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Dynamic light scattering, as well as dynamic neutron and x-ray scattering (recently), is a main

tool to understand and verify models pertaining to the dynamics of polymers in dilute solution.

Because it is an analytic technique unfamiliar to the majority of polymer scientists a brief

overview is given here.

As mentioned above, the autocorrelation function C(t), or correlation function for position is

given by:

C(t) = <x(0) x(t)>

When monochromatic, collimated visible light irradiates matter the state of polarization of the

molecules oscillates at the frequency of the irradiating light.  This results in an electric field E(t)

associated with the position of the molecules at a given time.  This oscillating electric field

produces light of the same wavelength as the incident light that is irradiated from the molecules

essentially in a uniform manner in space.  Constructive interference between the emitted light

from two molecules or parts of a polymer separated by a vector, r, results in the scattering

pattern.  The observed intensity is proportional to the square of the resulting electric field

associated with the combination of light emanating from the irradiated volume.

A photomultiplier tube of quantum efficiency Qe records the scattered intensity associated with a

separation distance R at a fixed angle θ as a function of time t,

I(R, t) = Qe Es*(R, t')T . Es(R, t')

where t' is the time of irradiation and emission and t is the time of observation by the PMT (there

is an incidental time lag in measurement). "*" indicates the complex conjugate and "T" the

transpose (this is how you square a complex vector).  The angle θ is usually converted to

wavevector, K = 2 sin(θ/2)/λ, or momentum transfer vector q = 2π k.  q is related to size r by r =

2π/q = 1/K.
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The time average intensity is given by,

<I(R)> = Qe <Es*(R, t')T . Es(R, t')>

Since the electric field vector relies on the presence of scattering matter at position R at time t', it

is expected that there is a relationship between C(t) and the intensity correlation function,

<I(0)I(t)> = <I(0)2> + Qe
2 <|E*(0)T . E(t)| |E*(t)T . E(0)|>

If the intensity correlation function is normalized by <I(0)2> the autocorrelation function results,

C(t) = <I(0)I(t)>/<I(0)2> = 1 + K g(2)(t)

where g(2)(t) is the square of the normalized autocorrelation function for electric field, g(2)(t) =

|g(1)(t)|2.

Dynamic light scattering offers a direct measure of Cv(t).

The dynamic light scattering instrument will require a high power laser, typically an Argon gas

laser, a temperature controlled sample cell, a sensitive detector such as a photomultiplier tube,

and a time correlator capable of recording intensity (or current from the photomultipler tube) on

an extremely short time scale (nanoseconds).  The correlator usually calculates the intensity

correlation function directly.  The DLS instrumentation is well described in B. Chu's book cited

above.

Center of Mass Diffusion and DLS:
Application of Fick's second law for diffusion to scattering in K-space results in the following

expression for the molecular correlation function for center of mass motion,

G1(K, t) = <(∆C(K, 0))2> exp(-DmK2t)

where Dm is the mutual diffusion coefficient and ∆C is the concentration change as a function of

time and wavevector, K.  Normalizing by <(∆C(K, 0))2> yields the electric field correlation

function, g(1),

g(1)(t) = g(1)(K, t) = exp(-DmK2t)
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The mutual diffusion coefficient is dependent on the wavevector (scattering angle) since at

different size scales, r = 1/K, the mechanisms of diffusion differ.  In the limit of K goes to 0, i.e.

large size scales, the mutual diffusion coefficient, Dm, is defined by the Stokes-Einstein
relationship,

Dm = (1/NAfm) (dπ/dc)T,µ'

where fm is the mutual friction factor, (dπ/dc)T,µ' is the osmotic susceptibility.  At infinite dilution

(dπ/dc)T,µ' = NAkT, so at infinite dilution (no interactions) and K = 0 (size scales much larger than

the particles of interest), Dm = kT/fm, as previously discussed.

Center of mass diffusion is the simplest case to describe.  Other types of diffusion will effect

dynamic scattering depending on the complexity of the material, i.e. internal modes of

relaxation, hydrodynamic interactions and interactions between chains such as entanglements.

These will be of great importance to the dynamics of polymers.


