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Abstract 

We discuss the entension of dynamic light scattering to very strongly scat- 
tering media, where the propagation of light is described by the diffusion 
approximation, allowing the distribution of the light paths to be deter- 
mined. The temporal evolution of the length of each of these paths, due to 
the dynamics of the scattering medium, is calculated, and an expression for 
the temporal autocorrelation function of the intensity fluctuations of the 
scattered light is obtained. This relates the measured decay of the autocor- 
relation function to the dynamics of the medium. This technique is called 
diffusing wave spectroscopy (DWS). To extend its utility, we consider the 
consequences of interactions between the scattering particles on the light 
scattering. To illustrate its applications, we consider several examples of 
new physics that can be investigated using DWS. We study the transient 
nature of hydrodynamic interactions between a particle and the surround- 
ing fluid. We are able to probe the decay of the velocity correlation func- 
tion of the particles, and we demonstrate its algebraic decay, with a t - 3 / 2  
time dependence. We also show that the time-dependent self diffusion coef- 
ficient exhibits an unexpected scaling behavior, whereby all the data, from 
samples of different volume fractions, can be scaled onto a single curve. 
Finally, we discuss the applications of DWS to the study of the dynamics of 
foams, and show how it can be used to probe the rearrangement of the 
bubbles within the foam as they coarsen. 

1. Introduction 

The propagation of waves through very strongly scattering 
media is a subject of intense and widespread interest. Ini- 
tially, much of the work focused on the behavior of elec- 
trons, and the effort was driven by the quest for localization 
of the electrons due to strong scattering. More recently, 
additional effort has focused on classical waves, with the 
recognition that light should exhibit many of the same 
effects as electrons when it propagates through a medium 
that strongly scatters it. Important early results demon- 
strated the close analogy between light and electrons by 
observing the behavior of the backscattered light from a 
very strongly scattering medium [l, 23. It exhibits a narrow, 
enhanced backscattering cone, centered around the exact 
backscattering direction, and increasing by very nearly a 
factor of two at its peak. This enhanced backscattering 
results from the constructive interference of the electric fields 
of light paths traveling through the medium, following time- 
reversed paths. Similar effects are predicted for electrons, 
and, by analogy with the case of electrons, the enhanced 
backscattering cone is called “weak” localization of light. 
Since its observation, a great deal of effort has been 
expended in the search for “strong” localization of light. In 
this case, light would not be able to propagate because of 
the very strong scattering and hence would be localized. To 
date, however, strong localization of light due to intense 
multiple scattering has not been observed. 
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The main reason why light localization is so difficult to 
observe is that, perhaps surprisingly, very few media scatter 
light suficiently strongly. In fact, one feature that emerges 
from virtually all of these studies is that the propagation of 
light in strongly scattering media can be described very well 
by the diffusion approximation. Within this approximation, 
all the effects of the interference of the fields within the 
medium are neglected, as it is assumed that the phases of all 
the photons are completely randomized [3]. Instead, only 
the intensity of the propagating light is considered. More- 
over, since the light is scattered a large number of times, the 
path of the light is also completely random, and can be 
approximated by a random walk. The continuum limit of 
this description is the diffusion equation. The diffusion 
approximation is an adequate description of the light pro- 
pagation, even in the case of enhanced backscattering, and 
can be used to determine the number and distribution of the 
time-reversed paths [4]. All the interference which leads to 
the enhanced cone occurs outside the medium, at the detec- 
tor. 

While the observation of “strong” localization of light 
remains elusive, the applicability of the diffusion approx- 
imation to describe the propagation of light can be 
exploited to learn new information about the scattering 
medium itself. It provides a simple and effective means of 
determining the distribution of light paths that photons 
follow on propagating through the medium. One very useful 
method of exploiting this knowledge is in the study of the 
dynamics of the scattering medium. These dynamics lead to 
temporal fluctuations of the scattered light, and their 
analysis can provide new information about the scattering 
medium, leading to a new technique for the study of the 
dynamics of strongly scattering media. This technique is 
called diffusing wave spectroscopy (DWS) and represents 
the extension of traditional dynamic light scattering (DLS) 
to strongly scattering media. This paper presents a brief 
review of the theory of DWS and a short discussion of some 
of its applications. The emphasis of the discussion of theory 
is on the physical concepts underlying its development, 
rather than the formal mathematics, which have been pre- 
sented elsewhere. Furthermore, the emphasis of the dis- 
cussion of its applications is on the novel physics that can 
be studied with DWS. 

2. Theory 
2.1. Non-interacting particles 

In DWS, just as in conventional DLS, we measure the tem- 
poral fluctuations of the intensity in a single speckle spot of 
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the scattered light, or in a single spatial coherence area. We 
parameterize these fluctuations by their temporal autocor- 
relation function [SI, g2(t). This is related directly to the 
autocorrelation function of the scattered electric fields, g l(t), 
which is a simpler quantity to calculate. We begin by dis- 
cussing a system of noninteracting particles, and consider a 
colloidal suspension made up of identical, spherical par- 
ticles, suspended in a fluid. In the limit of very low concen- 
tration, the self diffusion coefficient of these particles is given 
by the Stokes-Einstein relationship, 

(1) 

where k, is Boltzmann’s constant, li‘ is the temperature, q 
the viscosity of the fluid, and a the particle radius. It is also 
convenient to define a characteristic time scale for diffusion 
of these particles by T~ = l /k i  D o ,  where ko = 2nn/A, with n 
the index of refraction of the medium and ,I the wavelength 
of the light in vacuum. This is the time it takes for a particle 
to diffuse the wavelength of light. 

To analyze the data obtained with DWS requires the cal- 
culation of the autocorrelation function of the multiply scat- 
tered light [6, 7). This is calculated by dividing the photons 
into separate, diffusive paths. The distribution of these 
paths, and the probability that a photon will follow a path 
of length, s, is determined through the use of the diffusion 
equation for the light. The contribution of each path to the 
total correlation function is calculated, taking advantage of 
the long length of the path, and the concomitant large 
number of scattering events [SI. The total correlation func- 
tion is determined by summing the contributions of all pos- 
sible paths, weighted by their probabilities. If the scattering 
particles in each path are completely uncorrelated, we need 
consider only the contribution of an individual path. These 
can then be added, assuming that all interference that con- 
tributes to the final signal comes only outside the sample, at 
the detector. 

We begin by determining the correlation function of an 
nth-order path, consisting of n scattering events [SI. Since 
the number of scattering events is large, we approximate 
each event by an average scattering event, and neglect the 
conservation of momentum at each step. The scattering 
events are all independent, so the total correlation function 
is simply the product of n correlation functions of single 
scattering events, but each averaged over scattering angle so 
as to reflect the average scattering event in the path. This 
gives, 

where the subscript q refers to an average over all scattering 
vectors, weighted by the scattering probability or form 
factor. At short times, we can use a cumulant expansion and 
bring the ensemble average to the exponent. Furthermore, 
for each scattering event, the scattering vector is indepen- 
dent of the particle’s mean square displacement, and each 
can be averaged independently, giving, 

g l ( t )  = e-n(q2>q(b2(t)/6>, (3) 

where again the subscript q indicates an average over scat- 
tering vectors. Finally, we identify the path length as s = nl, 
where 1 is the scattering mean free path of the light. Then, 

we use the relationship [4], 

(4) 

for ( q ’ ) ,  where I* is the transport mean free path, the dis- 
tance over which a photon must travel before its direction is 
randomized. For noninteracting, diffusion particles, 
( A r 2 ( t ) )  = 600  t. We can further simplify the expression by 
introducing the characteristic time scale, zo = l /k t  D o .  Then 
we obtain 

g;( t )  = e-2(t/ZO)(S/I*). ( 5 )  

The autocorrelation function does not depend on the scat- 
tering length, I ,  but only on the transport mean free path, I*. 
This allows the diffusion equation for the light, which also 
depends only on I* ,  to be used. The expression in eq. ( 5 )  has 
a simple physical significance: The first part of the exponent, 
2 t / z 0 ,  reflects the decay of the correlation function due to a 
single scattering event but averaged over all scattering 
vectors, weighted by the form factor of the particle. The 
additional quantity, s/l*, reflects the effects of the multiple 
scattering. In following this diffusive path, the light is scat- 
tered through n* = s/l* randomizing steps. It is only steps of 
order 2 *  that can lead to decay of the correlation function, 
as a single scattering step, of length I ,  is insufficient to 
change the direction of the light. Thus the decay rate of the 
total path is increased by a factor of n*. Physically, the 
decay of this correlation function reflects the time it takes 
for the total path length to change by a wavelength. This 
change results from the cumulative motion of a large 
number of particles. Thus long paths decay more rapidly 
since they are scattered from a larger number of particles, 
and each individual particle must move a shorter distance, 
and hence take a shorter time, for the cumulative path 
length to change by a wavelength. By contrast, shorter 
paths decay more slowly as the light is scattered by fewer 
particles and each individual particle must move a relatively 
larger distance, and hence take a larger time, before the total 
path changes by a wavelength. We note, however, that the 
correlation function for each path has a linear dependence 
in the exponential on both the path length, s, and on time, t. 

To obtain the full autocorrelation function, we sum over 
the contributions from all paths, weighted by the probabil- 
ity P(s),  that the light follows the path, 

With this expression, we implicitly assume that each path is 
uncorrelated with other paths and thus simply add the con- 
tributions of the different paths. The quantity P(s)  depends 
explicitly on the geometry of the experiment, but can be 
determined through the use of the diffusion equation for the 
light. The method of its determination can be physically 
understood by considering what happens to a very narrow 
pulse of light incident on one side of the scattering medium. 
This light must travel roughly I* into the medium before it 
has scattered a sufficient number of times that its transport 
becomes diffusive. The pulse exiting from the other side will 
reflect the distribution of paths followed by the diffusing 
photons. Some of the photons will follow very short paths 
and will exit the sample after a short time. Many more of 
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the photons will follow longer paths and will be delayed 
before they exit. Some photons will follow very long paths 
and will exit much later. Thus, the pulse that exits the other 
side of the sample will exhibit considerable dispersion. Since 
the speed of light in the medium, c, is known, the dispersion 
in time of the transmitted pulse directly reflects the distribu- 
tion of paths the light takes in passing through the medium. 
This allows P(s) to be determined. 

The diffusion equation can be solved for the geometry of 
the experiment to actually calculate the path distribution, 
P(s). Since it is a partial differential equation, the boundary 
and initial conditions must be specified. The boundary con- 
ditions are chosen to ensure that there is no flux of diffusing 
photons into the sample at the boundaries [9, lo]. The 
initial conditions are chosen to provide a delta function in 
time of diffusing photons, a distance I* into the sample on 
the side that the laser is incident. We then solve the diffusion 
equation to obtain the flux of diffusing photons emitted 
from the sample at the detector, and use the transformation, 
s = ct to obtain P(s). In fact the solution for the autocorrela- 
tion function is actually somewhat simplified by recognizing 
that eq. (6) is the Laplace transform of P(s), so that we need 
only obtain the solution to the Laplace transform of the 
diffusion equation to recover the autocorrelation function 
directly. 

The correlation function measured with DWS can be cal- 
culated for several experimentally relevant geometries [6, 7, 
11,  121. Here, we consider the case where the light is trans- 
mitted through the sample, which we take to be a slab of 
infinite extent and of thickness, L. If the incident laser is 
focused to a point on one side of the sample, and the scat- 
tered light is collected from a point on the other side of the 
sample, on the same axis as the incident light, the normal- 
ized field correlation function is given by, 

sdt) = [A@)  sinh s + e-s(1-41'/3L) 1 ds, (7) 

where 

A(s) = 

2.2. Interacting particles 
Since DWS is ideally suited for the study of very concen- 
trated suspensions, it is also essential to consider the corre- 
lation function for a suspension of strongly interacting 
particles. We can do this by analogy to the case of noninter- 
acting particles [13, 141. We again consider an nth-order 
diffusive light path. The correlation function is once again 
the product of n independent, single scattering correlation 
functions, averaged over scattering angle. However, now 
these individual correlation functions must now include the 
effects of the particle interactions on the light scattering. We 
therefore rewrite eq. (2) as 

where S(q, t) is the dynamic structure factor that describes 
the light scattering from the suspension. To express this in a 
form suitable for use with the diffusion equation to describe 
the propagation of the light, we expand the dynamic struc- 
ture factor at short times, 

where we will define the meaning W(q, t) later. We first use 
eq. (11)  to put eq. (10) into a form that is suitable for use in 
the Laplace transform of eq. (6). This can be accomplished 
by making a cumulant expansion of eq. (lo), 

and then by again restricting ourselves to short times and 
replacing eq. (12) by the exponential, 
g;(t) e-n<q2F(q)Wq, t ) ) q / 6 ( F ( q ) S ( q ) h ,  (13) 
We emphasize here that the averages over q in both eqs (12) 
and (13) must now be performed while taking into account 
the interactions of the particles, and their effect on the light 
scattering. Finally, to express eq. (13) in a form suitable for 
use with the diffusion equation for light we re-express the 
denominator of the exponent using the relationship between 
the scattering and transport mean free paths for interacting 
particles [4, 71, 

If the incident laser beam is expanded to fill the full surface 
of the sample, the autocorrelation function is obtained by 
integrating over all the point sources on the incident side. 
This yields a closed form rather than an integral, 

LA- L 4) pi - 

(9) 

In either case, the form of the autocorrelation function is 
nearly exponential, and the characteristic decay time is 
z0(l*/L)'. While complicated, these expressions are readily 
evaluated, and provide excellent agreement with the data. 
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From this, we obtain the normalized field autocorrelation 
function for nth-order paths, 

(15) g:(t) = e - ~ k 0 2 ( S / ~ ' ) < ¶ 2 F ( ¶ ) ~ ( ~ ~  t ) ) q / 6 < ¶ 2 F ( ¶ ) S ( d ) q  

Here s is the length of the path, while I* is the transport 
mean free path for the interacting system. This expression 
for the correlation function for nth-order paths is now suit- 
able for use directly in the Laplace equation that describes 
the full correlation function, eq. (6). Moreover, the results 
obtained for the transmission geometries, eqs (7), (8) and (9), 
can be used directly for interacting systems as well, by sub- 
stituting t / T o  by (q2F(4)W(4, t)),/6(q2F(q)S(q)), . Thus, for 
interacting system, DWS measures an average over q of 
W(q, t), weighted by q2F(q). 

To make use of this result, we expand the dynamic struc- 
ture factor for short times and thereby determine W(q, t). 
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The dynamic structure factor is 
\ 

where ri(t) is the position of the ith particle at  time t, and the 
summation extends over N particles. To expand this for 
short times we first use a theorem valid for ergodic systems, 
where the time and ensemble averages are equivalent, 

d2 
dt2 

Substituting the dynamic structure factor in this equation, 
we obtain 

(17) - (A(0)  * B(t)) = -(A(O) ' B(t)). 

where ui(t) is the velocity of the ith particle at time t. This 
enables us to express the dynamic structure factor in terms 
of the velocities of the particles. At very short times, the 
particles have not moved significantly from their positions 
at t = 0, so the quantity in the square brackets in the expo- 
nential can be replaced by its initial value, rij  = ri(0) - ,LO). 
In making this approximation, we assume that the corre- 
lations in the structure of the particles change much more 
slowly than the time scale of the particle motion being 
probed by DWS. Equation (18) can then be written as 

d2 I N  
-S(q,t)= -(u(O).u(t)) -- 1 ( ~ ~ ( O ) - v ~ { t ) e - ~ ~ ' ~ ~ j ) ,  (19) 
dt2 N i # j  
where we have split the summation into two parts, the self 
part, where i = J ,  and the distinct part, where i # j .  The first 
term is the velocity autocorrelation function of single par- 
ticles, and reflects the self-diffusion of the particles, whereas 
the second term involves the correlations between velocities 
of different particles. To obtain S(q ,  t) at short times, we 
integrate eq. (19) twice giving 

r "2 f 

I N  
N i + j  

+ - 1 (Ari(t) Arj{t)e-iq'rij 

from which we define 

I N  
W(q, t) = (Ar2(t)) + - 1 (Ari(t) Ar,{t)e-iq'rij) 

N i + j  
(21) 

and obtain the desired expansion for S(q ,  z), used in eq. (1 1). 
Diffusing wave spectroscopy provides a measure of W(q, t) 
defined in eq. (21). This measure is, as always with DWS, an 
average over q, weighted by q2F(q).  

To better appreciate the physical significance of W(q, t), it 
is useful to consider its behavior in some limiting cases. 
First, we consider the situation of noninteracting particles, 
in which case S(q)  = 1 and the second term of eq. (21) does 
not contribute because the value of rij is always sufficiently 
large compared to that of q to ensure that the summation 
over the exponential averages to zero. Then W(q, 
t) = (Ar2(t)), and is simply the mean square displacement of 
the particles. At longer times, the expansion of the dynamic 
structure factor must reduce to the more familiar form that 
was originally developed for single scattering from inter- 

acting systems [lS], and W(q, t) = DoH(q), where H(q)  
reflects the effects of hydrodynamic interactions. In this case, 
DWS probes quantities that are analogous to the case of 
DLS in the single scattering limit. We recall that DLS from 
interacting particles measures D,,,(q) = Do H(q)/S(q). By 
comparison, DWS measures the same quantities, but aver- 
aged over q, and weighted by q2F(q)  [16,17], 

We note that the evaluation of the average over q entails the 
integration, 

(q2m)x(d>q = j q3F(q)X(4)  dq. 

This results in a factor of q3 weighting the integral; a factor 
of q2 because DWS is sensitive to the motion of the par- 
ticles, and a factor of q to properly average over phase 
space. As a result, this average is heavily weighted towards 
the contributions at the larger values of q. 

While the approximation using H(q)  is often adequate, the 
reason for performing the expansion in terms of the velocity 
correlation functions is that DWS can, in principle, probe 
particle motion at sufficiently short length scales, and hence 
time scales, that the time dependence of H ( q )  must be con- 
sidered. When this must be done, we can still consider two 
different cases, both using eq. (21) for W(q, t). In the first 
case, when the particles are large, the summation in eq. (21) 
again averages to zero, and W(q, t) reduces to the mean 
square displacement. Physically, the particles are so large 
that only a single particle can fit into the average volume of 
a scattering event, which is roughly ( q ) - 3 ,  and DWS is sen- 
sitive only to the motion of the individual particles, or the 
self-diffusion coefficient. This is analogous to the case of 
DLS from large particles, which is also sensitive only to the 
self diffusion coefficient, even for interacting particles [ 151. 
It is only in the case of small particles that the full form of 
eq. (21) must be used. Then DWS is sensitive to a com- 
bination of the self diffusion coefficient of the particles, as 
well as a term that reflects the relative motion of neighbor- 
ing particles. In this case, more than one particle fits into the 
volume probed by a scattering event, and both the motion 
of the individual particles and their relative motion affect 
the light scattering. This is again analogous to the situation 
of DLS, which measure collective diffusion if the particles 
are sufficiently small compared to q - ' .  Thus DWS measures 
quantities that are very similar to DLS, but are averaged 
over q and weighted by q2F(q).  

3. Applications 
3.1. Non-interacting systems 

We first investigate DWS from non-interacting systems, and 
test the expressions for transmitted light, eqs (7), (8) and (9). 
In Fig. 1, we plot the intensity autocorrelation functions 
measured in transmission for both a point source and an 
expanded source. The data are obtained from a 1 mm thick 
sample of uniform polystyrene latex spheres of diameter 
d = 0.605 pm with a volume fraction of 4 = 2.1%. The inci- 
dent laser had a wavelength of 1, = 488 nm in uacuo. The 
upper data set in Fig. 1 was obtained with the incident laser 
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Fig. 1. Intensity autocorrelation functions measured in transmission for 
point source illumination (upper curve) and extended source illumination 
(lower curve), compared with the theoretical fits (dashed lines). The same 
value of I* is obtained from each geometry. 

focused to a point, while the lower data set was obtained 
with the laser beam expanded to a diameter of - 1 cm. The 
data obtained with the expanded laser source clearly decay 
more rapidly than those obtained with the point source, as 
expected, reflecting the larger contribution of longer paths 
when the source is expanded. The value of r0 can be calcu- 
lated, or measured using conventional DLS from a dilute 
sample, and is zo = 4.88msec. Then the only unknown 
quantity in eqs (7), (8) and (9) is the value for the transport 
mean free path. We therefore fit the point source data to eqs 
(7) and (8), and the expanded source data to eq. (9) using I* 
as a fitting parameter. The results are shown by the dashed 
lines, and are in excellent agreement with the data. Further- 
more, we obtain I* = 166 pm from the fit to the point source 
data, and 1* = 167pm from the fit to the expanded source 
data. The excellent consistency between the two values con- 
firms the validity of the theoretical interpretation. 

One unique feature of DWS is its sensitivity to particle 
motion on very short length scales. In transmission, fhere is 
always a characteristic length for the diffusive paths of the 
light, and this length can be experimentally controlled 
through the variation of the sample thickness. The fluctua- 
tions of the scattered light measured in transmission result 
from the variation of the total path length by a wavelength 
of light. However, since the light is scattering from a large 
number of particles, each individual particle must move 
only a small fraction of a wavelength for the cumulative 
change in the path length to be a full wavelength. Thus 
DWS can measure particle motion on very short length 
scales. The typical number of scattering events contributing 
to a path in transmission is n* = ( I ~ / I * ) ~ .  For the path length 
to change by a wavelength, the average root mean square 
displacement of each individual particle must be roughly A/ 
(n*)1/2.  Since n* can easily be greater than lo4, and since we 
can easily detect the change of a path length by a tenth of a 
wavelength, DWS can measure motions of particles of order 
1 pm in diameter on length scales of less than 1 nm. 

To demonstrate the sensitivity of DWS to motion on very 
short length scales, we use polystyrene latex spheres in 
water [lS]. The ionic strength of the water is sufficiently 
high that the screening length is very short and the particles 
interact as hard spheres. To simplify the interpretation, we 
Physica Scripta T49 

use 1.53 pm diameter spheres, allowing the DWS data to be 
expressed in terms of the mean square displacement of indi- 
vidual particles. We use a sample with a volume fraction of 
4 = 2.1%, which is low enough that the effects of hydrody- 
namic interactions are negligible. The sample is held in a 
1 mm thick cuvette, which is immersed in a water bath ther- 
mostated to +O.l"C during the measurement. To obtain 
very high speed data, it is essential to avoid the deletorious 
effects of the spurious correlations from after pulsing in the 
photo-multiplier tube (PMT), and from the dead time in the 
detection electronics. The negative effects of both of these 
are reduced by using a fiber-optic beamsplitter after the final 
pinhole in the detection optics, which directs equal portions 
of the light onto two PMTs. The signals of these are cross 
correlated [ 191, extending the measurements to the shortest 
sample time available on the correlator, 12.5nsec. In addi- 
tion, we use an intercavity etalon to force the laser to 
operate on a single longitudinal mode, thereby avoiding 
detection of the beats between the output from adjacent 
modes. The etalon also ensures that the coherence length of 
the exciting laser is much longer than the longest paths con- 
tributing to the DWS signal in transmission, avoiding any 
distortions in the shape of the autocorrelation function. To 
obtain good statistics for the autocorrelation functions at 
the shortest delay times requires extensive signal averaging. 
Thus, data are collected for a total of about 12hours. 
Rather than collecting a single data set, we measure the 
autocorrelation function for 10 minutes, and then rotate the 
sample to eliminate any gravitational settling. Finally, all 
the data sets are summed to obtain the desired autocorrela- 
tion function. 

The data are analyzed to obtain the root mean square 
displacement of the particles. This is done by using a zero- 
crossing routine to invert the measured autocorrelation 
function assuming the functional form of eq. (7), and using 
the value of I* calculated with Mie theory. The results are 
shown in Fig. 2, where we plot (Ar2(t)>'l2, measured in 
Angstroms, as a function of time. Particle motion on length 
scales as short as 2A can be clearly detected. This is a dra- 
matic demonstration of the power of DWS to resolve 
motion on very short length scales. 

In addition to the transmission geometry, the formalism 
for DWS can also be developed for the backscattering 
geometry [6, 7, 201. In this case, the laser beam must be 

lo3 k 
2 W 

t (sec) 
Fig. 2. Root mean square displacement as a function of time for 1.53pm 
particles, showing the sensitivity of DWS to motions on very short length 
scales. 
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expanded to fill a large area of the surface of the sample, 
and the backscattered light must be collected from a small 
spot at the center of the incident beam. As is the case for 
transmission, the exact angle of collection is not essential, 
since the multiply scattered light exits in all directions. 
Unfortunately, the interpretation of the backscattering 
results is not as clear as it is for the transmission geometry. 
In transmission, the autocorrelation function is dominated 
by diffusive light paths of a characteristic length, determined 
by the diffusive transmission through the sample. By con- 
trast, in backscattering, paths of all lengths contribute. In 
particular, there is a large contribution of very short paths, 
where the light is scattered a small number of times before 
exiting the sample and coming back to the detector. The 
length of these paths can easily be comparable to the trans- 
port mean free path, for which the diffusion approximation 
is no longer adequate. The exact treatment of the contribu- 
tion of these paths is beyond the diffusion theory developed 
here. Thus, while the theory gives excellent qualitative 
agreement with the data, quantitative correspondence 
cannot be achieved. 

3.2. Transient hydrodynamic interactions 
At the very short time scales probed by DWS, the motion of 
Borwnian particles is no longer simply diffusive. Instead, at 
these time scales, it is possible to directly probe the decay of 
the velocity autocorrelation function, R(t) = (u(t)u(O)), of 
the particles [21]. The decay of the velocity autocorrelation 
function reflects the consequences of the motion of the fluid 
around the particles and the interactions of the particle with 
the surrounding fluid. The velocity autocorrelation function 
is the second derivative of the mean square displacement, 
and to determine it, we numerically calculate the second 
derivative of the measured data for (Ar’(t)). This is accom- 
plished by fitting the results around each data point to a 
third order polynomial and calculating the first and second 
derivatives from the fit. In Fig. 3, we show the results for the 
second derivative of the data for the mean square displace- 
ment shown in Fig. 2. We observe a power law decay of the 
velocity autocorrelation function, with R(t )  - t -  312 ,  as indi- 
cated by the solid line in Fig. 3. The origin of this power- 
law behavior is the frequency dependence of the interaction 
between the particle and the fluid [22]. Physically, as the 
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Fig. 3. Velocity autocorrelation function of 1.53 pm diameter particles 
determined from the second derivative of their mean square displacement. 
The theoretical prediction is shown by the solid line. 

particle moves, it must push the fluid out of its way, setting 
up a wake as the fluid flows around it. The fluid flow acts 
back on the particle pushing it in the same direction that it 
is moving, causing the velocity of the particle to persist for a 
longer time. This results in the power-law form of the decay 
of the velocity autocorrelation function. This behavior is 
common to all velocity autocorrelation functions of par- 
ticles moving in an environment where hydrodynamics are 
important. It was predicted in computer simulations of hard 
sphere fluids [23], and is known as the “long-time’’ tail of 
the velocity autocorrelation function. It results from the fact 
that the fluid must also move, in addition to the particle. 
The time scale for changing the fluid velocity is determined 
by the viscosity, and is T~ = a2p/q.  This is the time scale for 
the vorticity to diffuse a distance set by the particle radius. 
The functional form for the velocity autocorrelation func- 
tion can be obtained by solving the Langevin equation with 
a time dependent friction coefficient, reflecting the hydrody- 
namic memory effects due to the fluid flow [22]. Then, the 
tW3l2  “long-time’’ tail in R(t) is correctly predicted. The pre- 
dicted results are in excellent accord with the measurements, 
as shown by the solid line through the data in Fig. 3, which 
is the theoretical calculation. We emphasize that there are 
no fitting parameters used in obtaining the fit. The time 
scale is set by the particle radius, density and the fluid vis- 
cosity, all of which are known independently. The length 
scale determined by DWS is set by the sample thickness and 
the wavelength of light, both of which are known, and by 
the transport mean free path, which is calculated theoreti- 
cally from Mie theory. These results are a clear illustration 
of the power-law “long-time” tail in R(t). They illustrate the 
power of DWS in following the time evolution of hydrody- 
namic interactions. The “long-time” tail of the velocity 
correlation has been observed, with great difficulty, using 
DLS [24]; with DWS, it becomes possible to study the 
retarded, or transient, nature of hydrodynamic interactions 
with much greater ease and clarity. 

As the particle concentration increases, the fluid flow 
around the particle will be modified by the presence of the 
neighbors. We can probe the consequences of these modifi- 
cations using DWS. The modification of the motion of one 
particle due to the change in the fluid flow field caused by 
the presence of a second particle is a direct manifestation of 
hydrodynamic interactions. Thus DWS can provide new 
insight into the nature of these hydrodynamic interactions. 
In particular, we are able to measure the time evolution of 
hydrodynamic interactions as the fluid flow evolves. Physi- 
cally, we expect many body hydrodynamic interactions to 
be important as the vorticity of the fluid diffuses away from 
the tracer particle and the flow pattern is interrupted by the 
neighboring particles. The flow field will cause the neighbor- 
ing particles to move, which will result in an additional flow 
field which will, in turn, modify the motion of the tracer 
particle. This interaction will not be instantaneous because 
the diffusion of the vorticity between particles requires some 
time. An estimate of this time scale is 7, z s2p/q, where s is 
the mean surface to surface distance between neighboring 
particles. As the volume fraction goes up, this time scale 
should decrease, and hydrodynamic interactions should 
become more important. 

To investigate the transient hydrodynamic interactions, 
we repeat the same transmission measurements using differ- 
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ent volume fractions of the 1.53pm diameter spheres. 
Instead of plotting (Ar2( t ) ) ,  it is more informative to con- 
sider the time-dependent self-diffusion coefficient. However, 
rather than introducing additional numerical inaccuracy by 
differentiating the data, we instead define D(t) (Ar2(t))/6t .  
We plot the time-dependent self-diffusion coefficients mea- 
sured for several volume fractions in Fig. 4. For comparison, 
we also plot, by the dashed line, the theoretically predicted 
behavior for zero volume fraction, using the full, time- 
dependent viscosity [22] .  The data for the lowest volume 
fraction, = 2.1 %, is indistinguishable from the theoreti- 
cally predicted behavior at zero volume fraction. As the 
volume fraction increases, the data deviates from the zero 
volume fraction limit by greater amounts and at apparently 
earlier times. The asymptotic value for each data set 
decreases as the volume fraction increases, although we are 
not able to follow the data to sufficiently long times to 
observe the true asymptotic behavior, despite the fact that 
our measurements extend to approximately 1007,. Thus the 
very slow approach to the asymptotic behavior that gives 
rise to the "long-time'' tail of the velocity autocorrelation 
function of the zero-volume fraction data is also apparent 
for higher volume fractions. 

The velocity autocorrelation functions determined from 
the data for the higher volume fractions also each exhibit a 
t - 3 / 2  behavior. To quantify this behavior, we fit the data to 
the functional form for low volume fractions, using both the 
asymptotic self-diffusion coefficient and the viscous time 
scale as fitting parameters. For each volume fraction, an 
excellent fit is obtained. Thus the data exhibit a remarkable 
scaling behavior and can all be plotted together onto a 
single master curve, as shown in Fig. 5. The shape of this 
master curve is described by the functional form of the 
theory for low volume fractions, as shown by the solid line 
in Fig. 5 .  Data obtained with 3.1 pm diameter spheres also 
exhibit the same scaling behavior. 

The scaling of the data onto a single master curve pro- 
vides two different scaling parameters. The first is the value 
of the self-diffusion coefficient required to scale the data on 
the vertical axis. This value corresponds to the asymptotic 
value of the self-diffusion coefficient at longer times, after 
the transient nature of the hydrodynamic interactions has 
subsided, but before the particle positions have changed 
substantially, and thus before the longer time behavior of 
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Fig. 5. Scaling of the time-dependent self-diffusion coefficients for different 
volume fractions of the 1.53 pm diameter spheres. Each data set has been 
normalized by its asymptotic value of D, and is plotted as a function of 
time normalized by the new viscous time, T,, . 

the self-diffusion coefficient becomes apparent. Thus the 
value of this scaling parameter corresponds to the short- 
time self-diffusion coefficient and can be compared with 
both theoretical predictions [25, 261 and with measure- 
ments using single scattering from tracer particles in index 
matched suspensions [27, 281. We find good agreement 
between our data and these previous measurements, with 
the asymptotic value of the self-diffusion coefficient decreas- 
ing approximately as (1-1.834) from its value at zero volume 
fraction. The second parameter is the time required to scale 
the data on the horizontal axis. The volume fraction depen- 
dence of this new, viscous time scale, normalized by its zero 
volume fraction limit, is plotted in Fig. 6.  We show data 
obtained with both the 1.53pm diameter spheres 
(diamonds), and with 3.09 pm diameter spheres (circles). The 
time scale also decreases with increasing volume fraction, 
but does so at a faster rate than the self-diffusion coefficient. 
Since the viscous time scale is inversely proportional to the 
viscosity, we also plot, by the solid line, the volume-fraction 
dependence of the inverse of the theoretically predicted vis- 
cosity for a hard-sphere suspension, normalized by the vis- 
cosity of the solvent [29] .  The data are described 
remarkably well by the theoretical behavior. We emphasize 
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Fig. 6. Scaling time for different volume fractions of 1.53pm diameter 
spheres (diamonds) and 3.09 pm diameter spheres (circles), normalized by 
their zero-volume fraction time. The solid line is the theoretical prediction 
of the volume fraction dependence of the inverse of the viscosity of the 
suspension. 
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again, however, that the &dependence of the two scaling 
parameters is notably different; the value of the scaling time 
decreases significantly more rapidly with increasing volume 
fraction than does that of the asymptotic self-diffusion coef- 
ficient. 

The data presented here show that the time evolution of 
the self-diffusion coefficient has a remarkable, universal 
form, independent of volume fraction. For all values of 4, 
the velocity autocorrelation function exhibits a “long-time” 
tail, and an algebraic decay, with a t - 3 1 2  time dependence. 
Thus the observations presented here show that the “long- 
time” tail in the velocity autocorrelation function is a very 
general feature of fluids, occurring in a very similar fashion 
for fluids composed of very different components. The 
scaling of the data, and the &dependence of the viscous 
time scale suggest a simple physical picture for the behavior. 
At long times, the vorticity has diffused a sufficiently large 
distance, so that the fluid flow can no longer distinguish the 
individual particles in the suspension, which instead appears 
as an average medium. This suggests that an effective 
medium approach may be a useful approximation for 
describing the behavior of hydrodynamic interactions at 
these time scales. 

While the scaling behavior reported here does suggest a 
simple physical picture, the underlying origin of the behav- 
ior is not yet understood. The behavior at longer times is 
apparently determined by the viscous time constant of the 
suspension. However, it is surprising that the observed 
scaling applies so well at relatively short times, well before 
the vorticity has diffused over many particle diameters. The 
data shown in Fig. 5 indicate that the scaling behavior 
extends to times as short as t - OSz,, which is much earlier 
than expected from a physical picture of the diffusion of the 
vorticity between neighboring particles. At these very short- 
est times, we might expect the time-dependent self-diffusion 
coefficient to be independent of volume fraction, as the vor- 
ticity will not have diffused far enough for the flow field to 
be disrupted by the neighboring particles. At these very 
short times, the scaling behavior should not be observed if 
the unscaled data were identical. However, this time scale 
might be very short, even shorter than we can observe in 
our experiments, since in a hard sphere suspension, there is 
no characteristic particle separation and some particles are 
separated by distances much smaller than the average 
separation. 

Although a fundamental theoretical understanding is 
lacking as yet, considerable guidance can be obtained from 
recent computer simulations [30]. These use a new form of 
a lattice gas model to describe the hydrodynamic inter- 
actions between the particles. The simulations are per- 
formed with a lattice Boltzmann model, to which is added 
random noise to simulate the Brownian fluctuations. With 
this model, it is possible to determine the particle mean free 
displacement at early times, corresponding to the time scales 
measured here. Exactly the same scaling behavior for the 
time dependent self diffusion coefficient is found in the simu- 
lations. Moreover, the two scaling parameters are different, 
and have different dependencies on the volume fraction of 
particles. The &dependencies observed in the simulations 
are identical to those observed in these experiments. Finally, 
with the simulations, it is possible to extend the data to even 
shorter times than in the experiment. The same scaling 

behavior persists to these very short times. Thus, these 
simulations provide further confirmation of the data. In 
addition, it should be possible to use the simulation results 
to assist in developing a better understanding of the under- 
lying physics of the transient hydrodynamic interactions. 

Additional information about the transient hydrodynamic 
interactions is obtained by using spheres with smaller diam- 
eters. In this case, more than a single sphere can fit into the 
average volume probed by each scattering event, ( q ) - 3 .  
Thus the second summation in W(q,  t ) ,  eq. (21), makes a 
contribution, making it possible to explore the temporal 
behavior of the interparticle hydrodynamic interactions, or 
the consequences of velocity cross correlations. To do this, 
we repeat the measurements of the correlations functions 
using spheres of diameters 0.76, 0.412 and 0.198pm, at 
increasing volume fractions for each. The data are again 
inverted using the functional form of eqs (7) and (8). We 
then determine ( q 2 F ( q )  W(q, t ) ) ,  using the measured values 
of L and I* and the value of (q2F(q)S(q)) ,  calculated for 
hard spheres assuming a pair distribution function given by 
Percus-Yevick [31]. We define an effective time-dependent 
diffusion coefficient by D e f f  (q2F(q)W(q, t),/6t. The mea- 
sured quantity is no longer simply interpreted as the mean 
square displacement because of the contribution of the 
second summation in eq. (21). However, the general behav- 
ior of these data is the same as that observed for the larger 
spheres. At very low volume fractions, the data follow the 
theoretical prediction, as they should, since the interactions 
are negligible at sufficiently low 4. Interestingly, however, as 
the particle size decreases, the volume fraction required to 
obtain agreement with the zero 4 limit of the theory also 
decreases significantly. At higher volume fractions, devi- 
ations from the theoretical prediction are observed. 

Very surprisingly, it is again possible to scale all the data 
onto the same universal curve, whose functional form is 
given by the time-dependent self-diffusion coefficient in the 
limit of zero volume fraction. The data obtained with the 
smaller spheres extend over a somewhat different range in 
reduced time since the particles are so much smaller. We 
probe times between about 22, and 2002,. The scaling of 
the data is an experimental observation; it is not at all clear 
why it should occur. In particular, since, from the measure- 
ments on the larger particles, we know that the first term in 
eq. (21) exhibits this scaling, it is unclear why the sum of the 
first term and a second term should scale the same way as 
the first term itself. 

We again obtain two scaling parameters. The first reflects 
the &dependence of the asymptotic value of Deff.  The 
second reflects the new viscous time scale, and includes the 
influence of the second term in eq. (21), reflecting the effects 
of velocity cross correlations between neighboring particles. 
We plot the +-dependence of this new time scale for all the 
smaller diameter spheres in Fig. 7 .  For comparison, we also 
show the behavior of the larger diameter spheres. For the 
spheres smaller than 0.76 pm in diameter, the time scales 
have a markedly different &dependence than do the larger 
spheres. The new time scale is always reduced by compari- 
son to the results for the large spheres. Thus the effects of 
the velocity cross-correlations is to reduce the time scale 
compared to the behavior of the self-diffusion coefficient. 
Moreover, for the smallest spheres, we must go to very low 
volume fractions, 4 x 0.5%, before the behavior reduces to 
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Fig. 7. Scaling time for different volume fractions of spheres with smaller 
diameters, including 0.76 (triangles), 0.412 (squares) and 0.198 pm (circles). 
These are compared with the behavior of the larger spheres, with diameters 
of 1.53 (diamonds) and 3 . 0 9 ~  (circles). All the data sets have been nor- 
malized by their zero-volume fraction times. The solid line is the theoretical 
prediction of the volume fraction dependence of the inverse of the viscosity 
of the suspension. 

the limit of non-interacting, or zero volume fraction, spheres. 
The fact that the scaling time differs for the smaller spheres 
reflects the contribution of the second term in eq. (21), and 
indicates the effects of the hydrodynamic interactions 
between neighboring spheres. The contribution of this effect 
increases as the size of the spheres decreases. The behavior 
observed here is to be contrasted with that observed by 
DWS at even shorter time scales, where the autocorrelation 
function was measured with a Michelson interferometer 
instead of a correlator [32]. These observations were per- 
formed on small spheres, with diameters less than OSpm, 
but the data extend to much shorter time scales, ranging 
from about 0.17, to It,. Similar scaling behavior of the 
measured Defr was observed, but the $-dependence of the 
scaling time was notably different than the measurements 
presented here for time scales larger than T,. At very short 
times, the scaling time had the same $-dependence as do the 
large spheres. Thus our results suggest that the effects of the 
velocity cross correlations do not begin to affect the results 
until times of order z, , implying that the transient nature of 
the hydrodynamic interactions between neighboring par- 
ticles is very different than those interactions affecting the 
self-diffusion coefficient. Clearly, further work is required to 
fully interpret these results. Nevertheless, these data demon- 
strate the power of DWS to observe motion of particles on 
very short length scales and thereby probe new physical 
phenomena. 

3.3. Foams 
Another application for which DWS is ideally suited is the 
measurement of systems where the dynamics entail events 
that are both spatially and temporally rare. In this case, the 
fact that DWS is sensitive to the dynamics of a relatively 
large sample volume makes the measurement of the auto- 
correlation function much more feasible. As an example of 
this type of dynamics, we study shaving cream [33, 341, 
which is a prototypic foam, comprised of bubbles of gas, 
suspended in a fluid, and stabilized by surfactant molecules 
at the interfaces. Provided no coloring is added for cosmetic 
purposes, shaving cream is white, due to the very strong 
multiple scattering of light from the bubble interfaces. As 
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such, it is an ideal candidate for studying with DWS. The 
shaving cream we study is Gillette Foamy; it is a highly 
reproducible foam, with very low absorption of the light. 
The diffusion approximation describes the transport of light 
through Foamy very well. 

The dynamics in shaving cream arise from the coarsening 
which occurs in the foam. In general, this coarsening can 
occur by two distinct mechanisms. In the first, two bubbles 
can approach and coalesce, forming a single larger bubble. 
By contrast, the second mechanism is analogous to Ostwald 
ripening. In this case, the coarsening results from the slight 
solubility of the gas in the fluid. Then the difference in the 
internal pressures of the bubbles provides the force which 
drives the gas from the smaller bubbles, which have a larger 
internal pressure, to the larger bubbles, which have a 
smaller internal pressure. In both cases, the net result is the 
disappearance of the smaller bubbles, so that the average 
bubble size increases in time. Coarsening is very generally 
observed in foams. At the same time, the total volume frac- 
tion of gas relative to the liquid remains constant in time. 
For most foams, this volume fraction is on the order of 
90%, or greater; for Foamy, it is roughly 93%. Because 
there is a distribution of bubble sizes at any given time in 
the life of the foam, the bubbles can pack to fill 93% of 
space while still remaining relatively spherical. Nevertheless, 
even if the bubbles are in a relaxed state in their initial 
spatial arrangements, as they coarsen, their spatial orienta- 
tion will no longer be ideal to fill the required amount of 
space. This will cause the bubbles to become distorted in 
shape, costing elastic energy and inducing stresses due to 
their surface tension. Eventually, the stresses will cause the 
bubbles to rearrange themselves, adopting new positions to 
reduce the stresses. These rearrangement events are clearly 
visible by observing the foam in a microscope, although 
multiple scattering restricts the observation of these events 
to those occurring near the surface. It is these rearrange- 
ment events that lead to the decay of the autocorrelation 
function observed with DWS. 

In Foamy, the bubbles are sufficiently stabilized by sur- 
factant that coarsening is restricted to the Ostwald ripening 
mechanism. This occurs relatively slowly, and the foam 
retains its characteristics for a considerable length of time. 
However, after it is first produced, DWS measurements in 
both the backscattering and transmission geometries exhibit 
correlation functions that have the same form as those 
observed with diffusing particles, despite the fact that there 
are no particles undergoing diffusive motion in the foam 
which could result in this sort of decay. Instead, the only 
dynamics that can be observed by microscopic observation 
of the surface of the foam are the rearrangement events. 
Thus, we must develop a new model for DWS to account 
for the effects of these rearrangements on the autocorrela- 
tion function. 

We again assume that the diffusion approximation 
describes the transport of the light through the medium. 
Then, we calculate the decay of the autocorrelation function 
for each diffusive light path due to the rearrangement 
events. Since the experiment shows that the paths decay in 
the same fashion as those measured for diffusing particles, 
we expect the autocorrelation functions for the individual 
paths to decay exponentially, with the exponent exhibiting a 
linear dependence on both the path length and time. This 
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will ensure that the Laplace equation for the total autocor- 
relation function, eq. (6), again results in the functional 
forms that are measured. 

When it is first sprayed from the can, the typical bubble 
size in Foamy is about 20pm in diameter, and therefore is 
much larger than the wavelength of light. When the bubbles 
undergo a rearrangement event, their motion is over length 
scales that are comparable to their sizes, and hence much 
greater than the wavelength. As a result, any light paths that 
pass through the volume affected by the rearrangement 
event will be changed in length by an amount much greater 
than a wavelength. This will totally randomize the phase of 
these paths and therefore result in the decay of their contri- 
bution to the autocorrelation function. The contribution to 
the autocorrelation function from all the paths of length s 
will decay completely when rearrangement events have 
occurred in all the paths. Furthermore, the probability of 
decay of the unrandomized paths will be proportional to the 
number remaining, so that the decay will grow exponen- 
tially in time. The decay rate will also be proportional to the 
likelihood that the path will intercept a rearrangement 
event. This probability increases with the volume of the 
path, which is determined by the product of its length and 
its cross-sectional area. The length of the path is s, while its 
cross-sectional area is 1*’, since this length scale determines 
the diffusive light path. We assume that the rearrangement 
events occur with a probability of R events per unit volume 
per unit time. In addition, we introduce an efficiency factor 
that accounts for the effectiveness of any rearrangement 
event in causing a path to decay. To cause the phase of a 
path to be totally randomized, the rearrangements must 
occur over a length of l*. Thus, if we take the average length 
scale for rearrangement events to be r, the effectiveness of 
any given event will be proportional to the ratio of its 
volume to the volume necessary to randomize the path, (r/ 
l*)3 .  The contribution of paths of length s, with n scattering 
events, to the total decay of the autocorrelation function is 
then 

(22) g;(t)  = e - Rr3(s/l*)r 

This has the form required to lead to the experimentally 
observed results: it is linear in both s and t ,  and thus when 
used in the Laplace equation, eq. (6), it will yield auto- 
correlation functions with the same functional form as those 
observed for diffusing particles. The same solutions, eqs (7), 
(8) and (9) will hold for foams, with the substitution of Rr3 
for l/~,,. Thus DWS probes the rate of occurrence of a 
rearrangement event in any given volume of the foam. 

This prediction can be tested for Foamy by comparing 
the rate of rearrangement events measured with DWS with 
that extrapolated for the bulk of the foam from observation 
of the rate of rearrangements at the surface observed with a 
microscope. For Foamy, the rate of these rearrangements 
decreases markedly with time, so that following the behav- 
ior of the foam as it ages allows a critical test of this theory 
for DWS from foams. Excellent correlation is found between 
the DWS results and those measured microscopically [34], 
verifying the validity of this expression, eq. (22). This corre- 
lation extends over three orders of magnitude in R. Thus, 
DWS provides a new method for studying the dynamics of 
foams, and determining the characteristic time scales of the 
rearrangements of the bubbles. This might be particularly 

useful as a method for studying the microscopic basis for the 
fascinating rheology of foams. Their rheology must be domi- 
nated by the motion of the bubbles with respect to one 
another, and it is this motion to which DWS is directly sen- 
sitive. More generally, these results illustrate the utility of 
DWS for the study of dynamic events that are both tempo- 
rally and spatially rare. 

4. Conclusions 

We have discussed the extension of dynamic light scattering 
techniques to very strongly scattering media, where multiple 
scattering of the light is so significant that light propagation 
through the media is well described by the diffusion approx- 
imation. In this limit, it is possible to quantitatively analyze 
the autocorrelation functions. This is accomplished by using 
the diffusion approximation to determine the distribution of 
paths followed by the photons propagating through the 
medium, and to determine the length and number of scat- 
tering events for each path. We assume that each path con- 
tributes independently to the total autocorrelation function 
as all the interference occurs only at the detector, outside of 
the sample, and not within the sample. To calculate the 
autocorrelation function of each path, we assume that it is 
comprised of a sufficiently large number of scattering events 
that we can neglect the detailed conservation of momentum 
for each scattering event. Instead, we replace the contribu- 
tion of each scattering event by an average that reflects the 
distribution determined by the form factor of the scatterers. 
Then, if each scattering event is independent, the autocorrel- 
ation function of a path of n scattering events is the product 
of n contributions of the average. The total autocorrelation 
function is the sum of the contributions from the individual 
paths, weighted by the probability that a photon follows 
that path. By this procedure, we are able to quantitatively 
calculate the functional form of the correlation function and 
relate its decay to the dynamics of the scattering medium. 

Because the light is multiply scattered, the scattering 
angle and wave vector do not possess the same significance 
that they do in a single scattering experiment. In fact, since 
the contribution from each scattering event is replaced by 
an angular average, the autocorrelation function of a single 
path has already accounted for the average over all scat- 
tering angles. Thus, the final angle of detection of the light is 
not critical. Instead, the autocorrelation function depends 
on the geometry of the experiment. One useful geometry is 
that of transmission, where the sample is illuminated on one 
side and the light that has propagated through the sample 
to the other side is collected and analyzed. We present two 
functional forms for transmission. The first is for the case 
where the incident beam is focused to a point, and the light 
is collected from .a point on the other side of the sample, on 
axis with the incident beam. The second case accounts for 
the results obtained when the incident beam is expanded to 
fill the whole sample face, while the transmitted light is still 
collected from a point on the other side of the sample. Dif- 
ferent results are obtained if the scattered light is collected 
from a point on the same side of sample that is illuminated 
by an expanded beam, in the backscattering geometry. 

We have also illustrated the usefulness of DWS by explor- 
ing some examples of the dynamics that can be probed. Our 
emphasis has been on the novel dynamics that are accessible 
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through the use of DWS, and cannot be studied by tradi- 
tional dynamic light scattering techniques. Since DWS 
probes multiply scattered light, the decay of the autocorrela- 
tion function reflects the change in length of a diffusive light 
path. This decay results from the aggregate motion of a 
large number of particles that contribute to the scattering 
path. Thus, while the total path length must change by a full 
wavelength, the motion of each individual scatterer can be 
substantially less. Therefore, DWS can probe motion on 
very short length scales. Here, we exploit this feature to 
study the time evolution of hydrodynamic interactions 
between particles in concentrated suspensions of hard 
spheres. 

We are able to probe the motion of the scattering par- 
ticles on sufficiently short length scales that we can deter- 
mine the decay of their velocity correlation function. We 
show that it does not decay exponentially, but rather its 
decay is algebraic, with t - 3 / 2  time dependence. This behav- 
ior was first predicted from computer simulations, and is 
known as the “long-time’’ tail of the velocity correlation 
function. As a result, the time-dependent self-diffusion coeffi- 
cient of the particles approaches its asymptotic value only 
very slowly. We also study the dependence of the time- 
dependent self-diffusion coefficient on the volume fraction of 
spheres. We find that velocity correlation function has the 
same t - 3 / 2  decay for all volume fractions. Moreover, we 
show that time-dependent self-diffusion coefficients for all 
volume fractions can be scaled onto a single curve, whose 
functional form can be determined theoretically by the 
behavior of a single sphere interacting with the surrounding 
fluid. The scaling parameters for the horizontal and vertical 
directions have markedly different dependencies on volume 
fraction. The scaling parameter for the vertical direction 
reflects the asymptotic value of the self-diffusion coefficient 
at time scales longer than the decay of the velocity corre- 
lation function, but shorter than the time scales for relax- 
ation of the particle positions. The measured &dependence 
of this scaling parameter is consistent with tracer measure- 
ments performed with single scattering DLS. By contrast, 
the scaling parameter for the horizontal direction represents 
a new viscous time scale. Its measured 4 dependence is 
described by the behavior of the inverse of the high- 
frequency, low-strain viscosity of the suspension. This sug- 
gests that the behavior of the hydrodynamic interactions 
can be described by an effective medium approach: as the 
vorticity diffuses away from a particle, it no longer dis- 
tinguishes the presence of individual spheres, but instead is 
sensitive only to the medium comprised of the suspension of 
particles in the fluid. Surprisingly, however, the observed 
scaling behavior persists to very short times, implying that 
the fluid flow is determined by the full suspension at much 
shorter times than expected. 

We also present measurements of the behavior of very 
small spheres, where the light scattering is sensitive to both 
the self diffusion coefficient as well as the effects of the rela- 
tive motion of neighboring particles. We again find that the 
data can be scaled onto a single curve. However, the time 
scales determined from the scaling are significantly shorter 
than for the same volume fraction of the larger spheres. By 
contrast, measurements of the behavior of these particles at 
even shorter times indicate that the scaling times are similar 
to those measured with larger particles. This implies that the 
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time evolution of the hydrodynamic interactions between 
neighboring particles has a markedly different behavior 
than that observed for the interactions of the particle itself 
with the surrounding suspension. The interparticle effects 
seem to begin to be effective at a somewhat later time. 

Finally, we have also presented a brief account of another 
useful application of DWS. This application exploits the 
very large volume probed by the diffusion of the light within 
the sample. It facilitates the study of dynamics that are both 
temporally and spatially rare. We develop a new model to 
describe the dynamics of relatively large scale random 
motions in foams as they coarsen. We apply these tech- 
niques to study the behavior of a prototypic foam, shaving 
cream, and show how DWS can probe the rearrangement of 
the bubbles of air that make up the foam. This rearrange- 
ment is driven by the relaxation of the stresses incurred as 
the foam coarsens through a process similar to Ostwald 
ripening. This application of DWS provides new insight into 
the dynamics of a foam, that would be difficult to obtain by 
any other means. 

Traditional dynamic light scattering techniques have 
proven extremely valuable in assisting our understanding of 
a wide range of dynamic processes. However, they have in 
the past been strictly restricted to nearly transparent 
materials, limiting the types of samples to which they could 
be applied. The development of diffusing wave spectroscopy 
alleviates this restriction, and enables the study of a wide 
array of new systems. This will also make it possible to 
investigate a wide variety of new physics problems. This 
paper has summarized the essential physics of the technique 
of DWS and has provided several examples of the new types 
of physics problems that can be addressed. 
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