CME 300 Properties of Materials
ANSWERS Homework 2 October 5, 2011

Problems from Callister p. 78

3.57 Using the data for aluminum in Table 3.1,
compute the interplanar spacing for the (110)
set of planes.

r=1431Asoa=2V2r=4.048 A
diioy = a2 =2r=2.862A

3.58 Determine the expected diffraction angle for
the first-order reflection from the (310) set of
planes for BCC chromium when monochro-
matic radiation of wavelength 0.0711 nm is
used.

d10)=a/N10 and a = 4173 =4 1.249\3 A = 2.884
d(310) =0912 A
d =M/(2sinB) so 20 = 2 asin(A/2d) = 45.9°

3.59 Using the data for e-iron in Table 3.1, com-
pute the interplanar spacings for the (111) and
(211) sets of planes.

r=1241 A a=4r~\3=2.866A
d(]]l) = a/\/3 = 1.655A
d(211) = a/\/6 = 1.17OA

3.60 The metal rhodium has an FCC crystal struc-
ture. If the angle of diffraction for the {311) set
of planes occurs at 36.12° (first-order reflec-
tion) when monochromatic x-radiation having
a wavelength of 0.0711 nm is used, compute
{a) the interplanar spacing for this set of planes,
and {b) the atomic radius for a rhodinm atom.

a) da1n) = M(2sin®) = 0.711A/(2sin(18.06°)) = 1.147A
b) r = a/(2V2) for FCC

a=da V(11) =3.803A

r=23.803A/(2V2) = 1.345A



3.61 The metal niobium has a BCC crystal structure.
If the angle of diffraction for the (211) set of
planes occurs at 75.99° (first-order reflection)
when monochromatic x-radiation having a
wavelength of 0.165Y nm is used, compute
{(a) the interplanar spacing for this set of planes,
and (b) the atomic radius for the niobium atom.

a) dp11) = M(2sinf) = 1.659A/(2 sin(37.95°)) = 1.347A
b) For BCC r = \3a/4

a=dai V(6) =3.301A

r=433.301A/4 = 1.429A

3.62 For which set of crystallographic planes will a
first-order diffraction peak occur at a diffrac-
tion angle of 44.53° for FCC nickel when
monochromatic radiation having a wave-
length of 0.1542 nm is used?

ey = /(W +K*+1%) = M(2sin6) = 1.542A/(2s5in(22.26°)) = 2.035A

r=1.246A for Nickel FCC so a=1.246 A 2v2 = 3.524A

For FCC the first 6 reflections are (111), (200), (220), (311), (222), (400) so by trial and error we
find this is the (111) reflection.

3.63 Figure 3.21 shows an x-ray diffraction pattern
for lead taken using a diffractometer and
monochromatic x-radiation having a wave-
length of 0.1542 nm; each diffraction peak on
the pattern has been indexed. Compute the
interplanar spacing for each set of planes
indexed; also determine the lattice parameter
of Pb for each of the peaks

Figure 3.21 (111}
Diffraction pattern

for powdered lead. &
(Courtesy of Wesley g
L. Holman.) =
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Diffraction angle 28

Need to measure the peak positions from the Iz)lots,
Plane 20  d=M(2sinf) a=d(h*+k* %)

(111)32°  2.80A 4.84A
(200)37°  2.43A 4.88A
(220)53°  1.73A 4.89A
(311)63.5°  1.47A 4.86A



(222) 66°  1.42A 4.90A

(400) 77.2°  1.24A 4.94A
(331)86°  1.13A 4.93A
(420)89°  1.10A 4.92A
(422)99.8°  1.01A 4.94A

The higher angle values are probably better for “a” since there is less relative error in the angle at

higher values.

3.64 The diffraction peaks shown in Figure 3.21 are
indexed according to the reflection rules for
FCC (i.e., h, k. and | must all be either odd or
even). Cite the A, k, and [ indices of the first
four diffraction peaks for BCC crystals con-
sistent with # + & + [ being even.

(110), (200), (211), (220), (310), (222) for BCC
The following diagram shows how the peaks are spaced for BCC, basically evenly spaced peaks.
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Compare the FCC in this diagram to the spacing’s of the peaks in Figure 3.21 above, i.e. 2: 1: 2
signature.



3.65 Figure 3.24 shows the first five peaks of the
x-ray diffraction pattern for tungsten, which
has a BCC crystal structure; monochromatic
x-radiation having a wavelength of (.1542 nm
was used.

(a) Index (i.e.. give h, k, and [/ indices) for
gach of these peaks

(b) Determine the interplanar spacing for
each of the peaks.

(c) For each peak, determine the atomic ra-
dius for W and compare these with the value
presented in Table 3.1.

(a) At a glance you can see that the spacing’s are even so it is likely a BCC crystal if it is a metal.
For BCC the first 5 peaks are (110), (200), (211), (220), (310). (Indexing a diffraction pattern is
usually a bit more involved than this. Many diffractometers have a search procedure that will
solve the composition of the sample for you.)

(b) d =2/(2sinb) O: (110) 40.2°, (200) 58°, (211) 73°,(220) 83.5°,(310) 101°

d(110) =2.24A

d(200) = 1.59A

d(211)=1.29A

d(220) = 1.16A

d(310) = 1.00A

(c) a=d V(h*+k*+1%) r=+3a/4

a(110)=3.17A 1.37A
a(200) = 3.18A 1.384
a(211)=3.16A 1.37A
a(220) = 3.28A 1.42A
a(310) = 3.16A 1.37A

Reported value for ris: 1.36A
Questions and Problems + 79

Figure 3.24 Diffraction pattern
for powdered tungsten. ( Courtesy
of Wesley L. Holman.)
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Table 3.1 Atomic Radii and Crystal Structures for 16 Metals

Atomic Atomic
Crystal Radius® Crystal Radius
Metal Structure” (nm) Metal Structure {nm)
Aluminum FCC 0.1431 Molybdenum BCC 0.1363
Cadmium HCP 0.1490 Nickel FCC 0.1246
Chromium BCC 0.1249 Platinum FCC 0.1387
Cobalt HCP 0.1253 Silver FCC (.1445
Copper FCC 0.1278 Tantalum BCC (.1430
Gold FCC 0.1442 Titanium () HCP (.1445
Iron {a) BCC 0.1241 Tungsten BCC 0.1371
Lead FCC 0.1750 Zinc HCP (.1332

" FCC = facecentered cubic; HCP = hexagonal close-packed; BCC = body-centered cubic.

* A nanometer {nm) equals 10~ m; to convert from nanometers to angstrom units (A},
multiply the nanometer value by 10,

3.66 Would vou expect a material in which the
atomic bonding is predominantly ionic in
nature to be more or less likely to form
a noncrystalline solid upon solidification
than a covalent material? Why? (See Sec-
tion 2.6.)

This question is vague since there are two possibilities for covalent materials, generally covalent
materials crystallize as a molecular unit such as napthylene or polyethylene so the covalent
bonds are not particularly important in deciding the crystal structure, the crystalline structure is
decided by weaker interactions such as hydrogen bonding and van der Waals interactions. For
these materials the formation of a glass is quite common depending on the rate of crystallization.
I believe that Callister is referring to materials like diamond and graphite where the crystal is
composed of 3-d covalent bonds. In this case the formation of the crystal is like a chemical
synthesis of an organic material and it is very difficult to form a glass since the bonding needs to
be tetrahedral in diamond and there is little room for misplacement of bonds. For ionic
materials like NaCl it is also difficult to form a glass since the simple ionic structure and strong
ionic nature forces the material to crystallize and misplaced units carry a high energy penalty.
For other ionic materials such as Si0O,, glass formation is common. This material has a
combination of tetrahedral bonding and ionic bonds so formation of the structure is quite
complex and misplaced atoms are common. The system can be locked into a disordered
structure or a glass. If the glass is annealed it can crystallize. The tendency to form a glass is
also related to the kinetics, particularly the viscosity of the melt. NaCl has a low viscosity in the
melt while SiO, has a high viscosity melt. So issues involved in glass formation are the
complexity of the crystalline structure, the viscosity of the melt, generally the difficulty of
moving the atoms or molecules into a crystalline lattice, the more difficult the more likely it is
that a glass will form.



11) Sketch the diffraction pattern from an FCC, BCC and HCP metals as well as the diffraction
pattern from an amorphous solid. What does the peak position of the amorphous halo indicate?

The peak position for the amorphous halo is associated with the root mean square separation
distance for the atoms, drms = A/(2sin0)

12) Derive Bragg’s Law using the specular reflection analogy.

Two such X-rays are shown here, where the
spacing between the atomic planes occurs over
the distance, d. Ray 1 reflects off of the upper

atomic plane at an angle q equal to its angle of %J'; ,

incidence. Similarly, Ray 2 reflects off the &, |

lower atomic plane at the same angle . While B S Wl /A“ planes
Ray 2 is in the crystal, however, it travels a A

distance of 2a farther than Ray 1. If this 3 /
distance 2a is equal to an integral number of Y x

wavelengths (nl), then Rays 1 and 2 will be in é%/\<’ 3 3

phase on their exit from the crystal and
constructive interference will occur.

If the distance 2a is not an integral number of wavelengths, then destructive interference will

occur and the waves will not be as strong as when they entered the crystal. Thus, the condition
for constructive interference to occur is

nl=2a
What it says is that if we know the wavelength | , of the X-rays going in to the crystal, and we
but, from trigonometry, we can figure out what the distance 2a is in terms of the spacing, d, can measure the angle q of the diffracted X-rays coming out of the crystal, then we know the
between the atomic planes. spacing (referred to as d-spacing) between the atomic planes.
a=dsing d=nl/2sinq
or2a=2dsinq Again it is important to point out that this diffraction will only occur if the rays are in phase when

they emerge, and this will only occur at the appropriate value of n (1, 2, 3,etc.) and q.

thus, nl =2d sin g In theory, then we could re-orient the crystal so that another atomic plane is exposed and measure

the d-spacing between all atomic planes in the crystal, eventually leading us to determine the

This is known as Bragg's Law for X-ray diffraction. crystal structure and the size of the unit cell.

13) What can the breadth of a diffraction peak indicate? That is, for two copper samples if one
displays a broad diffraction peak while the other displays a sharp peak what is the difference
between the two samples? What about for two aluminum samples.

The breadth of a diffraction peak can be related to small crystalline grains, residual stress in the
crystals or thermal vibrations. For a typical copper sample the most likely source for peak
broadening is residual stress. For a typical aluminum sample the most likely source for peak
broadening is thermal vibrations. This has to do with the ability of atoms to move in the crystal



structure in aluminum. To see broadening due to small crystallite size the crystals or grains need
to be much less than a micron in size, i.e. nano-size crystals show broadening.

14) The following images are photographic diffraction patterns from aluminum foil and a
polyethylene bag. Explain why the aluminum shows dots in the Debye-Scherer rings and the
polymer does not. Explain why the polymer peaks are broader than those of aluminum. Explain
why the aluminum pattern shows arcs rather than complete rings.

]
JI;:"'_"'

The aluminum sample has rather large crystals or grains that are oriented in a drawn foil sample.
The grains are so large that in the x-ray beam (20pm by 1 cm) there are only about 50-100 grains
in the beam so each grain yields a spot for a given reflection if the planes are aligned property for
diffraction to occur. The grains have a preferred orientation relative to the draw direction so that
reflections for a given plane show up as arcs centered on the preferred direction of orientation.
The two Debye Scherer rings shown for this FCC structure are the (111) and (200) reflections.

For the polyethylene sample the crystal structure is orthorhombic with a central chain offset in
orientation. The structure ends up looking something like an FCC structure so the diffraction
pattern has a motif reminiscent of FCC, in that there are two prominent peaks at low-q. The
polyethyelene sheet also displays some degree of orientation due to the brighness of the peaks at
the top and bottom of the figure. The peaks are broad because these crystals have a thickness on
the order of 100A or 10 nm so they are nano-crystals. The broader the peak the smaller the
crystalline thickness.



