Chapter 7. Entanglements

The upturn in zero shear rate viscosity versus molecular weight that is prominent on alog-log
plot is attributed to the onset of entanglements between chains since it usually occurs at a
molecular weight where a number of loops of the chain could possibly occur, about 10,000
g/mole. The mechanical properties of polymers differ above and below this molecular weight,
with glassy polymers becoming robust above this value, and usually appearing as a powder
below this molecular weight. For semi-crystalline polymers materials are cheesy or waxy below
this molecular weight and strong thermoplastics, such as nylon or polyethylene, above this
molecular weight. The ability to spin fibers, blow films and perform other normal polymer
processing type operations on amaterial relies on it being above this molecular weight.

Both the elastic and viscous properties of a chain are modified by entanglements as can be seen
by the breadth of the spectrum of effects that are observed from dramatic, power-law changesin
the viscosity, to completely different mechanical behavior i.e. wax versus polyethylene.
Entanglements do not effect properties that depend on local motion of the chain such as the glass
transition temperature or a-relaxations. All properties that can be related to the entire chain,
normal mode relaxations, are effected by entanglements. Between entanglements the Rouse
model works quite well and it can be used, for instance to model relaxations between crosslink
pointsin an elastomer.

The Rouse model is sufficient for materials below the entanglement molecular weight and as a
base model for comparison of polymeric with essentially non-polymeric properties. Above the
entanglement molecular weight and for semi-dilute to concentrated solutions modification of the
Rouse approach is needed and thisistypically done using the tube model or reptation model of
Strobl's figure 6.10.
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Fig. 6.10. Mn:lelliqp; the lateral constraints on the chain motion imposed by the
entanglements bjf a "tube’. The average over the rapid wriggling motion within the
tube defines the ‘primitive path’ (continuous dark line) ¢

In the tube model the chain retains Rouse like dynamics along a " primitive path”, while
dynamics are greatly hindered normal to this primitive path due to the formation of atube of
entangled chains through which the polymer chain can be thought to move with aworm like or
reptilian motion ("reptation”).

Quasi-Elastic Neutron Scattering M easurements:

Evidence for the reptation model comes from quasi-€lastic neutron scattering measurements.
The reason to go to this rather exotic technique are several fold.

1) By deuterium tagging asingle chain in a 3-dimensiona entangled mat can be observed.

2) Size resolution on the colloidal to nano-scale is optimal for neutron scattering, 1 to 300A
scales and thisliesin the range for a single polymer coil.

3) Thetime scale for quasi-€lastic neutron scattering is on the giga-hertz range that matches that
of normal mode relaxation times.

4) Theintensity measured is directly related to the time dependent pair correlation function, i.e.
the parameter that was calculated for the Rouse chain,

Neutron Scattered Intensity as a function of angle and time = §(q, t) = FT(g(r, t))

where q = 4p/l sin(g/2), FT isthe Fourier transform, g(r, t) is the time dependent pair correlation
function.

S(a,t) = ¢expliar)(g(r,b) - ¢, )d°r



g(r, t) refersto the correlation of the monomer or Kuhn units in the dilute, tagged chain in an
entangled mat.

The quasi-€elastic neutron scattering experiment allows one to observe the time correlation of
dynamics for asingle chain in an entangled mat as a function of both time and distance of
correlation. It is expected that as one approaches the smallest scales of size, a Kuhn-unit, that the
correlations will drop. By Bragg'slaw, d = 2p/d, high-q isrelated to small sizes (Kuhn size) and
small-q isrelated to larger sizes (coil size).
For unrestricted chain motion, astime goesto ¥ the correlations approach <c,> so we can write,
o(r,t=>¥) =<c,> (Unrestricted chain motion)
and
(g, t=>¥) =0 (Unrestricted chain motion)
For confined chains such as chains confined by the reptation tube
g(r,t=>¥)1 <c,> (Restricted chain motion)
and thiswill hold for all sizes (q values) where the chains are confined to atube. Then
measurement of the quasi-€lastic neutron scattering pattern can be used to determine the extent
of applicability of the Rouse model at small sizes and the effects on dymanics of reptation at

larger distances. Strobl's figure 6.8 shows quarielastic neutron scattering data that demonstrates
this behavior.
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Fig. 6.8. Results of a quasielastic neutron scattering experiment on a melt of
pnly{eth}'len&—cﬁ-pmpylirnej at 199 °C (10% protonated chains dissolved in a deuter-
aled matrix; M = 86 - 10Y): Intermediate scattering laws measured at the indi-
cated scaltering vectors (top); data representation using the dimensionless variable
8= q'(12kTat/(q)"'? (bottorm). From Richter et al.[67)

Understanding figure 6.8 requires a bit of background. The series of curvesin each plot
corresponds to different values of g, or different size scales of observation by Bragg's law, size
scale = 2p/g. The highest g'sreflect an approach to Rouse dynamics at size scales smaller than
that of the entanglements or at size scales where the tube model is not appropriate because the
chains have significant lateral motion. At low-q (top curves) significant deviation from the
unconstrained motion occurs due to the presence of the reptation tube.



All of the curvesin figure 6.8 decay with time indicating an averaging out of the motions with
longer times of observation. However, none of the curves approach 0 for unconstrained motion.
The parameter "u" in the lower plot is based on Rouse theory. We had for the lowest order
Rouse relaxation time,

tr = ((za/a:") No)/(3KTP?)

and through the use of Bragg's law an association between of and 1/a;* can be made so ¢°a;” isa
dimensionless and reduced g, while t/t ; is a dimensionless and reduced time. The parameter "u"
depends on both time and g in anatural way and is defined as,

u=of (12kT a2 t/zp)*?

The use of the parameter "u" should lead to a universal curve for all of the different times and g-
valuesin the top plot. The curves come close to collapsing in this approach. At small-u (short
times, the curves approach Rouse-dynamics. At longer times (large-u) the curves deviate from
Rouse behavior due to reptation based constraints.

By extrapolating the quasi-elastic neutron scattering measurements on the time domaintot => ¥,
the point of deviation from O can be obtained in g, g*, and d* = 1/g* can be calculated asa

measure of the size scale of confinement associated with the reptation tube. Thisisshownin

figure 6.9 of Strobl.
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Fig. 6.9. Size d of the confinement range, as derived from the lomg term limits of
the curves shown in Fig. 6.8 [67]

The size scale of confinement has alinear temperature dependence form these measurements,
and increases with increasing temperature. Asd isthe cutoff size for unconstrained motion,
increasing d means that constraints are less effective at higher temperatures as might be

expected.

This quasi-elastic neutron scattering data indicates that the dynamics of a polymer chainin the
entangled melt should be broken down into at least two regimes of behavior, an unconstrained
regime at small sizes and a constrained regime at larger sizes. At even smaller scales we expect
athird regime associated with the a-processes associated with local chain chemical composition

and bonding, DG,,;,(t). The time dependent shear modulus becomes then,

G(t) = DGyic(t) + 1 KT Sexp(-2t/t,,) + r KT m* F (t/t,)



where the summation isfrom m = m* to N - 1, i.e. the high order Rouse modes beyond the
critical size scale for entanglements and where m* is associated with the lowest order (largest
size) where Rouse dynamics are appropriate. The Rouse regime extends to sizes where the
chains are still considered to be Gaussian coils, obeying rubber elasticity on the small end, i.e. to
the Kuhn segment size. m* isgiven by (Ng - 1)/(Ng. -1), where N is the contour length in
Rouse-units corresponding to the critical molecular weight for entanglements, M.. The

relaxation timet,,* isgiven by ts { (Ng. -1)/(Ng - 1)}°.

The third term in the equation for the time dependent modulus reflects dynamics in the confined
regime. The expression F (t/t ) means that this regime is assume to depend on a single relaxation
time, t, that is associated with the time for "disentanglement”. F (t/t,) isageneral normalized

function meaning that F (0) = 1. tistheintegral width of the arbitrary function, F (t/t ;), so,
¥
Fdt=t,
t=0

Empirically (from experiment),

ty=K M3

where M is the molar mass of the polymer.

Thereisagap in the relaxation behavior betweent, *, the longest relaxation time for Rouse
behavior, and t ,, the relaxation time for tube renewal or release of entanglement constraints.
This gap in the relaxation spectrum leads to the plateau modulus region. The length of this

region in timeisreflected by t /t .* » M*Y/M 2.



The effect of entanglements on the zero shear rate viscosity, h,, can be calculated using the

previoudly derived expression,
¥
h, = f5(t)at
t=0

and the expression given above for the three regimes of dynamicsin an entangled melt. Ignoring

DG, (1), and using a mean relaxation time, t,, for the Rouse modes that extend up to M,
ho=r KT [(Ng-m*)t, + M*t]

Since m* is associated with the plateau modulus, G, and the N term is associated with the

ply

shortest time relaxations, G(0), the expression can be rewritten,
ho = G(0) [(G(0) - G,) t./G(0) + G, t /G(0)]
The first term in brackets is constant, b,, so,
h,=b, + b, M3*
At high molecular weights,

ho» ty» b, M>*



The Reptation Model (Doi and Edwar ds/ also associated with de Gennes):

Strobl's figure 6.10 shows that the motion of a chain can be considered to consist of two
discernable components, the rapid, Rouse components normal to the chain, within the reptation
tube, and the slower and discrete (i.e. there isagap in time) motions in the direction of the
reptation tube or the time for the tube to refresh or renew itself (tube renewal time). The path of

the reptation tube is termed the "primitive path” for the chain.

The primitive path represents a redefinition of the chain, just as the Rouse-model redefined the
chain in terms of rubber elastic units. For the primitive path the redefinition is based on the
longest time Rouse mode that reflects unconstrained dynamics. Since the primitive path is the

chain, albeit renormalized to the Rouse unit, it displays Gaussian scaling. Then we can write,

Ry/as = NRl/2

where the power 1/2 reflects 1/d; and d; is the mass-fractal dimension for the chain.

The number of Rouse unitsin the chain, N, isrelated to the length of the primitive path along

the contour of the tube, |, by,

Ng » q)rlp,

where g, reflects the persistence length for the primitive path or the stiffness of the primitive

path.



Within the reptation tube the chain thermally diffuses along the primitive path following the

Einstein relationship,

D' = kT/z,

where D' is the diffusion coefficient for the chain within the tube along the primitive path, and z,

isthe friction factor for the chain. By definition there are no entanglements within the tube, so

the Rouse result can be used,

z,=Ng 2

D' = KT/N, z4

The time for the chain to completely diffuse out of the reptation tube is called the "reptation

time", t, as shown in Strobl's figure 6.11 on pp. 284.
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Fig. 6.11. Heptation model: Decomposition of the tube resulting from a reptative
motion of the primitive chain. The parts which are left empty disappear

Such random diffusion is governed by laws for Brownian motion so,

ty=12D"

Using the definitions of | ,, and D', we have,

pr

t,=2zgNg°

Thereptation model predictsthat therelaxation time and the viscosity should scale with

the molecular weight to the power 3. The power 3.4 isobserved experimentally.

Various modifications to the reptation model have been proposed, most prominent of theseisthe
"constraint-release” approach where some dynamic behavior isintroduced to describe the tube

itself. These have met limited success.



Strobl's figure 6.12, p. 286, shows results for the measurement of the diffusion coefficient for

polymer chains in an entangled melt.
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Fig. 6.12. Determination of dilfusion coefficients of deuterated P1E%s in a PE matrix
by infrared absorption messurements in a microscope. Concentration profiles ¢ix)
obtained in the separated state at the begin of a diffusion run and at a later stage
of diffusive mixing {the dashed lines were caleulated for monodisperse components;
the deviations are due to polydispersity) {left), Diffusion coefficients at 7" = 176°C,
derived from measurements on a series of d-PE's of different molecular weight (right).
The confinuous line corresponds to a power law 0 ~ M2 Work of Klein [68]

The left graph shows that the diffusion coefficient scaled with M to apower -2. This has been
verified in awide range of entangled polymers. The Rouse model (using the Einstein

relationship) indicates that the diffusion coefficient should scale with 1/M,

D = KT/z, = kT/(Ngzs) » 1M



while the reptation theory correctly predicts the M2 dependence. This dependence can be
obtained by considering motion of the center of mass of the polymer over a distance of the order

of |,, along the primitive path. The mean-squared distance moved, <Dr >>, is given by,

pri

2 2 —
<Drc>»RO - pr%r

In 3-dimensions the diffusion coefficient is given by,

D = <Dr.2>/(6 Dt) = <Dr>/t 4 » |, a,/t 4 » Ne/Ng%» M

The Reptation model correctly predictsthe chain dynamics on size-scales of the order of

onechain size, i.e. the diffusion coefficient is correctly predicted by reptation in an

entangled melt.

Combination of the reptation model and the Rouse model predict a change in the power-law
behavior at the entanglement molecular weight of M™ to M? dependence for the diffusion

coefficient.

Strobl's figure 6.13 shows a classic experiment (that has been repeated a number of timesin the

literature) using fluorescently tagged DNA chains (a polyelectrolyte).



.4 Hydrodynamic Interaction in Solutions

b
o0
b |

Fig. 6.13. Series of images of a fluorescently stained DNA chain embedded in a con
centrated solution of unstained ehains: Initial conformation (left): partial :
by a rapid move of the bead at one end [ second from ”.'U.f!.’f.":
reptative motion in the tube {subsequent pictures to the rig

slretching
)i chain recoil by a
pte ht). Reprinted with per-
mizsion from T.Perkins, [, E.Smith and 8.Chu, Seience, 264:819, 1994, Capyright
(1994 American Association for the Advancement of Science s

The data shows a time sequence of the dynamics of aDNA chain (a micron-scale biopolymer).
The chain is pulled towards the bottom of the figure by the bright spot. These images support

the reptation model for obvious reasons.



