inferred from
gaps within subcontinental humid chronologies6,7, or by assumed
mirroring of Northern Hemisphere conditions8. We have deter-
mined the timing of dune building and associated palaeoaridity
along the present day northeast–southwest summer rainfall gradi-
ent by optically dating9 dune sediments from geographically and
morphologically wide-ranging aeolian deposits. Past changes in
aeolian dynamism is assumed to be related to shifting rainfall
intensities along the gradient (Fig. 1).

The effect of this northeast–southwest rainfall gradient on
aeolian activity provides an opportunity to determine the sensitivity
of the climate system to changing boundary conditions since the last
interglacial. The climatology of this gradient is an infrequently
studied element of the general circulation of the subcontinent, yet
one that is accurately captured in all present-day leading general
circulation models10,11. It originates from the Earth’s largest cross-
continental zonal asymmetry of tropical convection; the inter-
tropical convergence zone (ITCZ) in the southwestern Indian
Ocean occupies the most southerly location of any ocean at 238 S,
whereas tropical convection in the eastern Atlantic Ocean is seldom
found south of 58 N (ref. 11). Convection over southern Africa
aligns almost meridionally over the subcontinent. Differences in the
latitude of convection in the adjacent oceans relates directly to sea
surface temperatures (SSTs).

The southwestern Indian Ocean is the warmest ocean at 238 S
whereas the southeastern Atlantic is the coldest (present-day January
mean of 27.5 and 21.6 8C, respectively). The extreme SST contrast
across the subcontinent determines the southern African rainfall
gradient (Fig. 1). Wetter conditions east of the Kalahari result from
disturbances in the tropical easterlies associated with the Mascarene
anticyclone. Westward propagation of easterly waves off the African
subcontinent is blocked by cold stable air overlying the Benguela
Current. Conditions west of the wave axis are therefore dry. Intense
subsidence into subtropical anticyclones dominate the climatology
of the austral winter, ensuring aridity. The elevated southern African
land mass (2,000 m) cools through longwave emission, thereby
providing an interhemispheric sink for Asian monsoon outflow.
Few deserts provide a suite of controls on the rainfall regime as
diverse as the Kalahari.

Although the controls on aeolian sedimentation, particularly in
the case of linear dune development12, may be complex we believe
that our chronology of dune construction reflects periods of
regionally enhanced aridity. In the northeastern Kalahari, mean
rainfall today exceeds 400 mm yr−1, and the pedogenically modified
and vegetated surfaces of degraded linear dunes prohibits aeolian
activity. In the southwestern Kalahari the present mean annual
rainfall is 150–200 mm. Episodic, localized aeolian activity is
confined to dune crests and controlled by variations in vegetation
cover induced by interannual variations in rainfall and intensive
grazing, but is in any case significantly restricted by present-day low


