
Chapter 5

Colligative Properties

5.1 Introduction

Properties of solutions that depend on the number of molecules present and not on the kind of

molecules are called colligative properties. These properties include boiling point elevation, freezing

point depression, and osmotic pressure. Historically, colligative properties have been one means

for determining the molecular weight of unknown compounds. In this chapter we discuss using

colligative properties to measure the molecular weight of polymers. Because colligative properties

depend on the number of molecules, we expect, and will show, that colligative property experiments

give a number average molecular weight.

5.2 Boiling Point Elevation

Figure 5.1 shows the vapor pressure of a liquid for pure liquid and for a solution with that liquid as

the solvent. In an ideal solution, the vapor pressure of the solvent, PA, is reduced from the vapor

pressure of a pure liquid, P ◦
A, to XAP ◦

A where XA is the mole fraction of liquid A. This reduction is

reflected in a shift to the right of the vapor-pressure curves in Fig. 5.1. By definition, boiling point

is the temperature at which the vapor pressure of the liquid reaches 1 atm. Thus, the right-shift

caused by the dissolution of component B in solvent A causes the boiling point to increase. This

increase, ∆Tb, is the boiling point elevation effect.

A well known result from introductory chemistry is that the boiling point elevation is propor-

tional to the molar concentration of solute particles

∆Tb = Kbm (5.1)

where m is the molality of solute molecules and Kb is the boiling point elevation coefficient that is

a function of only the solvent. Molality is the number of moles of component B per 1000 grams of

solvent. If we prepare a solution of an unknown compound of molecular weight B at a concentration
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Figure 5.1: Boiling point elevation effect is a consequence of the effect of solute molecules on the vapor
pressure of the solvent.

c in g/cm3, then

m =
1000c

MBρ
(5.2)

where ρ is the density of the solvent (in g/cm3). Substituting into the expression for ∆Tb gives

MB =
1000Kbc

ρ∆Tb
(5.3)

or
∆Tb

c
=

1000Kb

ρMB
(5.4)

For a given solvent (e.g., water where Kb = 0.52 and ρ = 1.00) and concentration (c), all terms in

Eq. (5.4) are known except for MB. Thus, measuring ∆Tb can be used to determine the molecular

weight MB.

We can also express boiling point elevation in terms of mole fraction. Mole fraction is

XB =
cV
MB

ρV
MA

+ cV
MB

≈ cMA

ρMB
(5.5)

where V is total volume and MA is molecular weight of the solvent. The boiling point elevation

becomes

∆Tb =
1000Kb

MA
XB (5.6)

To apply boiling point elevation to polymers, we begin by using solution thermodynamics to

derive an expression for ∆Tb. At equilibrium, the chemical potential of the vapor is equal to the

chemical potential of the liquid

µvap
A = µliq

A = µ◦A + RT lnXA or
µvap

A − µ◦A
RT

= ln XA (5.7)
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where we have assumed an ideal solution. Differentiating both sides gives

∂
(µA

T

)
∂T

=
∂
(

GA
T

)
∂T

=
1
T

(
∂GA

∂T

)
P

− GA

T 2
= −SA

T
− HA

T 2
+

SA

T
= −HA

T 2
(5.8)

which is used to get

−
Hvap

A −H◦
A

RT 2
=

d

dT
lnXA (5.9)

where Hvap
A −H◦

A is the heat of vaporization of the solvent or ∆Hvap.

Now consider the process of forming a solution. As the polymer is added, the mole fraction of

A will go from 1 at the start to XA which is the mole fraction of the final solution. During the

process, the boiling point will go from Tb to T where Tb is the boiling point of the pure liquid and

T is the boiling point of the solution. Integrating over this process gives

−
∫ T

Tb

∆Hvap

RT 2
dT =

∫ XA

1
d lnXA (5.10)

The integrals are easily evaluated if we assume that ∆Hvap is independent of temperature over the

small temperature range from Tb to T . The result is

∆Hvap

R

(
1
T
− 1

Tb

)
= ln XA (5.11)

We can simplify this result using ∆Tb = T −Tb, TTb ≈ T 2
b , and lnXA = ln(1−XB) ≈ −XB. These

simplifications apply when XB is small (which occurs when the solution is dilute) and when ∆Tb is

small. In general, ∆Tb will be small when the solution is dilute. The previous equation simplifies

to
∆Hvap∆Tb

RT 2
b

= XB (5.12)

or

∆Tb =
RT 2

b

∆Hvap
XB (5.13)

Comparison of this result to Eq. (5.6) gives a theoretical expression of Kb:

Kb =
MART 2

b

1000∆Hvap
(5.14)

The result is often derived in physical chemistry books.

In applying boiling point elevation to polymer solutions, we should realize that polymer solu-

tions are really solutions of many components. The various components are the polymer species of

different molecular weights. Because boiling point elevation is a colligative property, we can write

the boiling point elevation of a polymer solution as a sum over the mole fractions of each molecular

weight component:
∆Hvap∆Tb

RT 2
b

=
∑

i

Xi (5.15)
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where Xi is the mole fraction of polymer with molecular weight Mi. We more conveniently rewrite

Xi in terms of concentration:

Xi =
ciV
Mi

ρV
MA

+
∑

i
ciV
Mi

≈ ciMA

ρMi
(5.16)

where ci is the concentration in weight/unit volume (e.g., g/cm3) of polymer with molecular weight

i. The approximation in this expression is valid for dilute solutions in which the number of moles

of solvent is much greater than the total number of moles of polymer. Summing the mole fractions,

Xi, results in ∑
i

Xi =
cMA

ρ

∑
i

ci
Mi∑

i ci
=

cMA

ρ

∑
i

wi

Mi
=

cMA

ρMN

(5.17)

where

c =
∑

i

ci (5.18)

The final expression for the boiling point elevation becomes

∆Tb

c
=

MART 2
b

ρ∆HvapMN

(5.19)

It is common to express the boiling point elevation in terms of the latent heat of vaporization, lvap,

defined as energy or vaporization per unit weight or

lvap =
∆Hvap

MA
=

J/mole
g/mole

= heat of vaporization in J/g (5.20)

The boiling point elevation becomes

∆Tb

c
=

RT 2
b

ρlvapMN

(5.21)

Except for incorporation of polydispersity, there is nothing new about the boiling point eleva-

tion expression for polymer solutions vs. the comparable expression for small molecule solutions.

In polymers, however, the solution is more likely to be non-ideal. For this equation to apply we

will probably need to use very low concentrations or techniques to extrapolate to very low concen-

trations.

For an example, let’s consider a solution of polystyrene in benzene. For benzene ρ = 0.8787 g/cm3,

Tb = 55◦C, and lvap = 104 cal/g. We assume a relatively concentrated solution of c = 1 g/cm3

of a polymer with molecular weight MN = 20, 000. The change in the boiling point elevation for

this solution is ∆Tb = 1.4 × 10−3 ◦C. This boiling point elevation is very small. It is probably

beyond the accuracy of most temperature measuring equipment. The small change arises despite

relatively ideal conditions of a fairly concentrated solution and a low molecular weight polymer.

More dilute solutions or higher molecular weight polymers would give an even smaller ∆Tb. The

problem with polymer solutions is that for a given weight of material, the polymer solution will
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have many less molecules than the comparable small molecule solution. When there are a small

number of molecules, the change in boiling point (a colligative property) is small. The problem with

the boiling point elevation method applied to polymer solutions is that it is not sensitive enough.

It has found some use with polymers but it is limited to polymers with relatively low molecular

weights. (e.g., MN less than 20,000 g/mol).

5.3 Freezing Point Depression

A similar analysis (but with sign changes) can be applied to the freezing point depression of a

polymer solution. The final result is
∆Tf

c
=

RT 2
f

ρlfMN

(5.22)

where Tf is the freezing point of the solvent and lf is the latent heat of fusion. We consider the

same example of polystyrene in benzene with Tf = 5.5◦C, lf = 30.45 cal/g for the freezing point

of benzene. For a c = 1 g/cm3 solution of polystyrene with molecular weight MN = 20, 000, the

change in the freezing point of the solution is ∆Tf = 2.9×10−3 ◦C. Like the boiling point elevation

effect, the freezing point depression effect is too small. The technique is insensitive and only useful

for low molecular weight polymer (e.g., MN less than 20,000 g/mol).

5.4 Osmotic Pressure

Another colligative property is osmotic pressure. Figure 5.2 illustrates the osmotic pressure ef-

fect. Imagine a pure solvent and a solution separated by a semipermeable membrane. An ideal

semipermeable membrane will allow the solvent molecules to pass but prevent the solute molecules

(polymer molecules) from passing. The different concentrations on the two sides of the membrane

will cause an initial difference in chemical potential. At equilibrium, this difference in potential

will be counteracted by an effective pressure across the membrane. As shown in Fig. 5.2, it can be

imagined that solvent molecules pass from the pure solvent side to the solution side. The excess

height in the column of liquid above the solution side is related to the osmotic pressure by π = ρgh.

Here π is the osmotic pressure, ρ is the density of the solution, g is the acceleration of gravity

(9.81 m/sec2) and h is the height of the column of liquid.

We begin with a thermodynamic analysis of osmotic pressure. At equilibrium the chemical

potential in the solution will be equal to the chemical potential in the pure solvent:

µsolvent
A = µsolution

A = µ◦A + RT ln aA (5.23)

where µsolvent
A is the chemical potential of the pure liquid or

µsolvent
A = µ◦A (5.24)
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Figure 5.2: A schematic view of osmotic pressure across a semipermeable membrane.

The only way the chemical potentials will be equal will be if the activity of component A in the

solution is equal to 1. The activity can be raised to 1 by applying pressure. That is, activity is a

pressure dependent quantity. By applying the correct pressure, the osmotic pressure, the activity

in the solution can be changed to 1. The osmotic pressure that gets applied occurs naturally by

the tendency to approach equilibrium.

To get the pressure dependence of activity, we consider the pressure dependence of the chemical

potential
dµA

dP
=

d

dP

dG

dnA
=

d

dnA

dG

dP
=

dV

dnA
= VA = RT

d

dP
ln aA (5.25)

Rearranging and integrating the left hand side from the original activity aA to the final activity 1

and the right hand side from the initial pressure 0 to the final pressure — the osmotic pressure π

— results in: ∫ 1

aA

d ln aA =
∫ π

0

VA

RT
dP (5.26)

which integrates to

− ln aA =
πVA

RT
(5.27)

Now, in an ideal solution

− ln aA = − lnXA ≈ XB. (5.28)

This last approximation follows because ln(1 − x) ≈ −x for small x. Finally, as in the analysis of

boiling point elevation, we replace XB by
∑

i Xi which was derived in Eq. (5.17) to be∑
i

Xi =
cMA

ρMN

(5.29)

giving
cMA

ρMN

=
πVA

RT
(5.30)
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But, MA/ρ is the grams per mole of solvent divided by the grams per cm3 of solvent. The grams

cancel and we have cm3 per mole of the solvent or the partial molar volume of component A —

VA. Substituting into the osmotic pressure equation thus gives:

π

c
=

RT

MN

(5.31)

Rewriting the osmotic pressure equation gives a result that is similar to the ideal gas law

cRT = π

∑
i NiMi∑

i Ni
or

∑
i NiMi

V
RT = π

∑
i NiMi∑

i Ni
(5.32)

which simplifies to

πV =
∑

i

NiRT (i.e. PV = nRT ) (5.33)

For an example, let’s consider the solution of polystyrene in benzene that was used for examples

of boiling point elevation and freezing point depression; i.e., a solution of polystyrene in benzene

with MN = 20, 000 and a concentration of c = 1 g/cm3. For the correct units we use R =

8.3143× 107 ergs/K/mol and calculate π = 1.24× 104 dynes/cm2. This pressure will be measured

by a difference in heights of liquids in columns. The height difference comes from π = ρgh or

h =
1.24× 104 dynes/cm2

0.8787 g/cm3 981 cm/sec2 = 14.3 cm (5.34)

This height difference is large and is an easily measurable quantity. In fact we expect to be able

to measure distances at least 100 times smaller than this result. Thus osmotic pressure can, in

principle, be used to determine molecular weights in polymers with MN up to 2,000,000 g/mol.

5.5 Practical Aspects of Osmotic Pressure

Osmotic pressure measurements appear to be a suitable method for measuring number average

molecular weights in polymers. It is therefore worthwhile considering practical aspects of polymer

characterization by osmotic pressure. The first practical consideration is that we expect polymer

solutions to deviate from ideal behavior and thus the osmotic pressure expression will need to be

corrected. In the limit of zero concentration, the solution will eventually become ideal. We can

therefore take a series of measurements and extrapolate back to zero concentration to get the ideal

result. In other words

lim
c→0

π

c
=

RT

MN

(5.35)

The question which remains is “how do we extrapolate?” A common approach in thermodynamics

is to use a virial expansion. We thus write π
c as a sum of many terms:

π

c
=

RT

MN

+ RTA2c + RTA3c
2 + · · · (5.36)
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or
π

c
=

RT

MN

(
1 + Γ2c + Γ3c

2 + · · ·
)

(5.37)

Here A2, A3, ... and the related Γ2, Γ3, ... are called the virial coefficients. If we include enough

virial coefficients we will always be able fit experimental data. But, how many of these terms do

we need? Furthermore, how do we analyze experimental data when virial expansion terms are

required? We consider two approaches to this problem.

In the first approach, we assume that only the second virial coefficient — A2 or Γ2 — will be

needed. Then π/c is predicted to be linear in concentration:

π

c
=

RT

MN

+ RTA2c (5.38)

A set of data for π/c vs. c can be plotted. If the results are linear, the assumption in the first

approach is valid. When the data is linear, the intercept of the data at zero concentration will be

RT/MN and thus can be used to determine MN .

Besides an intercept, we can measure the slope which is equal to RTA2. In other words the

slope of the π/c vs. c plot is proportional to the second virial coefficient — A2. We can make use

of the Flory-Huggins theory to get a physical interpretation of the second virial coefficient. The

Flory-Huggins theory includes non-ideal interactions through the Flory interaction parameter, χ.

Let’s use the Flory-Huggins theory to develop an osmotic pressure theory for nonideal solutions.

We begin with an early osmotic pressure formula:

π = −RT ln aA

VA
= −

µA − µ◦A
VA

(5.39)

The term µA − µ◦A is found by differentiating the free energy of mixing

d∆Gmix

dnA
= µA − µ◦A (5.40)

To use the Flory-Huggins theory we differentiate the ∆Gmix from that theory. In performing the

integration we must realize that vA and vB also depend on nA. The work is left as an exercise to

the reader. The result is

µA − µ◦A = RT

[
ln vA +

(
1− 1

x

)
vB + χv2

B

]
(5.41)

Substituting into the osmotic pressure formula and at the same time using the approximation

ln vA = ln(1− vB) ≈ −vB + v2
B/2 (Note that in this approximation to ln(1− vB) we keep one more

term than we have used in the past. The reason for the extra term is that the µA − µ◦A expression

already includes terms with v2
B), the osmotic pressure becomes:

π =
RT

VA

[
vB

x
+
(

1
2
− χ

)
v2
B + · · ·

]
(5.42)
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The volume fraction of polymer, vB, is equal to the concentration of B in g/cm3 divided by the

density of polymer — ρB (vB = c/ρB). The osmotic pressure is then

π

c
=

RT

VAxρB
+

RT

VAρ2
B

(
1
2
− χ

)
c + · · · (5.43)

The first term is the ideal solution result (which can be deduced by noting that MN = VBρB and

VB = xVA in the lattice solution model).. The second term, which is proportional to concentration,

gives the second virial coefficient

We return now to the slope of the linear fit of π/c vs. c which gives the second virial coefficient.

From the Flory-Huggins analysis, the second virial coefficient is:

A2 =
1

VAρ2
B

(
1
2
− χ

)
or A2 =

M0

ρB

(
1
2
− χ

)
(5.44)

where M0 = MN/x is the monomer molecular weight. When χ is large and negative, the second

virial coefficient will be large and positive and the slope of π/c vs. c will be large and positive.

A negative interaction parameter also implies a favorable interaction (∆Gmix more negative) and

therefore a good solvent will give a large positive slope. In fact the slope of the osmotic pressure

data can be thought of as a direct measure of the solvent quality — the higher the slope the better

the solvent.

The second virial coefficient from the Flory-Huggins result is also proportional to 1/ρB or rather

is proportional to the specific volume of polymer. This result suggests an excluded volume effect.

When the excluded volume effect is absent, the solution will act as if the specific volume of the

polymer is zero (1/ρB = 0) and the second virial coefficient will therefore be zero. The excluded

volume effect disappears in a theta solvent and as a result the osmotic pressure data slope will

be zero in a theta solvent. In other words a theta solvent acts as an ideal solution to fairly high

concentrations. The fact that a zero slope is a low slope illustrates a result from earlier in the

course — theta solvents in general are not very good solvents. Although working in theta solvents

would simplify data analysis (i.e., give results that obey ideal solution laws) the fact that theta

solvents are poor solvents makes working with them difficult. It is usually more convenient to work

in good solvents and make use of extrapolation techniques. The observation of zero slope in osmotic

pressure data, however, is a useful method for determining theta solvent conditions.

Unfortunately, plots of π/c vs. c are often not linear. We thus need a second approach to

analysis of data from nonideal solutions. The obvious approach is to include both the second and

the third virial coefficients. In other words we assume that deviations from linearity are caused by

the third virial coefficient no longer being insignificant. Let’s take g as the ratio of the third virial

coefficient to the second virial coefficient squared (Γ3 = gΓ2
2) and let’s ignore terms beyond the

third virial coefficient. Then π/c becomes

π

c
=

RT

MN

(
1 + Γ2c + gΓ2

2c
2
)

(5.45)
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We now have two parameters — Γ2 and g. Deriving two parameters for osmotic pressure data will

be more complicated than deriving the slope and intercept of simple linear fits. It requires more

advanced curve-fitting techniques. We can simplify the process by introducing some theoretical

calculations about g. For hard spheres, g can be calculated to be g = 5/8. For polymer molecules,

g has been estimated to be g = 0.25 to 0.28. The actual value of g depends on various properties such

as the expansion coefficient α, the characteristic ratio, etc.. Fortunately, however, g is restricted to

a relatively narrow range for most polymers.

Because g must be positive and a polymer cannot be more impenetrable than hard spheres, g

must be between 0 and 5/8. If we pick a value for g than we are left with only one parameter (Γ2)

and we calculate MN and Γ2 by simpler curve fitting analyses. Fortunately it has been found that

the results are not very sensitive to the exact value of g. Because polymers have g’s calculated to

be near 0.25, we will assume g = 0.25. The choice of g = 0.25 is desirable because it completes the

square and the data analysis can again be done by linear fits (Scientists, especially scientists that

worked before computers, like linear theories):

π

c
=

RT

MN

(
1 + Γ2c +

1
4
Γ2

2c
2

)
or

√
π

c
=

√
RT

MN

(
1 +

Γ2c

2

)
(5.46)

When g can be assumed to be 0.25, a plot of
√

π/c vs. c should be linear. The slope will give Γ2

and the intercept will give
√

RT/MN .

The advantage of setting g = 0.25 is that the data can be analyzed with a simple linear fit.

This advantage was important before computers were readily available. Now we can easily treat g

as a second parameter and do a two parameter fit to the data. You will try this type of analysis

in one of the class labs and be able to discuss whether the added complexity improves or weakens

the interpretation of the results.

5.6 Experimental Aspects of Membrane Osmometry

A simple type of osmometer is illustrated in Fig. 5.3. The solution is placed in a cell with membranes

on either side (one or two membranes, but two gives more area and faster equilibration). The entire

assembly is then immersed in pure solvent. The heights of the liquids in the capillaries are read and

the height difference gives the osmotic pressure. This apparatus is called a block type osmometer.

It is the type of osmometer used to get the data that will be given to you in a lab. This osmometer

uses a small cell and a large membrane. The membrane is supported by stainless steel plates with

holes. By supporting the membrane, the membrane can be made larger; with larger membrane

area equilibrium will be reached sooner.

Block osmometers are called static osmometers because they wait for the natural development

of equilibrium. The problem with static osmometers is that it can take hours (12-24 hrs) to reach
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Figure 5.3: A block type, static osmometer.

an accurate equilibrium. The time depends on many factors such as the membrane area and the

speed of transport through the membrane. To quicken osmotic pressure experiments, dynamic

osmometers are sometimes used. Recall that osmotic pressure develops for the purpose of raising

the activity of the solvent in the solution to 1. By applying a pressure it is possible to do the

same thing. You will know when you have applied the correct pressure by monitoring flow across

the membrane. When you apply enough pressure to stop the flow you have artificially reached

equilibrium. The pressure required can be used to get the equilibrium osmotic pressure. This quick

method, unfortunately, is less accurate.

Finally, we make a few comments about what makes a good semipermeable membrane. The

membrane must be permeable to solvent and impermeable to polymer. This requirement limits the

low-end applicability of osmometry to MN of 20,000 g/mol or more. Note that we really require

all polymers to be above 20,000 g/mol otherwise the low molecular weight tail will pass through

membrane and the measured MN will be too high (do you see why it would be too high?). Therefore,

polydisperse polymers probably require MN greater than about 50,000 g/mol; for monodisperse

polymers it might be possible to go down to 20,000 g/mol.

There are also some material concerns for the membrane. An obvious concern is that the mem-

brane not be soluble in the solvent. Perhaps the most common membrane material is gel cellulose.
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Other membranes include cellulose hydrate, cellulose acetate, cellulose nitrate, polyurethanes, and

poly(chlorotrifluoroethylene).

Problems

5–1. In analyzing osmotic pressure data why is a plot of
√

(π/c) versus c sometimes used rather

than a plot of (π/c) versus c?

5–2. The following are data from osmotic pressure measurements on a solution of polyester in

chloroform at 20◦C. The results are in terms of centimeters of solvent. The density of HCCl3

is 1.48 g/cm3. Plot π/c versus c and find MN under the assumption that you can neglect

terms beyond the second virial coefficient.

c (g/dl) h (cm of HCCl3)

0.57 2.829

0.28 1.008

0.17 0.521

0.10 0.275

5–3. a. Suppose that in a different universe that the boiling point elevation was given instead

by
∆Hvap∆Tb

R∆T 2
b

=
wBMB

M0
=

1
M0

∑
i

wiMi (5.47)

where wi is the weight fraction of polymer with molecular weight Mi and M0 is the

monomer molecular weight. By this law, what molecular weight average could by found

from boiling point elevation measurements and give a formula for calculating that molec-

ular weight average.

b. The measurement of boiling point elevation is not very useful for finding the molecular

weight of high molecular weight polymers. If boiling point elevation was given instead by

the formula in part a, would it be a more or less useful approach to finding the molecular

weight of high molecular weight materials?




