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a local scale (sizes comparable to the distance between crosslinks) se
tion may take place, but this is expected to require higher reaction rates
and should occur at a point B’ below B. These *‘microphase separationg s
are very important in practical fabrications of gels, but are sti]| poorly
understood.

(iii) At high concentrations ¢ > ¢_, our model gives instant gelation;
clearly in this regime, a more detailed model allowing for contact without
reaction is required.

To summarize: a gelation process in the presence of solvent always brings
in a trend towards segregation of the gelating species. However, by a suit-
able choice of the concentration in the reaction bath, one can still obserye
a well-defined sol-gel transition. The critical exponents observed in this
case may still be of the percolation type. The latter statement has been
proven more formally in one case = quasi equilibrium with mixtures of
linear chains and crosslinking agents in a athermal solvent. *

gl'ega.

Figure V.15.

we have is a set of closely packed coils sealed together by the
ks. The situation is reminiscent of the overlap threshold in semi-
ions (Chapter III). Thus, the gel automatically maintains a con-
¢ proportional to c*.

ed formula for c* at arbitrary x < 1/2 was worked out in
V [eq. (IV.50)]. This gives

V.3
Gels in Good Solvents

We now focus on gels which are well beyond the gelation thresh-
old. We assume that they have been prepared in good solvents, and that,
it the moment of study, they are also in good solvents. This is the best
situation if we wish to avoid segregation effects and the resulting hetero-
encities. Also, for simplicity, we focus our attention on calibrated gels,
where the number N of monomers between adjacent crosslinks is well
lefined. The classic picture for these gels is from Flory' and is very
successful. We present it here in different language. i

c = kiz) c* = k(z) N74% p=35 g8/ (V.25)
I

2) is a constant number, of order unity, depending on the func-
of the crosslinks and on the preparation conditions.

5) summarizes the Flory theory of gels." Changing the chemical
solvent amounts to changing the excluded volume parameter
s (better solvent), c* decreases (swelling). Eq. (V.25) has
rmed by macroscopic measurements on many gel systems.
ly, it is important to wair long enough to choose a correct
of the solvent. Since we cannot stir the system, concentra-
€qualized only slowly by diffusion processes. Equilibration times
der L*/D where L is a sample size and D is a diffusion co-
Typical values of D are in the range 107° to 10~7 cm?/sec, and the
times are around one day.

V.3.1. The c* theorem

Let us start with a solution of chains (polymerization index N) in a gwil
solvent (excluded volume parameter v = a® (1 — 2x) > 0). The challli
epel each other, and this is reflected in the existence of a positive osmotic
ressure 1. -

We now begin to attach the chains together, for example by reaction F
he chain ends with certain z-functional molecules (z being equal to 3, b
tc.), and we let them choose their density. They would like to sepat<r=
tom each other as much as possible; however, each coil must remain ﬂl
-ontact with its neighbors because of the crosslinks. The net result 15
hown in Fig. V.15.

alr correlations in the gel

original derivation of equations similar to eq. (V.25) Flory
Baussian statistics for the chains plus a mean field estimate for the
rgies.! His theory is successful; the scientific community has
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naturally concluded that the chains in a swollen gel are gaussian to a very
good approximation. This is entirely wrong for the following reason.

Flory’s calculation is quite similar to his discussion of a single chaip j,
a good solvent, which we analyzed in Section 1.3. In thi saw tha
an excellent result came from a cancellation between two serious approxi.
mations—one rela_tgw_‘%tmstwmcs. and one due to the
neglect of correlaﬁm-he.lum_chm&s, The same cancellation occurs for
swollen gels, and the success of the theory does not tell us that the chaing
.are_gaussian. S o i T o i

The correct structure of pair correlations in the gel can be read from
Fig. V.16. At short distances, the correlation function

s ('Sr_() 4 TL[V (8'(__{)] + higher gradient terms (V.26)

> 8¢ is the local change in concentration, E is the bulk rigidity, and L
ats a higher order correction (usually ignored in continuous elas-
Since the only characteristic length available is R, scaling means

L = E R# (V.27)

jing to Fourier transforms, eq. (V.26) gives a sum of terms for differ-
ave vectors ¢

1
g(r) = —[(c(0) c(r) ~ ¢*] > %E ( ) B+

is dominated entirely by correlations inside one chain and follows the
Edwards law [eq. (1.31)]. It is only when g(r) goes down to values of the
order ¢ = kc* that the existence of a gel phase affects the correlation.
This crossover point corresponds to r values comparable with the single
coil size Ry (given by eq. (IV.49)). At larger distances density fluctuations
are limited by the macroscopic rigidity of the gel, and g(r) decays rapidly
in space.

The latter statement can be made more precise from a generalized form
of elastic theory at long wavelengths, corresponding to the free enersy
(per cm?)

ng the equipartition theorem to each mode g, we get

| T
F“ﬁc"),z) = m (gRr < 1) (V.28)

it eq. (V.28) applies only for gRy < | because eq. (V.26) assumes
-variations. Returning to real space, we can transform eq. (V.28)

glr) = 4‘“,_' :_ exp —[r (-f—‘)m] (r > Ry) (V.29)

o N o I
= 7, exp (constam Rr) (V.30)

ing form of the coefficient in eq. (V.30) has been obtained
from the requirement that at r = Rj, the correlation function
. be comparable with the average concentration ¢ (~ ¢*). Thus a
of our discussion is to give (by comparison between egs. V.30
the scaling form of the elastic moduli:

a“’(-f—)‘l ?

—_— g (r)—a

irRL exp (=r/R;)

(V.31)

' picture subtended by Fig. V.15 may be simply stated in
titable *‘blobs.’” To each chain (N monomers) we associate a
Rp. The blobs are essentially closely packed (the exact
ng on the functionality of the gel and on the conditions of

Fioure V.16.
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preparation). Inside one blob, the correlations are of the excluded volume
fype—i.e., the blobs are not gaussian. Neighboring blobs are coupled p,
elastic forces; using eq. (1.45) to predict the spring constant of ope blob
we may easily rederive eq. (V.31). 1

This picture can be tested in principle by various scattering measype.
ments. Neutron data on gels have been taken by the S&h‘m‘“@?“
However, the main emphasis has been on a different type of measuremeny
where a certain part of the gel structure is labeled; in particular it is

comparatively easy to deuterate the crosslinks and to measure the correla.

tion between them. The resulting diffraction pattern is very similar to
diffraction by an amorphous solid; the crosslinks maintain a certain aver-
age distance (or order Ry), and this gives rise to a diffuse peak (at ¢ ~
1/Rg) in the scattering pattern. Two crosslinks cannot come very close

together; this would imply a large overlap between two neighboring blobs

and an energy which would then become quite large.

Under the stimulation of H. Benoit, similar experiments with labeled
centers were also made with solutions of star-shaped polymers which have
the same geometry and the same concentration® (Fig. V.17). The scatter-
ing patterns for both situations are of the same type. This is not surprising
since both systems are at ¢ = ¢* and are very similar to a dense fluid of
hard spheres.

V.3.3. Elasticity of swollen gels

We have seen in eq. (V.31) that the bulk modulus E of the gel should
scale like (c/N)T. A similar scaling law should also hold for the shear
modulus, which is more easily accessible to experiment. (In what follows,
since we are interested only in scaling properties, we use the same symbol

E for both.) It is possible to test eq. (V.31) by varying either the quality of

the solvent (i.e., v) or the length of the chain (i.e., N). Recall that ¢, v, and
N are always linked by the c* theorem [eq. (V.25)].

For a_given solvent (fixed v) it is often convenient to eliminate N be-
tween egs. (V.31) and (V.25), obtaining

gel stars

E s T35 oV a") (V.32)
 the elastic modulus should scale like the power 2.25 of concentra-
Recent elastic data of Belkebir-Mrani® have been reanalyzed along
lines.?® They do show exponents which are close to 2.25 if the com-
s made at fixed functionality z (the numerical coefficient in eq.
‘depends on 2).

fixed N and a solvent of variable quality, the elastic modulus
d scale linearly with concentration (E = ¢T/N). This is also well
above discussion was restricted to linear elasticity—i.e., to the
where the relationship between stress (o) and deformation (\) is of

o ="E\X— 1) (V.33)
A for longitudinal deformations as the rati extended
sample to the length at rest.) This is obtained when o < E.
osite limit o > E would be of great interest. Unfortunately, gels
‘break at low o values, and these strong deformations are difficult

ssian character of the individual chains. Section 1.4 showed
chains have a nonlinear relationship between force _and
15 should show up in 6{A). The prediction 1s*’

o = EMN? (real gel; o > E) (V.34)

inal extension at constant c.* Compare this with the law for
.'S
o = EN

(gaussian; o > E) (V.35)

iders may be surprised by the occurence of a quadratic law
] for gaussian chains which have a linear spring behavior. The
- simple. When we extend our sample very much, its lateral
 decrease, and o (which is a force per unit area of cross-
reases by one extra power of A. The really interesting feature
ence between eq. (V.34) and eq. (V.35), which reflects the
s scaling law for swollen chains in strong extension [eq.

€xperiment must be done relatively fast, the gel cannot change its solvent
elongation.



