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6.2.2 The radius of gyration

One of the most important properties of small angle neutron scattering is
that the second term of this expansion has a very simple geometrical mean-
ing, independent of the scattering properties of the sample; it gives the
radius of gyration (Guinier 1956). The square of the radius of gyration of
a particle made of z identical elements, around its centre of gravity, is given
by

_ Z

Ri=- ), (r) k (6.10)
i=1
where r, is the vector joining the scattering point i to the centre of gravity.
This quantity is also given by the formula

_ 1 4 z ’
R: = 2 Zl Zl (). (6.11)
i=1 j=

In order to show this result let us write r; =, — r; and introduce this
quantity in expression (6.11); we obtain

Ny |

2 fom e s ¢ e sssssiens san

Fegpl L@z 6w

The two first terms are identical and equal to zE{¢?) and the last term is
equal to zero since :

% 3 o) = (B} (S =0 1)

F=1j=1 i

This last result is evident because of the properties of the centre of mass.
The preceding calculation proves, quite generally, that the form factor

can always be written as
1 — .
P(q)=1—§q2R2+.._._.. (6.14)
This relation is valid for rigid particles as well as for flexible molecules and

gives a very elegant method for the determination of the size of the
molecules. The initial slope of the curve I(g) as function of g° is equal to
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(R?)/3. In fact this is-a comparison of the size of the molecule to the fac-
tor g which depends on the wavelength and on the direction of observation.
For practical purposes g“R? has to be neither too small, since the devia-
tion from 1 would be difficult to detect, nor too large, because the influence
of the remaining terms in the expansion can no longer be neglected. From
an experimental point of view slow neutrons are perfect for molecules hav-
ing a radius of gyration between a few to a few hundred angstroms. The
upper and lower limits are difficult to establish rigorously since they depend
on the contrast, on the wavelength of the neutrons, and on the quality of
the instrument.

6.2.3 The radius of gyration for various geometrical shapes

This is a purely geometric calculation and we give only the results

— 3
R=z r (6.15a
for a sphere of radius r
' — 1
Ri= 3 (a* + b* + ¢?) (6.15b
for an ellipsoid of half axes a,b,c; it reduces to a sphereifa=b=c¢
_ LZ bl
== . 6.15¢
RP=13+73 (6.15¢
for a rod of length L and transverse radius b
: . 2
‘= L (6.15d
for a rod of length L and nggligible diameter
R .
P — 6.15¢
R 2 (_

for a thin disc of radius b.

6.2.4 The radius of gyration for a Gaussian chain

Since macromolecular chains are of particular interest, the value of th
radius of gyration for Gaussian chains will be evaluated. We call freel
jointed chain or Gaussian a chain made of z independent units attache
sequentially and without correlation between the orientation of any pair ¢
segments. (See Fig. 6.2.) It is shown in Appendix 1 that the average of th
square of the end to end distance L? is given by the relation
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Fig. 6.2 Schematic diagram of a freely jointed chain starting at O and finishing
at z.

L =zP (6.16)

where 2 is the average of the square of the length of any of the elemen-

tary steps. This is true for any chain length

) =|i=ji2 (6.16")
where the sign | ... | indicates that one has to take the absolute value of
i —j. Since rj is always positive. Instead of replacing the summation in
eqn (6.11) by an integration, assuming that z is large, we shall make the
rigorous calculation, valid for any z using the following method. All the

values of (r})//* are placed in a square matrix having z + 1 rows and col-
umns since the chain has z segments (see Fig. 6.3). We consider as scattering

J ! 0 1 P z-1 z o
° 0 1 P~ z-1 z

! 1 0 p-1 z-2 21

p P p-1 0 Tzp1 Z'P 1 )

z1 1z 22 z-p .. o 1

z z z-1 ... Zp .- 1 0

Fig. 6.3 A matrix for evaluating RZ.
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" units the ends of the segments. One sees immediately that the major

diagonal is a symmetry axis. Grouping the elements on lines parallel to the
direction of this diagonal gives

22%:22]1’—1'] =2[z+(z—-1)2+ (z—-2)3+... 4

(z—p+Dp+...+2(z-1) +z] =285. (6.17)

The evaluation of this sum is straightforward

Szzi(z+1——p)p=(z+l)21p-zlpz (6.18)
p=1 p= =

and, consulting tables of formulae, one finds

_z{z+ 1) {z+2)
= < .

S (6.19)

Remembering that our chain is made of z 4 1 elements and applying
eqn (6.11) we obtain for its radius of gyration (Debye 1946)

£

(6.20)

As soon as z is large enough the second fraction in eqn (6.20) is unity and

% ? (6.21)
R 6

“where T2 is the average square of the end to end distance. This calcu-

lation, made for a simple example demonstrates a general property which
we shall use later: if one writes a double sum or a double integral of the

form
N N
> A=)
i=0 j=0

it is possible to transform it into a simple sum or integral simply by writing:
|i —j| = p. This gives the equality, valid only for N large

5 SAli-i) =23 (N-pse).

The relation has been proved for a simple example.using our matrix
demonstration but can be applied to any function f(|i — j]).

(6.22)
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6.2.5 The ring polymer

Physical chemists are interested in the properties of ring polymers, i.e.
polymers having both ends linked together in order to make a loop without
end. We shall first calculate the distance between two arbitrary units in a
loop in order to be able to evaluate its radius of gyration. Let us assume
that we have a ring, made of z elements; the initial element is arbitrary and
they are numbered from O to z — 1 (see Fig. 6.4). We should like to know
the probability to go from 0 to p on the loop. This requires that we arrive
at the point p either via the left side or via the right along a chain of p or
of z — p segments respectively. The left side is a random walk of p segments
and the probability of arriving at r will be

w,(r) = [ & —-F exp - 3_:': | (6.23)
2xpl 2pi* _
By the right path it is
w:_p(r) = [—3_—]% exp— i2—-»-~= (6.24)
27{z — p)P 2{z ~ p)i*

Since we have to be on the ring the total probability to be at a distance
r, Wop(r) is the product of these two probabilities and, writing for the
moment the normalization constant as K, we obtain
1
. (6.25)
Z—p

3r?
wor (r) = wy(r)w._,{r) =K exp[“ 2P [; +
This expression shows that the probability is still Gauvssian and, if we put

2
it in the form exp— (3r%/2L? ») we obtain, calling L

~ square distance between 0 and p

1 o =zl

Fig. 6.4 Schematic diagram of a ring molecule,

tﬁhqk root mean
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! =i&+ ! J (6.26)
L, I"w z-p
or:
IZ. =70, = FP[1 ‘“ﬂ' 6.27)

Applying eqn (6.11) to this resuit one obtains, for the radius of gyration
of a ring .

_Z—Z—F 6.28
120 (6.28)

It is half the value obtained for a linear chain having the same number of
segments.

6.2.6 The case of copolymers

We have seen (Chapter 5) that in the case of a copolymer, made of two
different kinds of monomers A and B, one has to introduce three form fac-
tors S,a, SB,;, and S,5. These form factors are associated with three radii
of gyration R3,, R%;, and RZ, 25- It is important to understand the physical
meaning of these quantities. If one looks at the part A of the copolymer
the meaning of R%, is clear and eqn (6.11) can be applied. The same is
true for the part B. The question is less clear for the cross term but, by
analogy’ we define the ‘cross radius of gyration’ by a similar expressmn
We have therefore the three following expressions

z k4
o  R=s5 ) Y T 6.29)
225 5o j=0
— 1 & & — :
A=55 20 2 Tha (6.30)
27 iTo =0 )
1 z z -
Ze=—— 1 X Tap (6.31)
2Zp%3 /S0 f=0
In order to clarify the physical meaning of ﬁ; we write
Fuip =Ai GA + G, Gy + G B; (6.32)

replacing the direct route between the scattering points A; and B; by a
detour through G, and Gy, where G, and G are the centre of mass of the
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Fig. 6.5 Schematic diagram of a diblock copolymer and geometrical meaning of
the quantity L.

two sequences. (See Fig. 6.5.) Squaring this last expression and making the
double summation gives, for R4y, the following expression where all the
cross terms disappear (Benoit and Wippler 1960)

2R%, =R% + R% + G,G:. (6.33)
From the definitions of the form factor of the whole polymer we have

(za + 25) Pr = 24Py + 23 Py + 22,23 P2y (6.34)

(ZA + ZB)2R2 ZARA + ZBRB + ZZAZBRAB (6.35)

Introducing the value of RZB obtained from eqn (6.33) into the defini-
tion of R%, calling x the fraction of monomer A in the molecule
X = 2,/(z5 + zg) and L? = G,G3 the mean square distance between the
centres of mass of the part A and the pa.rt B of the molecule, we arrive
at the formula

RZ=xR% + (1 —x)R% + x(1 - x)I% (6.36)

This formula is quite general and valid for any type of molecule made of

two parts; it is useful in the discussion of the scattering from copolymers

when, by changing the contrast of the solvent, one looks for the changes
in the scattering envelope as will be shown later. _

As a simple example, we shall determine the value of Z? for a linear
copolymer made of two monomers of the same size. For this purpose we
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replace in egn (6.36) R Ri, R and x by their values as function of z,,
Za. and P obtaining

Za + % 33 AP i ZaZs 3
= L2, 6.37
6 6(zs +25) 6(zs +25) (za+2)° (6.37)
After simplification this gwes
=2(RZ + R%) = 2RZ. (6.38)

6.3 THE COMPLETE FORM FACTOR

6.3.1 The mathematical methods

In the first part of this chapter we have discussed the form factor for small
g values. In this section we shall try to obtain a complete analytical expres-
sion valid for any value of g. Various methods are possible. The most
classical starts from eqn (6.5)

1 = 5 .
) =5 Z Z {exp— lq-rjj). (6.39)
Zi=1 j=1
Since the molecules are randomly oriented one can average over ail orienta-

tions obtaining
1 E E <smqr,) (6.40)

zl 1 j=1

This foriila is very simple since it contains only distances and no
imaginary numbers. Instead of making the summation over all pairs of scat-
tering points one can count the number #(r) of pairs being at the distance
r and write

P(q) =;I ( )[quj (6.41)
[n(r)ar

This expression is used mainly for continuous bodies for which the sums
are transformed into integrals. The function #(7) has to be compared with
the radial distribution function g (r) introduced in Chapter 4; its definition
is similar but in the present case we are dealing with one molecule and not
a large number of small molecules. If the molecule has a centre of symmetry
it is more convenient to use the following approach: first, the amplitude
of the scattered wave A(g) is calculated for a given orientation of the
molecule using the centre of symmetry as the origin for the phases and for
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Plg)

Fig. 6.10 P{(g) for a rod of length L as function of gL/2,

Figure 6.10 shows P(g). for rods of length L as function of gL/2.
Expanding eqn (6.61) as a function of x = gL/2, around g or x = 0, we
obtain
1,2, 6 2
Pla) =1 —gx 4 gt - sx®+ 127555 %
Remembering from Section 6.2 that the x? term is 1/3 g*R? we recover
for the radius of gyration of a rod, L%/12.

... (6.63)

635 7Graussian chains
The simplest method for evaluating the form factor of Gaussian chains is
to start from the definition of the form factor given by eqn (6.5)

Plg) =-z'1—2 2 Z {exp( - ig-ry))

i=0 j=0

(6.64)

where the average has to be taken not only over the orientations but also
over the distances since in a Gaussian chain these distances depend on the
conformarfi f the chain. The first step is to take ihe average value of
one Tern and then to sum these values in order to obtain P(g). From the
definition of an average value we can write

{exp(— iq-r,-j)) = m w(r;)exp(— ig-ry)d’r, (6.65)’
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where w(r;) is the r the segment be at the
distanc& 7 This expression is nothing but the Fourier transform of w(r;).
If the chain is made of z elements without any orientation correlations we
have shown in Appendix 1 that one can calculate w{r;} knowing the pro-
bability of the elementary step wy(r;,, ). More precisely if wo(g) is the
Fourier transform of w,, the Fourier transform of w(ry), w;(q), is given

by

wy(g) = w(g)V=7 (6.66)
P(g) then has the form
1 &8 o
Plg) == 2 2 algq)i-i. (6.67)
2 izo j=0

In these expressions ¢ is a number and not a vector since it has been
demonstrated (see A ix1 i ili depends only on
the distances and not on the orientations, w and depend only on r and
g- One could replace the summation by an integration but, in order to have
an expression valid even for small z, we shall perform the exact calculation.
We write, as has been done for the radius of gyration, the ws as a square
matrix, z>P(q) being the sum of all -the terms of this matrix (see
Fig. 6.11). The index / runs from 1 to z-along the rows and the index Jdown
the columns. w,(g)!'~/! is written as «". The main diagonal of this matrix
is a symmetry axis. Since on this dTaTéonal {=j, we have «® =1 and the

b, 1 o o w ... or ... @z
%
' @ 1 o o .. ol @zl
o o 1 ) wz-2
w o o 1 wz-3
P opl o2 . .. .. ... @%Pp
0 ol ez2 . .. ... @ 1

Fig. 6.11 Matrix explaining the calculation of the form factor of a Gaussian chain.
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sum of these terms is z. Let us call 27 the sum of all the other terms. T

can be evaluated by grouping the terms of-one-half-of the matrix by-lines:-

We write therefore

2°P(g) =z + 2T

T=w[(lto+w?+o’+...... to ) +(l+ot+ ol +oi+. ..+t
+(1+w+m2+...+m=—4)+...+(1+m)+(1)]. (6.68)
Each line is a geometrical series which can be easily summed
=1
1-ow”
T=
w Z —. (6.69)
This simple sum can also be evaluated giving
1 1+ w 1 — w?
P = _— —_ | .
(g) = {z T <2 Ty (6:70)

This formula allows P(g) to be evaluated for any value of z; it is rigorous,
even for z = 1. When z is large one can simplify P(g), replacing w,(gq) by
the two first terms of its expansion

P
w(g) =1- qT (6.71)
which is equivalent to the assumption that wo{q) (or wy(r)) obeys a Gaus-
sian law .
D : .
~wolg) = exp [— q—ﬁ-—] . (6.72)

‘With this approximation, neglecting the higher order terms in eqn(670)f

and assuming also that g*/%/6 is small compared to unity gives the well
known Debye (1946) formula

P(g) =2 [x =1+ exp(—x)] 6.73)

xZ_
2,72
with x = Z ;l = g*R2

An easier method for obtaining this result is to start from eqn (6.67) and

to use the Gaussian approximation for w,(g), obtaining

P(g) == j exp[—li—jl %ﬁ}

=0 j

[‘l ")i

¢ f(‘) :;"-l‘u{u‘(l) \

6.74) .

T

£
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We can transform the double sum into a simple sum using eqn (6.22)

P(q) =% Zo (z— p)exp {—p qGI ]

P

(6.75)

(Neglecting the term z~' which is negligible when z is large.) Transforming
the sum into an integral and using the variable ¥ = p/z one obtains

Pg) = zj (1~ u)exp[— “z;ﬁjdu

Q

16.76)

and by integration by parts eqn(6.73) is recovered.

vy 0K

6.3.6 Chains of different architecture

In this section we would like to show that it is relatively easy to extend these
calculations of form factors to chains made of Gaussian segments but hav-
ing different geometries. For this purpose we will study two cases. The first
one will be the case of what is called by the polymer community ‘stars’.
These polymers, in the simplest case, are made of m identical chains joined
together by a universal joint at one of their extremities. This model is
idealized since it is impossible if 77 is large, to achieve junctions which have
a negligible volume and allow for all the relative orientations of the chains.
Nevertheless stars are the cobject of intense study mainly for their
rheological and thermodynamic properties and it is important to be able
to interpret their form factors. We shall also discuss the case of the ‘ring
polymers’. These polymers are madtle of one linear chain where both
extremities are chemically attached. They make chains without end. They
are also of rheological interest because it is difficult to apply to them the

___concept_of reptation (de Gennes 1971).

Fig. 6.12 Model for a star polymer.

S sy@-i=

Y
2 &4
=
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The star polymers

Let us assume that we have a ‘star’ polymer made of m linear chains

attached together at one end (see Fig. 6.12). Each chain has z segments; the
total degree of polymerization is Z = mz. One scattering element is
characterized by the double index i,; n designates the chain and i the posi-
tion on the chain. The /s (0 < i < z — 1) are arranged in order to have the
index zero at the junction point. We consider the quadruple sum

2 Z ZEeXP[ (in+jp)ig~z] (6.77)

n=1 p=1 iy

(if » = p, one has to replace i, + j, by i, — Jj, in the exponential). This
sum corresponds to the scattering by a pair of points having a a Gaussian
probabilit an square distance (J, + Jp)lz or (i, — j)° and can
be split, by 'summatlon over { and j into m? units each having z? terms.
One has m units for which # = p called n# and m (;n — 1) units for which
n # p called np. All the units called nn are identical; moreover they are
equal to z? times the form factor of a linear Gaussian chain of z segments
which will be called zzP“(_g). The units np are also equal; they corres-
pond to the interferences between two points on different chains and they
will be called z>P,,(g). Grouping all these terms in a square matrix
(Fig. 6.13) gives Lyl ol u, Lo, L,r“

Z'P*(q) = m*22P*(q) = mi'P,,(q) + m(m - 1)Z°Pp(q) (6.78)

. or

m*P*(q) = mP; (g) + m(m ~ 1)P{q).

In-order-to-evaluate-the-term-Pp;(g)--consider—the-fourfirst-cellsof-the~

matrix. They give the form fattorof a two-branch étar, i.e. a linear polymer
of length 2z. Its form factor is easy to evaluate and will be called P,,(q).
It follows that

4z°Py = 22°P (q) + 227Py(q). (6.79)
11 124... In ... 1Im
21 2. 21 .. 2m
nl n2 .. omn .. mm
ml m2 .. mn ... mm

Fig. 6.13 Table explaining the calculation of the form factor of a star.
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_Eliminating P,;(g) between eqns (6.78) and (6.79) leads to the result

Pia) =21~ 2] Pato) - - Zen@. 60

This relationship shows that the form factor of one star can be expressed
by knowing the structure factor of one branch and of the linear polymer
made of two branches.

Remark: if one wants to evaluate P*(g) for more comphcated cases one
cannot say that a two-branch star is identical to a double size linear polymer
{consider for instance the case of a star with rod-like arms). Instead of using
this short cut to evaluate P, (g) one can evaluate it directly (Benoit 1953).
Keeping in mind that the root mean square distance between i and j on dif-
ferent branches is, in the case of a universal joint at the junction point

2= Fy + Py = (i, + Jo) (6.81)
one obtains immediately
1 z z
P,{q) = ;—Z Ze [ S g P(n+n )] (6.82)

Replacing the sums by two integrations leads to

1 =
1 —exp— [@ qzl,zzJ

P

(6.83)

Pu(g) =
9%
We. -can-easily- verify. that .this expression is equal to 2P, — P;,. This
method can also be used to evaluate the cross form factor P,y (g) in the
case of Gaussian copolymers. Expanding P*(g) as function of g in the
smiall g range, following eqn (6.14), allows us to evaluate the radius of gyra-

tion. Applying this method to eqn (6.80) gives
B3 1=, [2 -3
R*=2|{1—-—|R;,+|——1|R; (6.84)
m m
or, since we have assumed that the chain is Gaussian
— AVE J
R? [3 - -—J - z. (6.85)
ml6
For m = 1 and 2 we recover the classical results. Also, as in the case of

P*(g) when m becomes large these expressions reach, as we could have
guessed, a limiting value independent of m.
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In a ring macromolecule the dwwa 5~

~Sian and we can rewrite eqn (6.74)

Ring macromolecules

z—1

z—-1
Plg) = E Z exp[ L2 %J
g% (we have z scattering points numbered from 0 to z — 1) where L,ZJ is the
root mean square distance between the scattering points 7 and j. If we draw
Me as in the study of linear molecules we realize that all lines
contain exactly the same sum of terms; we can therefore write

lz—l Iy2
- 2 exp-—{qL”J.
-4 6

p=0

(6.86)

P(g) = (6.87)
From eqn (6.27) we can replace L2 by its value: Pp(1 — p/z). Writing
= (¢*I’z/6), transforming the sum into an integral and using as

vanable u = p/z we obtain the simple expression
1

P(g) = jexp{ (1 — ) }du,

0

(6.88)

This expression cannot be integrated to give classical functions. It is usuaily
transformed to a new integral by completing the square of the expression
in the exponential and writing v = A (uJ_— 1/2) (Cassasa 1963)

N

}\ 2
Plg) =T exp— j exp(v?)du.

"R

ﬁlgﬁre 6.14 shows the result of the numerical 1ntegrat1on

1..

0.8

s 0. 64
i

0. 44

0. 21

5 10 15 20
12q%z/8
Fig. 6.14 Torm factor for a ring as function of (Fq"Z/G).

“
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6.4 THE INTERMEDIATE AND HIGH ¢ RANGE

6.4.1 Qualitative interpretation of the different ¢ domains

Up to now we have discussed the methods for the calculation of the radius
of gyration and the form factor P(g) but we have not considered how it
might be possible to compare experimental data to the curves evaluated for
models. At first sight this seems to be very difficult since, forgeiting the
relatively small oscillations which are very frequently erased by polydisper-
sity, all these curves look very similar. In Fig. 6.15 we have collected the
curves calculated for rods, Gaussian chains, and spheres having the same
radius of gyration; they look very similar except for the fact that, at large
angles, they decrease more or less rapidly. It is this behaviour, at large ¢
that we would like to discuss but, before doing so, it is interesting to see
qualitatively what one can expect from neutron scattering in different g
domains.

It is evident that, since the scattering intensity as a function of g is the
Fourier transform of the pair distribution of scattering centres in the
sample, one can say that ¢ space and r space are conjugated, or in other
words that small g corresponds to large values of rand vice versa. Looking
at a scattering diagram as function of ¢ is just like looking at it with a
magnifying glass of changing power. When the power increases the field
decreases and is of the order of g~'. In this discussion we shall assume
that we are studying a dilute solution or a system in which the scattering

30

20

15 2E

q2R%

Fig. 6.15 P{q) for, in decreasing order, a rod, a Gaussian chain, and a sphere as
function of g*R2.



