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Chapter 6: The Rouse Model
The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model:

The Rouse model is based on dividing the polymer chain into subsections that are sufficiently
large to display rubber like elasticity (springy behavior as small elongations). The subsections of
the chain, in the Rouse model, have aroughly spherical shape (bead shape) and present a
mechanical drag with respect to the remainder of the melt or solution that can be quantified with
asingle term, the subsections friction factor for small motions. The two elements of asingle
subsection can be represented in series as a spring of no volume and arigid bead of infinite
modulus. This model for achainis shown in Strobl'sfigure 6.1 below.
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Fig. 6i.1. Rouse-chain composed of Ny beads connected by springs



The Spring:

The Rouse model is based on a Gaussian (g-condition or relaxed melt conformation) for the coil
subsection. Under this assumption rubber elasticity theory can be used to estimate the spring
constant for the subsection based on the number of mer units in a subsection or the mean square
of the end-to-end distance for a subsection, <Dr?>. For a subsection with end points at Dr the
tensile force associated with this end-to end distance, f, isgiven by f, = b Dr, whereb isaforce
constant or spring constant for the Rouse subsection of the chain. b isgiven by rubber elasticity
for small deformations and Gaussian conformations as, b = 3kT/<Dr?>. b decreases with chain
size since <Dr?> = nl? for a Gaussian chain, and increases linearly with absolute temperature asis
characteristic of an ideal, entropically derived force, e.g. theideal gaslaw PV = nRT.

For acolloidal scale particle suspended in a solvent the viscous force associated with drag on the
particle is proportional to the velocity of the colloidal particle, f,, = zu where u is the velocity of
the particle. Thefriction coefficient, z, is proportional to the solvent viscosity, h.. In apolymer
melt the solvent viscosity parallels the melt viscosity although the friction coefficient will be
used first as a generic parameter with no specific definition except that it is constant for a given
set of conditions.

The polymer chain isfirst divided into N; Rouse subsections of arbitrary length much larger than
amer unit but much smaller than the entire chain. Each subsection is represented by a colloidal
bead with a friction coefficient zz, and a spring with a spring constant b;. The beads are indexed
from 0to N -1. In Strobl's figure 6.1, reproduced above, the motion of asingle bead leads to
opposing tension and compression on the neighboring springs. If the "solvent” moves relative to
the bead at arelative velocity of dr /dt, where the subscript "I" refers to the Rouse bead's
subsectional index, then restoring forces due to the spring constants on the springs between
beads "I+1" and "I" and beads "I-1" and "I" serve to counter act the drag force dueto relative
motion of bead "I". The balance of the drag force and the elastic forcesis given by,

Zgdr/dt=bg (r,,-r) +bg (r,-r)
=br(ru+r,-21)

where by is defined in terms of the number of mer unitsin a Rouse subsection or the mean
squared end-to-end distance for a Rouse subsection, a2 = NI?/Ng, bg = 3kT/as>. This assumes
that the chains are Gaussian both in the unperturbed state as well as in the perturbed state (a
condition that is not likely to be fulfilled).



We consider thermal motion for the Rouse subsectional beads so that motionin x, y, and z
directions are equivalent and can be treated independently. Strobl considers the z-direction, and
replaces the vector r with the scalar z for ssmplicity. The balance of forces above becomes then,

Zg dz/dt = bg (2,1 + 2, - 22)

For achain of infinite molecular weight the beads are, on average, indistinguishable. For this
case we can propose awave behavior for the average bead position, z,,

z, = k exp(-t/t) exp(i | d)

that includes an exponential time decay or damping and a phase shift, d, between adjacent beads.
This solution can be proposed since, for an infinite chain with no inertial effects, the beads are all
equivalent (Strobl's translational symmetry). Use of the wave solution in the 1-d equation results
in,

- zg kit exp(-t/t) exp(i | d) = k bs exp(-t/t) (exp(i (I-1) d) + exp(i (1+1) d) - 2 exp(i | d))
- 25/t exp(i | d) = exp(i | d) bg {exp(-id)+exp(id) - 2}

- 25/t = 2bg {cos(d) -1}
Using exp(-id) = cosd - i sind and exp(+id) = cosd + i sind. Also, 2sin? A = (1 - cos 2A), so,

t = z./{ 4bg Sin*(d/2)}
Thisisshown in Strobl's figure 6.2. For an infinite chain the relaxation time is a continuous

function of the phase angle, d. That is, there are no discrete modes but a continuous
relaxation function.
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Fig. 6.2. Relaxation rates of Rouse-modes as a funclion of the phase shift. . Marks
on the inside of the abacizsa show the mode positions for a cyclic chain with Ng =
10 beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse-modes of the two chaing with relaxation rates o '
are especially indicated, by a filled circle and a filled square

Rouse for a Finite Chain:

The analysis based on awave function describing position is true for an infinite chain where
there is no distinguishing feature between different average Rouse units. The simplest way to
deal with finite length chainsis to assume that the chain is aloop so the assumption of
indistinguishable units can be maintained. Assuming the chainisaloop leadsto z = z,,, where
N isthe number of Rouse unitsin the chain. For this case there are discrete modes associated
with the wave solution, the modes being defined by Nd., = 2p m, where mis an integer defining
which mode of vibration is considered. There are N modes of vibration for a cyclic solution to
the Rouse differential equations:

d, = 2p m/N, with m = (N/2 -1) to N/2 for cyclic boundary conditions

Cyclic boundary conditions lead to a discrete number of modes but are not totally appropriate for
most real polymers. For areal chain under the Rouse assumption that the Rouse bead is only
sensitive to neighboring bead positions, the two end-groups for alinear chain become
distinguishable. Tensile forces vanish for these two end-groups, bead 0 and bead N - 1 for a
chain of N beads with the index begining at 0. Since for bead 0 and bead N - 1 there are no
tensile forces and no velocity relative to the chain, we have,

dz/dl (1 =0) = dz/dl (I ={N-1}) =0



and,
Zz dz/dt=bg (2., + 2, - 22)
becomes,
0=2-2=2,- 2,
The wave solution, z = exp(-t/t) exp(ild) = exp(-t/t) cos(ld) + i exp(-t/t) sin(ld), must be broken
into the real and imaginary components since thereisno imaginary partat| =0andat | =N - 1,
i.e. at the two ends of the chain. For the end of the chain, | = N-1, the derivative of the costerm
yields,
dz/dl (I ={N-1}) =k sin{ (N-1)d} = 0 (from above)
The latter equality can only be met when the argument of the sin term follows,
(N-1)d,=mp
Then, for alinear chain with free ends the following eigenvalues (the differential equations are
solved by matrix math usually, see Aklonis’McKnight "Introduction to Polymer Viscoel asticity"
for anice treatment), or Rouse modes can exist,
d.,, = pm/(N-1), where m is an integer from O to N-1.
There are N Rouse-Modes for alinear chain. The difference between this solution and that for
the cyclic chain is observed only for short numbers of Rouse units, Strobl's figure 6.2 shows this
for achain of 10 units.
Rouse Modes:
The Rouse model introduces the idea that normal mode relaxations in a polymer chain can be
described by a series of sin wave oscillations. These oscillations are describe in terms of the
order, m. The O'th order (m = 0) oscillation corresponds with free translation of the chain where

d=0, and 1/t =0. Thelowest order mode of interest isfor m=1 where,

ty'=tg" = (4be/zg) sin’(p/(N-1)))



For small A, sin A => A inradians and because N is usually alarge number we have,
te" = (4be/zg) (PY(N-1)°) » 3KTp¥(zg &° (N-1)?)

a, isthe RM S end-to-end distance for a Rouse segment (i.e. a bean and spring) and N isthe
number of Rouse segmentsin achain. It is preferred to describe the Rouse time, t, in terms of
parameters that do not depend on the arbitrary size and number of Rouse segments and this can
be accomplished through the identity, R,2 = a> (N -1), then,

te' = 3KkTp%(zs Ry’ (N-1)) = 3KTp¥((z+/a") Ry

The only term remaining that is associated with the Rouse segment is (z-/a.?). If thisis constant
then the friction factor for a Rouse segment must be proportional to the number of chain unitsin
a Rouse segment. The latter assumption is sometimes called the free-draining limit. The free-
draining limit is a basic assumption of the Rouse model, the friction factor for a Rouse segment
isjust proportional to the sum of the contributions of individual segments.

The Free draining limit fails, for example, when dilute solutions of polymer coils trap solvent
molecules within the individua coils.

Strobl's figure 6.3 shows the response of the lowest order Rouse Mode, m=1, corresponding to
t g, for displacement of one end of achain relative to the chain.
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Fig. 6.3. Displacement pattern of the primary Rouse-mode



The expression for the lowest order Rouse mode's rel axation time can be used to describe the
molecular weight dependence of the relaxation time since R,2 = a,2 N,

tr = (ze/a") Ro)/(3KTP?) = ((zr/a:’) No*)/(3KTP?)

Thisisthe predicted scaling of the mean viscoelastic relaxation time for non-entangled chains
discussed previoudly, i.e. below the entanglement molecular weight for a polymer melt.

While the longest relaxation time, t 5, depends on the molecular weight but not on the choice of
the Rouse segment due to the assumption that the friction factor is linear in molecular weight of
the Rouse segment, the shortest relaxation time for the Rouse model, m= N -1, depends directly
on the choice of Rouse segment size,

tys = Zg/{ 4, Sin?[p M/((N-1)2)]} = zg/{ 4bg SIN[p /2]} = z/{4be} = as? Zp/{ 12 KT}
=& (ze/a){12kT}

The shortest time is limited by the assumption that the chain is Gaussian within the Rouse
segment. Another consideration is that for small segments localized, short time relaxations (a-
mode rel axations) gradually begin to dominate the dynamics at small sizes. Thereis an inherent
relationship between small sizes and short times.



Average Properties of a 3-Dimensional Rouse Chain:

The relaxation of the chain is symmetric and independent for the three directions of 3-d space.
There are, then, 3N independent Rouse modes for a chain of N Rouse segments. Therelative
amplitude of response of the m'th mode of a Rouse chain is described by the normal coordinate,
z

z=2,cos(ld,)
where | isthe index of the Rouse bead and m is the mode of vibration.

To determine the average amplitude of a Rouse mode, the free energy of the chain needsto be
calculated as a function of the mode of thermal vibration (i.e. vibrations due to thermal
fluctuations). The free energy, Df,, is defined by the summation of rubber elasticity laws applied
to each Rouse segment, (summed form| =0to| = N-2)

Df, = (0:/2) S(z.1 - 2)* = (Zyy” be/2) S(cos((l + 1)d,) - cos(ld,)*

The cosine difference, for alarge chain can be replaced by a derivative with respect to |, leading
to,

Df, ={(d,Z,)? be/2} Ssin(ld,,)

The average of the square of the sine function is 1/2 and the summation over (N-1) terms leadsto
(N-1)/2 for the summation so,

Df(Zn) = (AnZm)* {be/2} (N- 1)/2

The free energy associated with the Rouse Mode "m" is proportional to the square of the
amplitude of the mode's vibrations, Z,2. This free energy can be used in the Boltzman function
to give a probability distribution function for the Rouse mode amplitude, Z,,,,

P(Z) » exp(-Df (Z,,)/(KT))

Since the free energy is proportional to the square of the amplitude this distribution is a Gaussian
function. The average value of the free energy, <Df >, is proportional to the variance of the
amplitude, <Z,2>. For athermal fluctuation the average free energy is proportional to kT/2 so,

8



kT/2 = <Df > = <Z,?>d,* {be/2} (N-1)/2=<Z > d,?{3KT/(2a5°)} (N-1)/2
by rearrangement,
<Z,>=237/{3(N-1)d, 3} =2R//{3p*m?}

So the variance of the amplitude of the Rouse vibration for mode "m" is independent of the
temperature. The largest amplitudes of vibration are for the lowest orders (largest sizes), so that
the second order mode has 4 times less amplitude than the first order mode.

The above equation for the amplitude of the Rouse "m"-mode suggests a contribution from a
given mode to the mean squared end-to-end distance of the chain, R? = <R?*>. Since the phase
angle between Rouse unitsis given by, d.,, = pm/Ng_,, even numbered modes, m=0, 2, 4, ...
contribute symmetric motions to the overall chain that give a mean square displacement of 0. So
only the odd numbered modes, m=1, 3, 5, 7, ... are considered in calculation of the net
contribution of Rouse-modes to the total mean squared end-to-end distance <R*> = R 2.
Considering only the z-direction, <R %> = R/3 = <(z,, -Z,)>>, We have,

(g1 20> =<(2Z)>+<Z)>+..=RA8/Bp)} {1+ 19+ ..}
so about 90% of the total end-to-end distance, <R,>> = R,%3, is related to the lowest order Rouse
modes (1 and 3). If only thefirst order Rouse mode is used, then the entire polymer coil is
represented as a single spring between two dumbells!

Dissipation of Fluctuationsin the Rouse M odel:

Strobl's figure 6.4 shows the expected behavior of a single Rouse mode, "m", in response to
random thermal fluctuations.
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Fig. 6.4. Time dependence of the amplitude 2,

» 0l a ouse mode (schematic)

The curveis characterized by sharp displacements due to thermal excitation followed by Rouse
relaxation following an exponential decay intime. The time decay is expected to be governed by
asingle relaxation time for asingle mode, t . The time correlation function for the amplitude of
the mode "m" fluctuations, Z,,,, can be expressed as an exponential depending on this relaxation
time,

<Z,(0) Z,(t)> = <Z,"> exp(-t/t,) = [2 Ry / {3p® m*}] exp(-t/t,,)
wheret,, = z/{4bs Sn¥(d,/2)} and d,, = pm/(N-1).

For a stress relaxation experiment the fluctuation dissipation theorem rel ates the time correlation
function for the stress with the stress relaxation modulus,G(t),

<s,(0) s, (t)> =KT G(t)Iv
The Rouse model can be applied to this equation if the time dependence of the thermal stress
fluctuations can be calculated from the Rouse model. A subsystem is defined of volume "v"

described by a Cartesian coordinate system of |, |, I, as shown in Strobl's figure 6.5. For a
Rouse spring of index "i" the extension is defined in the three Cartesian directions as x;, V;, Z.

10
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Fig. 6.5. Notions used in the calculation of the tensile stress o.; associated with
a syvstem of Rouse-chains: Reference volume v = -.r_--':.J-!'_:: unit area, crossed by the

spring i with extensions #; and %; along © and =z

Consider the force, f,, that contributes to the average shear stress, s,,, from a Rouse spring
element, i, f,;. The shear stress, s,,, is calculated by a summation of forcesf,; in the x-direction,
that act on the x-y plane, the shear stress being this sum of forces divided by the area of the x-y
plane under consideration. A given Rouse spring element contributes to this shear stressif it
crosses the x-y plane being considered.

Sy = Sty 2l 1, 1) = Sty z v

where z is the component of the vector along the spring "i" pointing in the z-direction, and I,, |,
and |, are the orthogonal edges of the volume element "v" that is considered in calculation of the
local shear stress due to Rouse elements. z/1, gives the probability that spring "i* crosses thel,-l,
plane within the volume element "v". The force on the Rouse spring is given by f = b, Dr, where
Dr isthe extension of the Rouse spring (here x; since we consider extension in the x-direction
only), and b, is the Rouse spring constant. Then,

5= (V) S 2.,
The shear stressin volume element "v" varies spatially as well aswith time. The average shear
stress due to thermal fluctuationsis 0, <s,,> = 0. The motion of the Rouse spring element "i"

along the z and x directions are independent. Also, the extensions of springsin different chains
in the volume "v" are uncorrelated. Then,

<5 ,(0)s ,(1)> = (b/v)? S <Zk,l(0) %i(0) Ze (1) X (1)>

11



where the summation is over x and z extensions of all springs| on al chainsk and x and z
extensions of al springs!’ on al chainsk’, i.e. there are 4 summations. This reducesto,

<5 (0)5 (1> = 1.V (BV)? S<x(0) X,(1)> <z(0) z(1)>

since the extension of springs are uncorrelated between chains. r v isthe number of chainsin
the volume "v".

As previously stated, the response of a Rouse bead in asingle direction, z, to asingle Rouse
mode, m, isgiven by ,

z=2,cosd,|

and spring extension is governed by the derivative, z =-Z,,d,, sind, |, and for the x-direction, x, =
-Zd. sind;l. Then <x,(0) x.(t)>= S<Xm(0) X (t)>sind,| sind,|' d.?, and <z(0) z.(t)> =
S<Zm.(0) Z,.(t)y>sind,| sind,I' d,;>. The summation of "sin" terms only hasavalue at m=m'
since other "sin" terms will be out of phase for an infinite chain and will be substantially out of
phase for afinite but long chain. Then the two summations over the sin terms from the equation
for <s,,(0)s,(t)> above just yield (N - 1)%/4 where the 4 accounts for duplication of half of the
modes for each of the two "sin" term summations that are multiplied. Then,

<8,(0)54(1)> = .V (b(Ng - /(1)) Sdy* <X (0) X o()><Zen(0) Zu(1)>
Previously we had that <X, > = <Z,*>= (kT/2) (4/(d, br (N&-1))) so,
<S,(0)s ,(t)> =1, (KT)%v S{ <Xn(0) Xo()>/<X2>H <Z,,(0) Z,,(t)>/<Z,>>}
As given above, the fluctuation dissipation theorem states that,
<s,,(0) s, (t)>=KT G(t)/v
so, by comparison,
G(t) = r KT S{ <X(0) Xp(t)>/<X,>H <Zpo(0) Zyi(1)>/<Z,2>}

Then the modulus of a Rouse chain is proportional to the temperature (asin rubber elasticity) and
the molecular basis of the modulus is time dependent thermal fluctuations of the chain as

12



described by the x and z time correlation functions. The tiem correaltion functions were
previously given as being of an exponential form,

<Xm(0) Xm(t)> = <Xm2> exp(-t/t m)1 and <Zm(0) Zm(t)> = <Zm2> exp(-t/t m)

G(t) =r KT Sexp(-2tt,)

where the summationisfromm=1tom=Ng - 1. All Rouse modes contributeto thetime
dependent shear modulus equally. The relaxation rates in the shear modulus are increased by a
factor of 2 since there are two exponentials contributing to the shear modulus arising from the x
and z displacements.

If we use the previous result that t,, »t./m?, i.e. the high order (short time) relaxations have very
small t,'s, and make the Rouse steps infinitely small so the summation becomes and integral, we
have,

Nr-1 ¥ o ¥
G(t)» ¢fmexp(- 2mt/t o)» cpimexp(- 2mYt ) = ?TRB " e xp(- 2u° Jdu
m=1 m=1 u=1

whereu =m (t/t ;)¥2. Theintegral of the Gaussian (exponential squared) is 1 and we have,
G(t) » t2

This scaling law can be verified experimentally as a characteristic of the Rouse behavior, Strobl's
figure 6.6 below.

13
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by the Rouse-model. Data from Eisele [66]

For Strobl's figure 6.6 the curve has been shifted to the glass transition temperture.

Using the frequency dependent form of the fluctuation-dissipation theorem (or by transformation
of the linear response equations) the frequency dependence of the storage modulus can be

obtained.

G'(w) » (hw)"?

which can be experimentally verified experimentally, dashed line at high frequency in Strobl's

figure 5.15.
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As presented previously, the zero shear rate viscosity can be determined from the integral of the
time dependent modulus,

¥ ¥ ¥ 2
rkit,s 1 p°r KTt
ho= (Bt =r k1§ o= LMe g = _PTXs
° G (Ut =r. et 2 2 g 12

Since it was previously shown that t ; » N2 and because the chain number density, r , is
proportional to 1/N, thisintegral leads to,

hy» N
in agreement with non-entangled melt behavior.

Dielectric Normal M odes;

Strobl's figure 6.7 shows a schematic of the contributions of dielectric relaxations at different
time scales to the time dependent dielectric constant e(t).
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Fig. 6.7, General shape of the time dependent dielectric function () of PIP

6.7 : - showing
the a-process and the dielectric normal mode {schematic drawing)
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The polarization associated with the normal mode relaxation De,,,, can be written in terms of a
subvolume element, p,, as previoudly, or in terms of the Rouse chain, p,,

<p(O)p,()> =V 1, <p,(0)p,(t)>
For the Rouse chain polarization the fluctuation-dissipation theorem becomes,
rp <P(0)P,(t)> = 3kTey(Dey(¥) - Dey(t))
The relaxation strength due to the normal modes, De,,,(¥), is given from,
rp <Py"> = 3KTe,Dey(¥)
<p,>> isgiven by Ng <(p'ais)™>, and Ng = <R*>/a;%, s0,
<P,>> = <P paie) ><R*>lay” = b*<R?>

Substituting this in the equaiton for <p(0)p,(t)> above,

r, b? <R(O)R(t)> = 3kTey(Deyy(¥) - Da(t))

16



It was previously determined that the end-to-end vector is determined by the lowest order Rouse
modes so,

<R(OR(t)> » Ry exp(-t/t )
Using this we have,
D m(t) =1, b* Ry (1 - exp(-t/t ¢))/(3KT)

Since R, isproportional to N and r , is proportional to 1/N the magnitude isindependent of
molecular weight whilet isproportional to N? sinceit representsthe first mode Rouse
relaxation, as previously observed for normal mode relaxations.

The complex frequency dependent normal mode dielectric relaxation can also be calcul ated,
e,De,..* (w) using the Fourier relationship between the frequency dependent and time dependent
dielectric relaxations,

¥ ¥ o
. d . 1 2tH i e,De, (¥)
e.De = e .De (t)exp(- iwt)dt= e De_(¥)Ay—expé—~exp(- iwt)dt = —>—m—~2
0 nm(W) Ooa: 0 nm( ) Xp( I ) 0 nm( )Oot_R Xpét Rg Xp( I ) 1+ |V\lt "

The Rouse model predicts a Debye Dielectric Relaxation process.

17



