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ABSTRACT: The theory of the coil-globule transition is developed based on the Flory method and with 
the use of various distribution functions for the radius of gyration of the chain for the regions of chain swelling 
and contraction. The theory coincides with experimental data for polystyrene and with results of computer 
simulation for long chains. 

Introduction 
The theory of the random coil-globule transition has 

been developing for over 25 years. On the one hand, many 
authors, Stockmayer,’ Ptitsyn and Eizner? de Gennes? 
Zimm and Post: Sanchez: DiMarzio: and Muthukumar? 
have investigated this problem on the basis of a simple 
Flory scheme.8 On the other hand, in a larger series of 
papers by Lifshitz, Grosberg, and Khokhlov, a more 
rigorous and complex method has been developed (LGKh 
theory, see ref 9-11 and the literature cited there). Why 
is the present work also needed? 

Analyzing refs 1-6, we were surprised to discover that 
these independent investigations carried out by authors 
well-known in polymer physics contain a common feature: 
the evaluation of the configurational entropy (and entropy 
force) is based on an expression inapplicable to the case 
considered but valid for the case of chain expansion. I t  is 
not improbable that the high scientific prestige of P. J. 
Flory induced the authors of refs 1-6 to extend the 
approximate expression used by Flory for the entropy of 
chain stretching beyond the range of its applicability. We 
believe that our paper is the first proper theory of the 
random coil-globule transition based on Flory’s method.8 

This theory turned out to be very productive. For the 
first time, it became possible to compare the results of a 
simple theory and the LGKh theory and to establish both 
quantitative agreement and the existence of fundamental 
divergencies. This is highly important; for until now the 
two lines of development of the coil-globule transition 
theory (the simple theory according to Flory’s scheme and 
the LGH theory) ran parallel without being properly 
compared and discussed, though in some cases represen- 
tatives of these trends exchanged brief critical remarks. 
Besides, the theory developed in the present paper makes 
it possible to interpret clearly the main features of the 
transition. I t  offers an algorithm for processing of 
experimental data and for the determination of several 
physical parameters. Some preliminary results of this work 
have been given.12 

The Theory 
Introductory Remarks. Generally, the relationships 

reported in this section are sufficiently evident. Moreover, 
some of them have already been widely used for the solution 
of similar problems. However, we consider it useful to 
analyze thoroughly and in detail all the initial concepts. 
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We will begin with the summary of Flory’s scheme and 
will attempt to formulate it as rigorously as possible. 

A linear chain consisting of n units will be considered. 
The unit is a symmetric chain element, the length of which 
is equal to the chain diameter taken as unit length. Let 
the chain exhibit a certain stiffness and p be the number 
of units in a Kuhn segment. The number of Kuhn’s 
segments in the chain is N = n / p .  

The chain size R is usually characterized either by the 
square of the end-to-end dimension h or by the square of 
the gyration radius S. It is often convenient to normalize 
the chain size to the average size of the unperturbed Gauss- 
ian chain (ho2) = Np2 or ( So2) = N p 2 / 6  and to introduce 
the expansion factors 

ah2 = h2/ (h:) 

and the averaged values 

aa,2 = ( a 2 )  

To avoid misunderstanding, it should be noted that in 
the literature the symbol a very often refers just to the 
averaged characteristic, which we call (Yay, and we use the 
symbol a for the nonaveraged value in eq 1. The subscripts 
h and S at the expansion coefficients will be omitted if it 
is evident from the text which quantity is meant. 

Free Energy of the Chain. In the spirit of Flory’s 
scheme, we have 

(2) 
where AFel(aav) is the elastic free energy of Gaussian chain 
deformation from the unperturbed state with an average 
size a a v  = 1 and A F i n t ( a a v , N )  is the free energy of volume 
interaction between units distant from each other along 
the chain, depending on the chain size. (The interaction 
between units located close to each other along the chain 
effectively influences only the renormalization of chain 
stiffness and may not be taken into account in the 
framework of the method considered here.) 

It should be emphasized that the parameter in eq 2 in 
the approximation used is an averaged chain size; i.e., the 
moment of chain size distribution (generally speaking, any 
even moment) and the choice of either the gyration radius 
or the end-to-end dimension as the chain size is due to the 

AF = M,,(a,,) + M i n t ( a a v N  
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necessity for an adequate description of chain conforma- 
tions upon deformation. 

The determination of the equilibrium value of a a v  
reduces to the minimization of free energy, A F  (eq 2 ) ,  for 
chain size, i.e., to finding the equilibrium conditions of 
forces: 
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mentioned, we have not found this rigorous approach in 
the literature, and the results will be useful in further 
discussion. 

We obtain for G f i  from eq 5 

The “forces” contained in eq 4 will be calculated 
separately (the marks (L-n will be omitted). First, f e l ( a a v )  
will be considered. 

Chain Deformation. Let us consider the most rigorous 
(from our viewpoint) approach to the calculation of elastic 
entropy or the corresponding elastic force connected with 
chain deformation. To our knowledge, this algorithm has 
not been previously used in the problems of chain 
deformation. In Flory’s fundamental paper! a physically 
equivalent but a more specific original approach has been 
used. In more recent papers,5?6 the authors have not used 
rigorous reasoning, making, generally speaking, no dis- 
tinction between the average and the most probable chain 
size. 

Let us consider the par t i t ip  function of a Gaussian 
chain subjected to the force f conjugate to aav2+ This 
partition function is related to the distribution function 
of chain size by the Laplace transformation. 

G(f) = K d a 2  exp(-a2f) W(a2)  

The average size of the deformed chain is given by 

a,: = -d In Gldf (6) 
Actually, this equation determines the elastic force 

f ( a a v 2 )  necessary for chain deformation to the average size 
aaV2. The value of f e l ( a e v )  in eq 3 in which we are interested 
is evidently determined by the equation 

(7) 
The free energy of Gaussian chain deformation (in kT 

unitslis determined by the Legendre transformation from 
In GO: 

In order to carry out this procedure, it is necessary to 
choose an adequate characteristic of the chain size. This 
choice is the central point of this section and of this work 
in general. 

The simplest characteristic of the chain size is the end- 
to-end dimension h. It is characterized by the Gaussian 
distribution function, which belongs to a broader class of 
functions of the form 

W(a:) dah2 = k a p  exp(-ya:) dah2 (8) 
where k is the normalization factor. 

Function 8 gives the correct value of (cuh2) = 1 at  x = 
y - 1; for the Gaussian distribution function y = 3/2. 

The application of function 8 and the scheme in eqs 5 
and 6 permits the determination of the elastic force 
conjugate to the end-to-end dimension. Unfortunately, 
the end-to-end dimension is not a measure of the chain’s 
volume. Thus, a chain closed in a ring retains an average 
volume -PI2, differing from that of a linear chain only 
in the numerical factor. However, it seems useful to find 
and analyze f e l ( a a v ) ,  applying eq 8 because, as already 

The desired elastic force is given by 

As already mentioned, the value of x = y - 1 ensures the 
correct average value aav = 1 for a free chain. In this case 
eq 10 leads to the natural result f e l ( a a v  = 1) = 0. 

For the evaluation of AFe1(a) and fel(a), the following 
expression is often used 

AFel(a) = -In [W(a)l (11) 

Equations 8-1 1 show that this evaluation ensures the 
correct value for only the term with the highest power of 
a determined by the exponent in eq 8 

The next term depending on the preexponential factor 
in eq 8 has the correct power of a but differs in the 
coefficient from that obtained by a rigorous method in eq 
10. 

Now the other chain characteristic, ita radius of gyration, 
will be considered. I t  is precisely this characteristic that 
is a measure of the chain volume and a natural parameter 
for the theory of volume interactions. The distribution 
function of the gyration radius of a Gaussian chain is much 
more complex than the end-to-end distance. Its analytical 
form has not yet been obtained, but the function G ( f )  that 
we need, which is the Laplace transformation of &‘(a), 
has been estimated by Fixmanla (see also ref 14) 

The value f < 0 corresponds to a contracted chain, and f 
> 0 corresponds to an expanded chain. (In refs 13 and 14, 
the Fourier transformation and not the Laplace trans- 
formation is reported, but the transition from one to the 
other is trivial.) 

The equations of the elastic force are given by 

They give aav2 = 1 at  f = 0. 
Although it is ipppossible to solve these equations in 

explicit form for f ,  they make it possible to fine the 
numerical value of f e l  = 2 a a v f  at  any a a v ;  i.e., they give the 
solution of the problem (see Figure 1). 

Carrying out the expansion of f e l t  we find asymptotic 
dependences that are different for chain expansion and 
contraction: 



1556 Birshtein and Pryamitayn Macromolecules, Vol. 24, No. 7, 1991 

posed by Flory and Fisk15 (see also ref 14) for the 
approximate description of the Gaussian chain distribution 
of the gyration radius yet only in the range of chain 
expansion (see Appendix). As a result, Sanchez obtained 
an expression for the elastic force of the type in eq 10 
analogous to those in refs 1-4 and 6. This expressionan 
hardly be qualified as correct in the range of chain 
contraction. 

Finally, the conclusions made in ref 7 about the 
correctness of eq 10 for the elastic force in chain contraction 
should be considered. We suggest that this conclusion is 
based on the incorrect application of Edwards’ consider- 
ations.I6 Edwards has shown that an asymptotic expres- 
sion of the type in eq 10 can satisfy the first terms of the 
divergent series in the perturbation theory. These con- 
siderations cannot, however, lay claim to the solution of 
the opposite problem, i.e., the determination of the 
asymptotic relationship from the first members of this 
series as is done in ref 7 for the case of globularization. 

It is interesting to note that the problem of entropy 
losses for the restriction of the size of an ideal chain is also 
raised in the well-known problem of the residence of an 
ideal chain in a pore. These losses, in contrast to analogous 
losses in compacting, have always been correctly evaluated 
by eq 17 by the authors of all papers (see, e.g., refs 17 and 
18). 

The main conclusion of this section is the fundamental 
difference between the parametric dependences of the 
elastic force in increase and decrease of the average chain 
size as compared to the unperturbed state. 

Interaction between Segments. In order to determine 
AFint(aav), the commonly employed mean-field approxi- 
mation will be used and it will be assumed that the change 
in the chain size is determined by a change in the 
interaction between units distant from each other along 
the chain. Only relatively loose globules will be considered, 
and virial expansion in the powers of the average segment 
density in the chain volume will be applied 

(20) 
where co - P - ~ N - ’ / ~  refers to the Gaussian chain and k is 
a numerical coefficient. 

E = kN/S3 = co/aa, 3 

We obtain 

flint = N(FU7 + F2W + ...I (21) 
where UT is the second virial coefficient of segment 
interaction and w is the third virial coefficient. The series 
may be ended at  the first positive member (in a good 
solvent, only the first member is sufficient), and 

= ( T -  e)/e (22) 
It is certainly possible to use a Flory lattice modelevalid 

a t  any density for the calculation of Fint(aa,) (see, e.g., ref 
6) instead of a virial expansion. However, in the appli- 
cation to real systems, this does not give any advantage 
as compared to virial expansion because in actually 
observed globules the average density is very low, and the 
calculations made on the basis of this model are more 
complex. 

On the whole, the expressions written in this section are 
standard and are widely used in practice in all variants of 
the theory of random coil-globule transition and in 
analogous problems. 

According to eq 2, it is found that the force determined 
by the interaction between segments located far from each 
other along the chain is given by 

2 - - - - - -  
“f 3 .......... 

Figure 1. Force of elastic deformation of the Gaussian chain, 
f.1, vs mean-square radius of gyration of the deformed chain aav 
= (( S2!/   SO^))'/^: curve 1, according to eqs 14 and 15; curve 2, 
according to eq 19; curve 3, according to eq 18. 

It is useful to have simple interpolating expressions, 
which not only would give the correct asymptotic forms 
but also would obey the condition fel(l) = 0. Considering 
eqs 14-17, we conclude that these interpolating formulas 
should differ for the ranges CYav > 1 and a a v  < 1. The 
simplest expressions of this type are the equations 

Figure 1 shows the comparison of the precise (eqs 14 
and 15) and approximate (eqs 18 and 19) dependences 
fel(aav). 

The comparison of eqs 16 and 18 with eq 10 shows that 
the parametric dependence of the force on the average 
size in chain expansion is similar to that in its stretching 
at  the ends. The main terms of the asymptotic forms 
coincide, with the exception of the coefficient. This fact 
makes it possible to use h as the parameter of chain 
expansion (with the exception of the coefficient at f )  and 
leads to Flory’s theor? for chain expansion. 

A fundamentally different situation is observed in the 
case of chain contraction. It has already been mentioned 
that it is necessary to use the radius of gyration as the 
characteristic of chain volume. The decrease in the end- 
to-end dimension even to zero does not result in a 
considerable decrease in this volume. This is the reason 
for the great difference between eq 10 and eqs 17 and 19 
at  small a a v  (see also Appendix). 

Hence, it is possible to say that the authors of refs 1-4 
and 6, who uncritically used the chain end-to-end dimen- 
sion as the characteristic of the globule size (and the 
expressions of the type of eq 10 for the elastic force), 
without proper consideration, have underestimated the 
entropy of the chain contraction in collapse. 

Sanchez6 considered the radius of gyration as the chain 
size but used an expression of the type in eq 8 for its 
distribution function. Actually this expression was pro- fint = aav-4(N”2B7 + caav-3) (23) 
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problem of the transition in stiff chains (C C Co) will be 
outlined only briefly. 

In order to avoid misunderstanding, it should be pointed 
out that our theory (as well as all other analytical theories 
of volume interactions in macromolecules) does not make 
it possible to calculate the change in the total free energy 
in the random coil-globule transition. It does not take 
into account the temperature-dependent contributions to 
the free energy proportional to N and related to the 
interaction between units located near each other along 
the chain. This is of no consequence, because the 
contributions depending on the chain size contain all the 
singular component of the free energy in the case of an 
infinite chain, and it is just these contributions that 
determine the transition order. 

Transition in  Finite Chains. Crossover between 
Regimes. Figure 2 shows that the temperature range of 
changes in a,, is inversely proportional to Wl2B and 
decreases with C. For convenience, the condition of chain 
equilibrium (eq 4) will be written in the form 

-$1(aaJ = -(62("/2BT) + $3(aa,,C) (29) 
where 

$1 = -aa~fel(aav), $2 = -N' /~B~,  $3 = c ( ~ , - ~  - 1) (30) 
$1 = $2 = (63 = 0 at  T = 0 and a a v  = 1 and (61, $2, and $3 
> O a t  T C O and a a v  < 1. 

The function $1 is related to entropy losses during chain 
globularization and $2 and $3 to the contributions of binary 
(attraction) and ternary (repulsion) interactions between 
units. 

As -7 increases and aav  decreases, the functions (62 and 
(63 increase infinitely, and $1 passing through a maximum 
decreases to zero at  (yay - 0. Hence, it may be concluded 
that two regimes with different ratios of the functions 41 
and $3 can exist. 

$2 >> $3; i.e., the pair 
interactions contracting the chain are mainly opposed by 
the entropy disadvantage of contraction. This regime is 
the continuation of the regime of coil expansion at  T > 0, 
in which the pair repulsion is opposed by the entropy 
disadvantage of expansion. 

In regime I1 at  T C TO when $2 and $3 >> $1, contraction 
is mainly opposed by the contributions of ternary inter- 
actions. The crossover point between regimes I and I1 is 
determined by the condition $1 = $3. 

Now the power dependences of the system parameters 
will be considered (omitting the numerical coefficients). 

Regime I1 corresponds to the globular structure in which 
$1 << $3. By application of the equality $2 = $3, the 
characteristics of this structure are found to be 

a,, = (C/IT~BN'/~)'/~ (31) 

In regime I at  T > TO, we have $1 

-1 -0,s 0 
"iz 

Figure 2. Average chain size, aav, vs Wf2B* obtained from eq 
28 at the C* values of 0.01 (curve I) and C* = 0.001 (curve 11) 
(B* = 'I&, C* = */sC). 

where 

B = ~ c $ P / ~ v  N C = ~ c ~ N w  - wp4 (24) 
B and C are parameters that do not depend on N but 
depend on chain stiffness. 

It can be seen that, for a nondeformed chain, i.e., a t  a,, 
= 1, fint becomes equal to zero at T = -C/BIW2. It is 
convenient to renormalize T 

T' = T -  C / B N ' / ~  (25) 
so as to have fint = 0 at  aav  = 1 and T' = 0. (In further 
discussion, the prime will be omitted.) This renormal- 
ization of T takes into account the dependence of the 
observed %temperature on the molecular weight of the 
chains. The force of steric interaction with these symbols 
is expressed by 

fint = -CX,,-~(N''~BT + C((Y,,-~ - 1)) (26) 
Random Coil-Globule Transition. In order to cal- 

culate the equilibrium average chain size as a function of 
interaction parameters, eq 4 will be used. The rigorous 
solution may be obtained by substituting directly the force 
of volume interaction f = f/2aav (taking the sign into 
account) from eq 23 into eqs 14 and 15. 

One can also use interpolation, eqs 18 and 19, which 
leads to the usual Flory type equation for the conditions 
of chain expansion 

and to the new equation 

for globularization conditions. 
Two characteristic types of dependence of aav on T exist 

in the region aav  C 1 both for the precise solution and for 
eq 28. Over a wide range of C values exceeding a certain 
value, C o ,  this dependence is monotonic, and at C < CO it 
has a loop characteristic of first-order phase transitions. 
Typical dependences of aav on T are shown in Figure 2. 

Note that the erroneous evaluation of the entropy of 
chain contraction in refs 1-7 leads to the same qualitative 
dependences but with a higher CO value. 

In the following paragraphs it will be assumed pre- 
dominantly that C > CO and the transition proceeds 
smoothly. As will be shown below, this situation is 
characteristic of common flexible chain polymers. The 

(S2) = ( C N / B I T ~ ) ~ / ~  (32) 

From the condition $1 = $3 and eqs 31 and 32, the crossover 
characteristics, the chain size a t  the crossover point and 
the position of this point, are found: 

a ( T o )  - C1J4 - (3y4 (33) 

(34) 

It can be seen that the characteristics of the crossover 
are determined by two parameters: BN12 - IW2vlp3 
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and C - w/p6.  The same parameters determine all the 
shape of the dependence aa,(r) and the globule charac- 
teristics in eqs 31 and 32. 

In all cases the temperature 7 appears only in the product 
RnIzBr - z, where z is the usual parameter in the theory 
of volume interactions at  r > 0. This determines the 
dependence of the transition characteristics on N and E - 0 /p3 .  In particular, as can be seen from eqs 33 and 34, 
with increasing N the crossover point is displaced toward 
the @point, and the transition becomes sharper. It should 
be emphasized that the value of BIW2 affects in a similar 
manner the chain behavior a t  both r > 0 and r < 0. 

The parameter of ternary interactions C - w / p 6  that 
is not manifested in the range of r > 0 plays an important 
role in the transition. It can be seen from eqs 28-31 that 
a t  C - 1 the value of $3 is comparable to that of $1 even 
at  a - 1. With decreasing C, the limiting degree of 
contraction realized in regime I a t  91 > $3 increases; i.e., 

decreases. As a result, the dependence aaV(7) becomes 
steeper, and the crossover point approaches the @point 
(7 = 0). 

It has been shown in refs 1-7 and 9-12 that the random 
coil-globule transition in infinitely long chains ( N  - m) 

is a second-order phase transition. In the case of finite 
chains, the choice of the position of the transition point 
is not unambiguous. In our theory, the position of the 
crossover point coincides with that of the point of the 
“phase transition in a finite system” in the LGKh theory. 
However, it should be noted that the point of maximum 
steepness of the dependence aav(r)  does not coincide with 
ro and is closer to the 8-point. 

Comparison of the Theory with Experimental Data 
and Computer Simulation Data. In order to compare 
our theory with experimental data, eq 28 based on 
interpolation eq 19 will be used. Equation 28 will be 
rewritten to give 

(35) -- @ 3 -a-- B*N112r + c* 
a-3-1 a-3- 1 

where B* = (2 /9 )E  and C* = (2/9)C. 
Figure 3 shows the experimental data21922 and the data 

of computer simulationz4 for the random coil-globule 
transition in flexible-chain polymers referred to the system 
of coordinates x = W 2 r / ( a - 3  - l ) ,  y = (a3 - - 1). 
It is clear that all the results adequately fit the linear 
dependence, in complete agreement with eq 35. Note that 
the linear dependence characterizes the conditions under 
which the entropy component in eq 35 is not small; i.e., 
ro < r (regime I). The globular state a t  $1 - 0 corre- 
sponds to the intersection point with the abscissa. 

Equation 35 shows that the slope of the straight lines 
is determined by the parameter B and the intercept on 
the ordinate is determined by the parameter C. Figure 3 
permits certain conclusions to be drawn: 

First, for all chains, both model and real, it follows from 
Figure 3 that the value of C is sufficiently small to ensure 
the sharpness of the observed random coil-globule tran- 
sition but exceeds CO so that the transition is continuous. 

Second, in computer simulation of the transition, the 
data for chains with different N values are described by 
a single dependence in Figure 3. On the other hand, for 
polystyrene (PS) in different solvents, the values of E differ 
by a factor of 3. These differences are hardly related to 
different N values of the samples because, according to 
the data of ref 26, the factor NlZ makes it possible to 
superpose the curves of the temperature dependence of 
size for PS with different N but in the same solvent. 
Unfortunately, the scale of the plot in ref 26 did not allow 
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a 3 - a  
- 1 

a-3 - 1 
Figure 3. Experimental data for polystyrene (from refs 21 and 
22) and results of computer simulation.=* The values of a plotted 
in a system of coordinates x = IW2r/(a-3 - l), y = (a9 - a)/(a” 
- 1): (1) PS in cyclohexane, (2) PS in dioctyl phthalate, (3) five- 
choice cubic lattice chain (calculations by the Monte Carlo 
method). The values of B*/C* X lo2: (1) 0.56/3 (0); (2) 0.15/0.8 

us to refer their data to the coordinates in Figure 3. The 
observed differences are probably related to the effect of 
the finite size of solvent molecules on the second virial 
coefficient of unit interaction in solution (cf. ref 27). The 
sign of the observed effect agrees with this suggestion (the 
value of B for PS is smaller in dioctyl phthalate, a solvent 
with molecules of a larger size). 

The value of C* varies in the same direction to as that 
of E* for PS in different solvents so that the B*/C* ratio 
N 18 retains an approximately constant value. 

Comparison with Other Theories and Dependence 
of the Character of the Transition on Chain Flexi- 
bility (Stiffness). As mentioned in the Introduction, up 
to now in papers by various authors investigating the 
random coil-globule transition on the basis of Flory’s 
scheme, the configurational entropy of contraction has 
been underestimated, which led to an incorrect expression 

Consequently, it is necessary to compare our results 
only with the series of LGKh papers”’ based on the more 
rigorous (and complex) Lifshitz method, which takes into 
account the density distribution of segments inside the 
globule. A good agreement is attained on many points. In 
both cases for flexible-chain polymers (C > CO), the 
transition is similar to a second-order phase transition, 
with the possibility of a jumplike transition for very stiff 
polymers. Further, much attention has been devoted in 
the LGKh theory to finite chains for which the phase 
transition point has been determined. This point in the 
LGKh theory coincides with the crossover point of our 
theory. 

However, there is still a considerable discrepancy 
between the results of our theory and those of the LGKh 
theory. On the one hand, the good agreement obtained 
between experiment for PS and our theory points to the 

(A); (3) 0.12/2 (X). 

for h ( 4 .  
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fact that the transition is continuous. Unlike our theory, 
the description of experiment for PS according to the 
LGKh theoryZ5 is based on the concept that the chain size 
changes by a jump from coil to globular state. It is 
interesting to note that nevertheless the results of the 
numerical calculation of ( ~ a v ( 7 )  (with the summation of 
contributions of the coil and globular states)25 and our 
results are completely equivalent.28 In particular, the 
results of the numerical calculation of 4 7 )  fit the 
proposed linear dependence. Moreover, on the basis of 
the proposed theory, it has been possible28 to investigate 
the fluctuations of the chain size in the range of the coil- 
globule transition. As to the data of computer simula- 
tion,,3~,~ their processing was carried out for the first time 
because the degree of globularization attained was insuf- 
ficient for comparison with the LGKh theory. 

Now Figure 2 a t  C < CO will be considered. Generally 
speaking, the appearance of a loop indicates that a first- 
order transition takes place in a finite system. We suppose 
that the mean-field approximation used by us cannot be 
applied to the investigation of these transitions, partic- 
ularly because neither experimentally nor in computer 
simulation has a random coil-structureless globule tran- 
sition with an abrupt jump of sizes and a bimodal function 
of chain size distribution been observed. All jumplike 
coil-globule transitions have been accompanied by struc- 
turization in the globule, which led to this abrupt 
t r an~ i t ion .2~*~9 .~~  In this case the globule exhibits a liquid- 
crystalline type of structure. This problem probably 
requires further investigation. 

Conclusion 
In this work a new theory of volume interactions of a 

flexible polymer chain has been proposed. This theory, 
in the framework of the Flory type mean-field theory, 
describes the entire range of chain states from an expanded 
coil to a collapsed globule. 

In the range of chain expansion, our theory is virtually 
equivalent to Flory's theory. In the range of globular- 
ization, a correct description was not given before. 

In the framework of our theory, the interpolation 
crossover character of the LGKh theory can easily be 
revealed, and the suggestion of the authors of ref 25 about 
the abrupt character of the coil-globule transition in 
polystyrene is not confirmed. 

In accordance with good agreement of eq 35 with 
experimental results, this dependence may be recom- 
mended for the processing of experimental data. 

It is interesting that the introduction of the correct 
expression for the contraction entropy has been manifested 
to the greatest extent in the theoretical analysis of the 
compactization of a planar layer of grafted chains. 

As has already been indicated above for an individual 
chain, the general features of the transitions are described 
by both the correct and the incorrect expression for the 
entropy. The difference is of a quantitative character. In 
contrast, for a planar layer of grafted chains, the use of the 
erroneous expression has led to ref 31 to a paradoxical 
result that a first-order phase transition can.occur in a 
one-dimensional system. The use of the correct expression 
for entropy eliminates this paradox (see part 132 of this 
series for more details). 

Appendix 
As already mentioned, eq 11 is often used for the simple 

and clear evaluation of F ( a a v )  and f(aaV) dependences. 
Although the method proposed in this paper is more 
general and makes it possible to obtain both a rigorous 
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and an approximate solution, we will also consider the 
application of this more usual approach to the radius of 
gyration of the chain. It is known that a closed analytical 
form for the distribution function of the radius of gyration 
has not yet been determined. However, its asymptotic 
forms have been obtained and have been found to be 
different for a >> 1 and a << 113J4 

W(a2) da2 N K, exp (- <a2) da2 a - 03 (Al) 

W(a2) da2 = K, exp ( - ) d a 2  a-0  (A2) 

It follows at  once from eqs A l ,  A2, and 11 that the 
functional dependences of the asymptotic relations for 
the free energy (and elastic force) are fundamentally 
different in the ranges of chain expansion and contraction. 
Moreover, it is easy to show that, for fel, eqs 16 and 17 are 
obtained. 

Neither of the asymptotic forms in eqs A1 and A2 
describes the entire range of changes in a and, in particular, 
does not obey the evident requirement ( a,) = 1. Hence, 
Flory and Fisk15 considering the changes in the radius of 
gyration during chain expansion have plotted an empirical 
function W(a) requiring that this function should belong 
to the same class as the asymptotic form at  a >> 1 but in 
contrast to it should give (a2 )  = 1. This function is 
evidently described by eq 8 with x = y - 1. In order to 
obtain the values of the first even moments of the radius 
of gyration close to the precise values, in ref 15 the value 
of y = was selected (instead of the coefficient r2 /4  in 
the precise asymptotic form). 

The Flory-Fisk function provides an adequate func- 
tional dependence in the range of a > 1 but does not give 
an approach to reality a t  a < 1 because of the different 
structure of the asymptotic form in eq A2. Hence, its 
application to the problem of coil expansion is correct, 
but it is inapplicable to the globularization problem. 

Note that the plotting of the empirical Flory-Fisk 
function in the form of eq 8 is equivalent to that of 
interpolation in eq 18 within the replacement of the 
coefficient r2 /2  by 7. 

It should also be noted that interpolation eqs 18 and 19 
in the range of low 6 = 1 - a2 give slightly different and 
not quite precise values of f e l =  ( r2/2)6 and f e l =  9/26 at  7 
> 0 and 7 < 0, respectively, whereas the precise value 
obtained according to eqs 14 and 15 is fel = 15/46 and is 
independent of the sign at  7. The expression obtained 
according to Flory and Fisk gives fe l  = 76. 
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