CME 300 Properties of Materials
ANSWERS Homework 2 September 28, 2011

1) Explain why metals are ductile and ceramics are brittle. Why are FCC metals ductile, HCP
metals brittle and BCC metals tough?

Planes in ceramic crystals cannot slip since this would require dissociation of ionic bonds. When
ionic bonds dissociate a crack forms and the material fails in a brittle manner. FCC has 12 slip
planes with 4 closest packed planes {111} and 3 closest packed directions per plane <110>.
HCP has only 3 slip systems. BCC does not have truly closest packed planes so slip must be
thermally activated in BCC metals.

2) Why does slip occur along approximately a 45° angle in the following picture?
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Like a sail in the wind.

3) The symbol for a Burgers vector is an upside down T. Explain the meaning of this symbol

using an edge dislocation.
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The Burgers vector is in the direction of the head of the T, the plane of extra atoms occurs in the
stem of the T. Motion of the disclination occurs in the direction of the Burgers vector.

4) Explain strain hardening in an FCC metal like copper.

When an FCC metal is worked, disclinations are introduced. These disclinations interact and pin
each other making the metal harder, increasing the yield strength.

5) Why does twinning mostly occur in HCP metals like zinc?

Twinning takes a larger stress than slip along a closest packed plane in a closes packed direction
since it involves rearrangement of an entire plane of atoms simultaneously rather than
rearrangement of a single row. However, in HCP crystals an insufficient number of slip systems
exist so that the second best mechanism to absorb energy is more prevalent.

6) BCC metals display a thermal dependence for the critical resolved shear stress shown in
figure 3.23 below. Write an equation for this behavior (vyp = f(T)) and explain the terms
including a definition of tp. Why do BCC metals differ from FCC and HCP metals in terms of

this thermal dependence?
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logarithmic scale on the y axis. T [K]

T is the critical resolved shear stress is the shear stress needed to initiate plastic
deformation for a crystal. In the figure log(ty) is linear in temperature up to the critical
temperature T.. For the linear region,

To= exp(— Ki T+ Kz)

beyond this region a more complicated function is needed. K, is the natural log of the
critical shear stress at absolute 0, K, is the rate of change of the log of critical shear stress
as a function of temperature. K1 is probably related to kg/AE, where kg is the Boltzmann
constant and AE is the barrier energy for slip in the BCC system. (Simply adding a
constant to the equation in order to mimic the plateau at high T doesn’t work with this
data.)

BCC does not have closest packed planes. The highest density planes, {110}, require thermal
activation for slip to occur. This involved motion of the atoms about their lattice positions to
more or less fill in the gaps making the planes appear to be space filling. The higher the



temperature the more the planes appear to be space filling up to the critical temperature. This
thermally activated behavior leads to a “brittle to ductile” transition on heating.

7) Synthetic polymers in the melt are described as random coils, meaning that there is little
regular organization of the chain structure. In order for crystallization to occur in these chain
molecules what sequence of steps must be followed?

Polymer chains must form helicies and disentangle from the melt in order to be drawn into
lamellar crystals. The helicies must then diffuse to the growing lamellar edge, nucleate a new
plane of chains, chain fold and reinsert into the growing edge.

8) Describe a dilute solution polymer crystal. Why do polymers not crystallize in cubic lattices
like metals?

Polymers crystallize into thin lamellar crystals of about 10 nm thickness and with an aspect
ration similar to a sheet of paper, i.e. with about 1 micron lateral dimensions. In order for chain
helices line up normal to the lamellar surface and must fold at the lamellar surface to reenter the
crystal. The chains are tilted with respect to the lamellar surface to allow space for chain folding
and to relieve tension associated with this fold. This tilt of the chains leads to the formation of
edges and pyramid shape for the sheet crystals, similar to a tent. When these crystals are
prepared for microscopy the tents collapse in a corrugated manner, as shown in the picture
below.
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The c-axis is in the crystal is the chain helical axis direction. The a and b directions are governed
by van der Waals interactions, hydrogen bonding and other weak forces. Since the helix is not
symmetric we expect different values for the a and b lattice parameters and the c direction is
controlled by covalent bonds so it is quite different than the other two axes. For these reasons
polymers never crystallize into cubic crystals.



9) Explain the following plot:
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Fig. 3.7. Lattice constants thermal expansion for linear polyethylene (Davis et
al.24)

The plot shows the thermal expansion and contraction of the lattice parameters in a polymer
crystal. The a and b axis expand in a non-linear fashion due to the complexity of the
interactions. The c-axis has a weak thermal contraction that is caused by rubber like elasticity of
the chain in the helical axial direction. You can think of the chain as a jump rope that is
swinging with thermal excitation. As the temperature rises the rope swings faster leading to an
increase in the retraction force at the ends of the chain. This leads to thermal contraction in the c
direction of the crystal.

10) Derive the Gibbs-Thompson equation for a cubic crystal such as NaCl. In solution
nanoparticles can be made by a chemical reaction that results in a rapid rise in a crystallizing
species followed by rapid depletion of the species. Explain this in terms of the Gibbs-Thompson
equation.

The derivation is similar to that for the polymer crystal except that there are 6 surfaces to a cubic
crystal compared with two high energy fold surfaces in a polymer crystal.

The Hoffman-Lauritzen equation for polymers is derived as follows:
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For cubic crystals the third equation becomes:
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11) A sheet of aluminum is shown below. Explain how the striations in the image are formed
and how they relate to the FCC crystal structures we discussed in class.

Each stripe is a grain, a single FCC crystal, that has been drawn out. The grains grow from
nucleation sites in the melt and prior to drawing they would be randomly shaped grains similar to
that seen in the picture of galvanized steel below.

12) Guess at the origin of the Hall-Petch relationship based on your understanding of yielding
in metals. First explain why yielding occurs, then how grains could impact yielding in a
polycrystalline sample compared to a single crystal, then indicate a possible origin for the
particular functionality in the Hall-Petch relationship, 1/(normalized yield stress).

Yielding in FCC metals occurs due to the presence of disclinations and other defects in the
crystals. The crystals can absorb energy by motion of these discilinations along slip systems. In
a metal sample with small grains some of the grains do not have disclinations since there is a
probability per volume that a grain will have a disclination P, so for a given grain the probability
that the grain will have a discilination is P¥V = k*P*d’. The probability of a given grain having
a disclination drops with d. If a grain doesn’t have a disclination it has a much higher yield
strength. The metal becomes a composite of grains with no disclinations that are hard and brittle
and grains with disclinations that are ductile so the overall composite yield strength increases as
the grain size decreases for very small grains.

Additionally, defects are trapped at grain boundaries. The probability of a defect encountering a
grain boundary in a given time is related to the surface area of a grain, d, the number density of



grains, Vmple/Vgrain ~ 1/d’ and the rate and time of grain diffusion, r and At. The rate of
disclination trapping at grain boundaries should go with 1/d. The more trapping of disclinations
the higher the yield stress so a sample with smaller grains should have a larger yield stress.

The Hall-Petch relationship is an empirical function (based on experimental observation). The
calculation of yield stress is a fairly complicated and ill-defined problem but we can at least list
some reasons for an increase in yield stress with decreasing grain size.

The following is an explanation from http://www.exo.net/~jillj/activities/mechanical.pdf
A change in grain size affects the yield strength due to the dislocations interacting with

the grain boundary as they move. The boundaries act as obstacles, hindering the

dislocation glide along the slip planes. As subsequent dislocations move along the same

slip plane the dislocations pile-up at the grain boundaries.

The dislocations repel each other, so as the number of dislocations in the pile-up
increases the stress on the grain boundary increases. In fact, if there are n dislocations in
the pile-up, the stress at the grain boundary will be n times the applied stress.

If the grain boundary in a sample gives way at a stress t, there needs to be a stress of t/n
applied to the sample in order to cause the boundary to collapse.

In a larger grain there will be more dislocations within the grain, so there will be more
dislocations in the pile-up. Therefore a lower applied stress is required to produce a local
stress great enough to cause the grain boundary to collapse. Accurate modeling is
difficult, but it is found that the tensile yield strength, Y.S, and hardness, H, are related to
grain diameter, d, by the Hall-Petch equation:



